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This paper deals with project scheduling problem with resource levelling objective function where
precedence relations among activities are prescribed. We develop a dedicated path-relinking meta-
heuristic algorithm to tackle this problem. Computational results on randomly generated test sets
indicate the developed procedure is efficient and outperforms the best available metaheuristic
algorithms in the literature.
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1. Introduction

Since fluctuation cost in the resources utilization of a pro-

ject is high, scheduling of a project has to be modified such

that variation in profile of all resources is minimized. This

issue is addressed to the resource levelling problem (RLP) in

the literature of project management. The RLP involves the

non-preemptive scheduling of project activities subject to

precedence constraints in order to minimize the variation of

resources’ requirements (such as equipment, manpower,

etc). As it has been shown (Tavares, 1987), the RLP plays

a significant role in practice because large variations

in resources utilization can be very costly. Also, some

resources may not be available in the quantities manage-

ment needs. There is a variety of applications for the

RLP. The RLP has been applied in practice by developing

software tools like Primavera and SuperProject in which

simple shifting heuristic procedures are applied (Meridith

and Mantel, 1995). In addition to the project manage-

ment, the resource levelling has been used in make-to-

order production (Ballestin et al, 2007) and in machine

scheduling environment (Drotos and Kis, 2011).

In terms of resource constraints, there are two types of

RLP in practice, that is, with resource constraints and

without resource constraints. Both types are considered in

the literature of project management but the RLP without

resource constraints is the subject of this research. In

addition, there are two types of RLP in terms of pre-

cedence constraints, that is, special minimum time lags

(temporal precedence relations) and general minimum and

maximum time lags (general precedence relations). In this

paper, we assume there are temporal precedence relations

among activities.

As has been shown (Neumann et al, 2003), the RLP is

NP-hard in ordinary sense even if one resource is con-

sidered. Several exact, heuristic and metaheuristic proce-

dures have been developed for the RLP. For the RLP with

temporal precedence constraints, exact algorithms based

on implicit enumeration, integer programming, or dynamic

programming techniques have been created (Ahuja, 1976;

Bandelloni et al, 1994; Demeulemeester, 1995; Younis and

Saad, 1996 and Easa, 1998). One of the first heuristics for

the RLP is due to Burgess and Killebrew (Burgess and

Killebrew, 1962). This procedure is applicable to CPM/

PERT networks consisting of activities and temporal rela-

tions between them. It aims at finding the best start times of

the activities by shifting them to the right step by step in

several rounds. For this problem, other heuristic procedures

have been proposed (Ahuja, 1976; Harris, 1978 and 1990;

Moder et al, 1983 and Takamoto et al, 1995) where most of

them represent simple shifting heuristics or priority rule

methods. Also, a neural network approach for solving the

RLP has been developed (Savin et al, 1996 and 1997).

Furthermore, metaheuristic procedures based on genetic

algorithm, multi-objective genetic algorithm and ant colony

algorithm have been devised (Leu et al, 2000; Roca et al,

2008 and Geng et al, 2011).

For the RLP with general precedence relations, two

researches (Brinkmann and Neumann, 1996 and Neumann

and Zimmermann, 1999) have devised priority-rule based

heuristics, where the latter represents the first heuristics for

resource levelling with resource constraints in the open

literature. Also, a local search heuristic and a branch-and-

bound algorithm are proposed (Neumann and Zimmermann
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2000). The computational results of the branch-and-bound

method are limited to instances with 20 tasks only. For a

recent review of resource constrained project scheduling,

see Hartmann and Briskorn (2010). More information on

the topic, including several models and algorithms, can be

found in Demeulemeester and Herroelen (2002).

In this paper, a path-relinking (PR) metaheuristic algo-

rithm including relinking method, repairing method, and

improvement method is developed to tackle the RLP

instances. The remainder of this paper is organized as fol-

lows. The problem description and modelling is presented in

Section 2. In Section 3, we provide the sketch of the solution

approach. Computational results are discussed in Section 4.

Finally, a summary and outlook on further research are

given in Section 5.

2. Problem description and modelling

Suppose that set N¼ {0, 1, . . . , nþ 1} represents activ-

ities of a project in which dummy activities 0 and nþ 1

indicate start and end of the project. We use the activity-

on-node (AON) representation to show the project

graphically in which each node indicates an individual

activity and each directed arc (i, j) shows a finish-to-start

type precedence relation between activities i, jAN. Also,

assume set A¼ {(i, j)|i, jAN} represents the temporal

precedence relations among activities and R¼ {1, . . . ,m}

shows the set of renewable resources. Each activity

iAN has a fixed duration di and a constant resource

requirement rik to the renewable resource k where di and

rik are both non-negative integers. Each solution

(schedule) is represented by a vector of start times

S¼ (s0, s1, . . . , snþ 1) where si indicates the start time of

activity iAN. If we establish the convention that s0¼ 0,

which means that the project always begins at time zero,

snþ 1 coincides with the project duration. In addition, a

deadline d is given for the project completion. The RLP

can be modelled as follows:

MinZ ¼ f ðSÞ ð1Þ
s.t.

sj � siXdi 8ði; jÞ 2 A ð2Þ

si 2 Zþ 8i 2 N ð3Þ
s0 ¼ 0 ð4Þ
snþ1pd ð5Þ

The objective function f(S) is related to smoothing of

the resource utilization and there are several different

formulas for that in the literature (Neumann and

Zimmermann, 2000). The most commonly used formula

is f ðSÞ ¼
Pm

k¼1 ck
Psnþ1

t¼1 rkðS; tÞ � rkðS; t� 1Þð Þ2; where

rk(S, t) shows the resource utilization of resource k over

time periods t (interval [t�1, t]) where t¼ 1, . . . , snþ 1 and

ck40 represents the cost per change in resource uti-

lization of resource kAR. In other words, rk(S, t) can

be represented as rkðS; tÞ ¼
P

i2BkðS;tÞ rik; where Bk(S, t)

indicates a set of activities that are in progress on

resource k and at time period t in schedule S. For

initialization, we assume for each resource k and schedule

S, rk(S, 0)¼ 0. It has been proved that minimization

of
Pm

k¼1 ck
Psnþ1

t¼1 rkðS; tÞ � rkðS; t� 1Þð Þ2 corresponds to

minimization of
Pm

k¼1 ck
Psnþ1

t¼1 rkðS; tÞ
2 (Burgess and

Killebrew, 1962). Thus, after this, for convenience we

consider f ðSÞ ¼
Pm

k¼1 ck
Psnþ1

t¼1 rkðS; tÞ
2: Constraint (2) in-

dicates the temporal precedence constraints while constraint

(3) is related to the non-negative values of start times

(Zþ indicates the set of non-negative integers). As we

mentioned before, we assume the project is started at time

zero and this assumption is shown by constraint (4). Finally,

constraint (5) implies all activities must be finished before or

at the given deadline d.

3. The path-relinking metaheuristic for the RLP

3.1. The optimal solution property

Our developed metaheuristic is constructed based on

an optimal solution property of the RLP developed in

Theorem 3 of Neumann and Zimmermann (1999). Assume

D(R, S) shows the set of jump discontinuities of the

resource profiles in schedule S, that is, the set of points

in time tA{0, 1, . . . , d�1} such that rk(S, t)ark(S, t�1).
Assume esi and lsi indicate the earliest and the latest

start times of activity i, respectively, calculated using the

critical path method (CPM). If we consider ESi(S) as the set

of eligible start times of activity i, we have ESi (S)¼
{{t|tA([esi, lsi]\D(R,S))}[ {t|tA[esi, lsi] and tþ diAD(R,S)}

[ {esi, lsi}}. Neumann and Zimmermann (1999) proved that

there is an optimal schedule S in which siAESi (S) for

all iAN.

For instance, consider the example project depicted in

Figure 1 in which n¼ 5, m¼ 1 and d¼ 14. The number

shown above each node (activity) indicates the activity

duration while the below number specifies resource require-

ment of the activity.

Figure 2 shows a non-optimal schedule because s5eES5

where ES5 is calculated as follows:

ES5 ¼ ftjt 2 ð½3; 9� \ f0; 2; 3; 10; 14gÞg [ ftjt 2 ½3; 9� andf
tþ 5 2 f0; 2; 3; 10; 14gg [ f3; 9gg

¼ f3g [ f5; 9g [ f3; 9gf g ¼ f3; 5; 9g

3.2. General overview

Path-relinking (PR) is an intensification strategy to explore

trajectories connecting elite solutions obtained by heuristic
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methods (Glover, 1996). Path-relinking can be considered

as an extension of the combination method of scatter

search (Laguna and Martı́, 2003). Instead of directly pro-

ducing a new solution when combining two or more

original solutions, path-relinking generates paths between

and beyond the selected solutions in the neighbourhood

space. It should be noted that the combination method in

scatter search is a problem-dependent element, which is

customized depending on the problem and the solution

representation. In particular, in global optimization, where

solutions are represented as real vectors, most scatter search

applications perform linear combinations between pairs of

solutions. Alternatively, in problems where solutions are

represented as permutations, such as ordering problems,

voting methods have been widely applied. In problems

where solutions are represented as binary vectors, such as

knapsack problems, probabilistic scores have provided very

good results (Laguna and Martı́, 2003). This way, one can

also view path-relinking as a unified combination method

for all types of problems and in this way it also generalizes

the combination methods. This approach generates new

solutions by searching paths that connect high-quality

solutions by starting from one of these solutions, called an

initiating solution, and generating a path in the neighbour-

hood space that leads towards the other solutions, called

guiding solutions. This is accomplished by selecting moves

that introduce attributes contained in the guiding solutions.

Figure 3 shows the main structure of our algorithm as

pseudocode. In the first step, an initial population P

containing |P| solutions is generated using diversification

generation method, described in Section 3.3. In the second

step, the reference set RefSet, including b elite solutions of

P, is constructed using reference set building method,

described in Section 3.4. The solutions of RefSet are called

reference solutions. Next, the NewSubsets, each of them

containing two reference solutions, are generated. Sub-

sequently, the two solutions of each subset, shown by

(S0,S00), are selected and the relinking method, described in

Section 3.5, is applied to them. We consider S0 as the initial
solution and S00 as the guiding solution.

The relinking method generates solutions S0(1),
S0(2), . . . ,S0(l) in the path constructed from S0 towards
S00 in which S0(i) differs from S0(iþ 1); i¼ 1, . . . , l�1 in

start time of only one activity. From the newly generated

solutions in step 6, only one solution should be a candidate

for adding to P. Since a repairing method, described in

Section 3.6, and an improvement method, described in

Section 3.7, are applied to selected solutions (step 9) and

relative quality of solutions may be changed after

repairing and improvement, two solutions are chosen

randomly from generated solutions in step 6, shown by

S0(u) and S0(v) where uav. In step 8, the solutions that

are not subject to the precedence constraints or the

optimal property are repaired. Also, in step 9, a local

search procedure is applied to the solutions as an

improvement method. Next, two selected solutions are

evaluated using evaluation function and the better

one, shown by bS , is chosen. The evaluation function

calculates f(S) for a given solution S. In step 11, bS is

added to P. In step 12, we exchange initial and guiding

solutions and repeat steps 6–11 again. It should be noted

that due to the structure of the relinking method,

number of generated solutions in two opposite paths

between S0 and S00 are identical. In order to keep the best

solution so far, we add it to the P. Finally, we check

termination criterion, the specified time limit, and go to

step 2 if it is not met. In the next iterations, we do not

need to construct an initial population because it has

been generated in previous iteration. In other words,

by combining each pair of RefSet (referred to as a

NewSubset), two new solutions are added to the

population.

3.3. Diversification generation method

Each element in the initial population is a random solution

and is created by the diversification generation method,

illustrated in Figure 4. In this approach, activities are

added one by one to a partial schedule S. EA(S) indicates

set of eligible activities, initialized by all activities without
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predecessor, and SA(S) represents set of scheduled activ-

ities, initialized as an empty set.

After initialization step, we follow a while-loop to con-

struct a random solution. In each iteration of this loop, an

individual activity is added to the partial schedule S. At

step 3, one of the eligible activities, shown by j, is selected

randomly. Next, ESj
s(S) is calculated, one of the eligible

events for start time of activity j is chosen randomly and

activity j is started in that time. Subsequently, sets EA(S)

and SA(S) are updated. In order to update set EA(S),

activity j should be removed from EA(S) and all activities

iASuc( j) for which Pred(i)DSA(S) should be added to

EA(S), where Suc( j) and Pred( j) indicate the set of suc-

cessors and set of predecessors of activity j, respectively.

Also, set SA(S) is updated simply as SA(S)¼SA(S)[ j.
Finally, it should be noted that each solution in our

algorithm is represented by the vector of its start times.

Although this type of solution representation, direct repre-

sentation, is not recommended in metaheuristic algorithms

due to vast range for possible values of start times, our

solutions representation is efficient because in our algo-

rithm, start time of each activity should be subject to

precedence relations as well the optimal property described

in Section 3.1.

3.4. Reference set building and subset generation methods

The reference set, RefSet, is a collection of both high-

quality solutions and diverse solutions that are used to

generate new solutions by way of applying the relinking

method. We construct RefSet based on the method applied

for construction of RefSet1 of scatter search in Ranjbar

et al (2009). We select the solution with smallest objective

function, shown as S1, as the first member of RefSet and

delete it from P. The next best solution S in P is chosen and

added to RefSet only if Dmin(S)Xth_dist, where Dmin(S) is

the minimum of the distances of solution S to the solutions

1.  Construct an initial population P with size of |P| using diversification generation method.

2.  Build the RefSet using the reference set building method.

3.  Generate NewSubsets with the subset generation method. Make P=∅.

4.  while (NewSubsets≠∅) do

5.      Select a next pair  in NewSubsets and delete it from NewSubsets.

6.      Apply the relinking method to produce the sequence 

7.      Select two solutions  and from generated solution in step 6 randomly. 

8.      Apply the repairing method to  and 

9.      Apply the improvement method to  and . 

. 

10.    Evaluate improved solutions and let the better one as . 

11.    let . 

12.    Exchange  and and repeat steps 6 to 11. 

13. end while 

14. Add the best solution so far to the P.

15. If termination criterion is met, stop; otherwise, go to step2.

Figure 3 pseudocode of path-relinking method.

1.  Let  and .

2.  while   do

3.  Select activity randomly.

4.  Calculate , select randomly and let

6.  Update  and 

7.  end while

Figure 4 pseudocode of diversification generation method.
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currently in RefSet and th_dist is a threshold distance. The

difference between two solutions is number of different

start times for identical real activities in two solutions

divided by number of real activities. Thus, the difference of

every two solutions changes in range [0, 1]. This process is

repeated until b members are chosen for RefSet. Whenever

no qualified solution can be found in the population, the

RefSet is completed with random solutions generated using

diversification generation method (Ranjbar et al, 2009).

For these members of RefSet, the condition of minimum

threshold distance is ignored.

After the RefSet construction, NewSubsets are gener-

ated, consisting of all pairs of reference solutions resulting

in (b2�b)/2 Newsubsets. The pairs in NewSubsets are

selected one at a time in lexicographical order and the

relinking method is applied to generate one trial solution.

Thus, size of P will be always (b2�b)/2þ 1 where one more

solution shows the best solution so far.

3.5. Relinking method

The relinking method constructs a path from initial

solution towards guiding solution. This path is built of a

sequence of elements in which each element is a vector of

start times and differs with its previous and next elements

in start time of only one activity.

Assume the relinking method should be applied to two

given solutions S0 ¼ (s00, . . . , snþ 1
0 ) and S00 ¼ (s000, . . . , s

00
nþ 1),

where the path direction is from S0 towards S00. The

relinking method is an iterative procedure with at most n

iterations. At the ith iteration of this procedure, si
00 is

compared with si
0 and if si

00asi
0, we change si

0 as si
0 ¼ si

00.
After each change, a new solution is obtained. It should be

noted that generated solutions may not observe precedence

constraints or the optimal property. Thus, selected solu-

tions of each path should follow the repairing method.

For instance, consider the example project depicted in

Figure 1 and assume schedules S0 and S00 are given as

S0 ¼ (0, 3, 0, 0, 7, 7, 11) and S00 ¼ (0, 0, 3, 0, 10, 3, 14). If we

suppose moving direction is from S0 towards S00, the

generated solutions in this path are shown in Figure 5.

Since s001as01, S
0(1) is generated from S0 by changing s01 as

s01¼ s001¼ 0. Similarly, S0(2) is generated from S0(1) by

changing s02¼ s002¼ 3. It should be noted that in S0(3), s04 is
changed but the project termination time (s0nþ 1) is changed

automatically to 14.

3.6. Repairing method

The repairing method includes two steps. The first step

is applied to infeasible solutions for the purpose of

making them feasible while the second step is applied to

the solutions that do not have the optimal property. In

the first step in which the precedence constraints are

investigated, for each activity iAN, if sio max
j2PredðiÞ

ffjg , then

we set si ¼ max
j2PredðiÞ

ffjg: In the second step of the repairing

method, for each activity iAN that sieESi, we shift the

activity to direction that has more positive or less negative

impact on the objective function by the minimum amount

required such that we have siAESi. It has been assumed that

for each (i, j)AA the relation ioj is held. Thus, in order to

terminate the repairing method in a finite number of

iterations, we apply both the first and the second steps of the

repairing method in ascending order of the activity numbers.

For instance, consider the example project and assume

S0(2)¼ (0, 0, 3, 0, 7, 7, 12), generated in the previous section,

is selected for repairing. Since activity 2 is started at time

instant 3 and finished at time instant 10, activity 4 cannot

be started at a time instant less than 10. Thus, at the first

step of the repairing method, we change s4
0 from 7 to 10.

The output of the first step of the repairing method is

the schedule depicted in Figure 2 in which s5
0eES5. So, in

the second step of the repairing method, s05 is changed from

7 to 5.

3.7. Improvement method

The improvement method is a local search procedure that

gets a schedule S as input and searches in the neighbour-

hood of S in the hope of finding a better solution. The

strategy of this local search is the best improvement

strategy, that is, if more than one better solution is found

in the neighbourhood of a given solution, the best one is

chosen. If S� shows the best found solution in the

neighbourhood of S and f(S�)of(S), the improvement

method is restarted by letting S¼S�. This procedure is

repeated until no improvement is obtained.

For a given schedule S, we first calculate the jump for

each tAD(R,S). Then, we select a set of candidate activities

for which the jump in their start or finish time is more than

average of jumps. Next, for each candidate activity we

generate its neighbours as follows. First of all, for each

candidate activity i, we calculate ESi (S). Then, for each

tAESi (S) there is an iteration in which we set si¼ t while

start times of other activities are not changed. After that, si
is set to its initial value, specified by schedule S, and next

Initial Solution 0,3,0,0,7,7,12

Generated solutions

0,0,0,0,7,7,12

0,0,3,0,7,7,12

0,0,3,0,10,7,14

Guiding solution 0,0,3,0,10,3,14

Figure 5 Illustration of the relinking method.
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candidate activity is chosen for changing its start time. This

procedure is repeated for all candidate activities and each

change in the start time of each individual activity gen-

erates one of the neighbours of schedule S. In order to

improve generated neighbours, we apply the repairing

method to each neighbour. Since start time of each activity

iAN is changed in the domain specified by ESi(S), gen-

erated neighbours are feasible in terms of precedence con-

straints but they may not obey the optimal property. Thus,

we apply only the second step of the repairing method to

generated neighbours.

For instance, consider the example project in which

the improvement method is applied to the schedule

S0(2)¼ (0, 0, 3, 0, 7, 5, 14), obtained from repairing method

in the previous section. The only improvement is obtained

if s01 is changed from 0 to 3. The resulting schedule
bS ¼ ð0; 3; 3; 0; 7; 5; 14Þ, which is also optimal for the

example project, is depicted in Figure 6.

4. Performance analysis

We have performed a series of computational experiments

using randomly generated test sets in order to examine the

performance of the PR algorithm.

4.1. Experimental setup

A test set including 600 test instances were generated using

the random network generator RanGen (Demeulemeester

et al, 2003). Five different values n¼ 100, 200, 300, 400

and 500 have been chosen as the number of activities. Also,

the values of order strength (OS) have been considered as

OS¼ 0.25, 0.5 and 0.75. The OS parameter indicates the

number of precedence-related activity pairs divided by the

theoretically maximum number of such pairs in the net-

work. In addition, five resources are considered and the

resource demands and coefficients ck are generated ran-

domly from the discrete uniform distribution {1, . . . , 10}.

For each combination of n and OS, 10 random test

instances have been generated. Besides n and OS, the

prescribed project deadline d is an important parameter

when dealing with the RLP. For each test instance, four

different values d¼ esnþ 1, 1.1esnþ 1, 1.25esnþ 1 and 1.5esnþ 1

have been considered where esnþ 1 represents the earliest

start time of dummy end activity nþ 1.

We used a full factorial design of experiments to

determine the best values of parameters b and th_dist. For

this purpose, we consider four values n/2, n, 3n/2 and 2n for

parameter b and four values 0.2, 0.4, 0.6 and 0.8 for

parameter th_dist. For each combination, we consider only

a small set of hard test instances, including 50 test instances,

to measure the performance. The best performance of the

PR algorithm is obtained when b¼ n and th_dist¼ 0.4.

4.2. Computational results

In order to evaluate the efficiency of our developed PR

metaheuristic, one way is to compare it with similar

approaches from literature. In particular, the tabu search

(TS) algorithm of Neumann and Zimmermann (2000) and

iterated greedy (IG) algorithm of Ballestin et al (2007) are

considered. We reimplemented TS and IG algorithms

according to the settings described in the corresponding

papers. All codings were done in the Visual C++ 6.0

environment. In order to verify our implementations, we

first found computers similar to those used for running

TS and IG algorithms (PC Pentium with 200 processor

running NT 4.0 for TS algorithm and PC Pentium with

1.4GHz clock pulse and 512MB RAM for IG algorithm).

Statistical tests, not reported in this paper, indicated

that there is no difference between results obtained by

our implementations and the results reported in the two

foregoing papers. Then, for a fair comparison, we ran all

algorithms on PC Pentium IV 3 GHz processor with 1024

MB of internal memory and we selected three different

time limits TL¼ 10, 30 and 60 s as the termination

criterion.

The minimum objective function for each test instance

among all runs of the three algorithms is considered as the

best found solution. Table 1 shows the average percent

deviation of solutions found by the PR from the best found

solutions. Similar to Table 1, Tables 2 and 3 show the

same information but found by the TS and IG algorithms,

respectively.

As expected, by increasing the run time limit, the quality

of the obtained solutions is improved. Also, the average

percent deviation from best found solutions is higher for

the projects with larger number of activities. This trend is

consistent for all three algorithms and all the run time

limits except the case of the PR algorithm and TL¼ 60 s.

The reason of this exception is that for larger proj-

ects, most of the best solutions are found by the PR

algorithm.

The results of Tables 1–3 reveal that PR outperforms

two other metaheuristics. In the PR algorithm, the average
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Figure 6 Illustration of the improvement method.
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percent deviation for all test instances with run time limits

10, 30 and 60 s is around 45, 32 and 2%, respectively. These

total average percent deviation values are 61, 40 and 19%

for the TS algorithm and 52, 34 and 13% for the IG

algorithm. Comparison of the results of the algorithms TS

and IG convinced us that IG is more efficient than TS.

Table 4 shows the percent of average relative deviation

between the objective function values provided by the TS

and the PR for each combination of n and d while TL is set

to 30 s. Similar comparison is shown in Table 5 between the

IG and the PR algorithms.

The results of Tables 4 and 5 confirm the obtained

results from Tables 1–3. There is a constant trend in both

Tables 4 and 5 in which the relative efficiency of the PR

algorithm than two other algorithms is more revealed when

values of d and n are increased.

4.3. Impact of the improvement method

In order to evaluate the impact of the improvement

method (local search), the PR algorithm is run without the

improvement method over all test instances. Table 6 dis-

plays the average relative deviation of the objective

function values obtained by the PR without and with

the improvement method while TL¼ 30 s. The average

percent improvement is noticeable, that is, 26, 31.7, 36.2

and 39.8% for d¼ esnþ 1, d¼ 1.1esnþ 1, d¼ 1.25esnþ 1 and

d¼ 1.5esnþ 1, respectively. These results indicate that the

developed improvement method is efficient.

5. Summary and outlook on further research

In this article, the RLP is studied. A dedicated path-

relinking metaheuristic is developed for the problem and is

compared with two best metaheuristics in the literature.

The comparative computational results reveal that the

developed path-relinking metaheuristic procedure is effi-

cient and outperforms two other algorithms.

Table 1 Average percent deviation of the solutions found by
the PR from the best found solutions

Time Limit (in seconds)

10 30 60

n=100 36.1 25.0 3.1
n=200 37.1 29.6 3.9
n=300 47.8 30.7 2.0
n=400 50.9 35.9 1.4
n=500 53.5 38.8 0.4

Table 3 Average percent deviation of the solutions found by
the IG from the best found solutions

Time Limit (in seconds)

10 30 60

n=100 40.2 19.9 5.9
n=200 44.1 29.8 8.4
n=300 53.7 36.7 13.4
n=400 61.2 41.2 18.9
n=500 65.4 44.0 20.7

Table 2 Average percent deviation of the solutions found by
the TS from the best found solutions

Time Limit (in seconds)

10 30 60

n=100 48.7 26.8 8.3
n=200 58.4 38 12.9
n=300 58.8 41.5 33.0
n=400 67.5 47.3 23.2
n=500 73.4 49.0 21.7

Table 4 Percent of mean relative deviation between objective
function values of the TS and PR

d=esnþ 1 d=1.1esnþ 1 d=1.25esnþ 1 d=1.5esnþ 1

n=100 2.8 8.0 13.3 20.4
n=200 3.1 8.4 13.5 20.3
n=300 3.4 9.1 13.9 21.0
n=400 3.6 9.0 13.1 11.8
n=500 3.7 8.5 12.8 20.7

Table 5 Percent of mean relative deviation between objective
function values of the IG and PR

d=esnþ 1 d=1.1esnþ 1 d=1.25esnþ 1 d=1.5esnþ 1

n=100 1.2 3.7 6.0 9.1
n=200 1.3 4.2 6.9 9.7
n=300 1.7 4.4 7.3 10.1
n=400 1.7 4.8 7.5 10.8
n=500 1.7 4.5 7.3 10.3

Table 6 Percent of mean relative deviation between objective
function values of the PR with and without the improvement

method

d=esnþ 1 d=1.1esnþ 1 d=1.25esnþ 1 d=1.5esnþ 1

n=100 20.3 23.8 28.7 33.1
n=200 21.4 27.8 32.1 35.8
n=300 25.8 31.1 36.1 38.4
n=400 28.5 35.9 39.4 44.4
n=500 34.0 39.9 44.7 47.3
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Future research should be oriented towards applying the

path-relinking metaheuristic for other project scheduling

problems. Also, developing other metaheuristic for the

RLP can be interesting research topics.
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