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River instantaneous peak flow estimation using daily flow

data and machine-learning-based models

Mohammad T. Dastorani, Jamile Salimi Koochi, Hamed Sharifi Darani,

Ali Talebi and M. H. Rahimian
ABSTRACT
Estimation of the design flood flow for hydraulic structures is often performed by adjusting

probabilistic models to daily mean flow series. In most cases, this may cause under design of the

structure capacity with possible risks of failure because instantaneous peak flows may be

considerably larger than the daily averages. As there is often a lack of instantaneous flow data at a

given site of interest, the peak flow has to be estimated. This paper develops new machine-learning-

based methods to estimate the instantaneous peak flow from mean daily flow data where long daily

data series exist but the instantaneous peak data series are short. However, the presented methods

cannot be used where only daily flow data are available. Developed methodologies have been

successfully applied to series of flow information from different gauging stations in Iran, with

important improvements compared to traditional empirical methods available in the literature.

Reliable results produced by the machine-learning-based models compared to the traditional

methods show the superior ability of these techniques to solve the problem of inadequate measured

peak flow data periods, especially in developing countries where it is difficult to find sufficiently long

instantaneous peak flow data series.
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INTRODUCTION
The first step in designing a culvert or bridge or any hydrau-

lic structure for a particular location is determination of

design flood. This is the flood that the culvert or bridge

must be able to carry safely. This involves first choosing

the suitable return period for the design flood, which

involves considerations of cost, risk, consequences of fail-

ure, how to deal with uncertainty, etc. In fact, design flood

is an instantaneous peak discharge (IPF) with a specific

return period. In particular, estimation of the design floods

of hydraulic structures requires the determination of instan-

taneous peak flows because there may be significant stream

flow fluctuations within hours or even minutes, especially in

the case of small basins (drainage area up to 1,000 km2).

Another interesting aspect of this issue is related to the pro-

cess by which gauge operating agencies evaluate and

maintain hydrological data. In most cases, these agencies
publish only the mean daily flow (MDF) data, and the use

of these data in flood studies may cause underestimation

of the design flood with possible risk of failure. In many

hydrologic studies, particularly flood routing in reservoirs

or channels, it is necessary to use the complete flood hydro-

graph. An important input to estimate this hydrograph is the

instantaneous peak flow. There are several ways of estimat-

ing peak flow, depending on the area and the type of data

available. Methods for estimating the instantaneous peak

flow based on mean daily data have been studied by hydrol-

ogists for almost a century. In general, to tackle this

problem, two different approaches have been presented.

The first approach includes methods that seek a relationship

between the so-called peak flow coefficient, defined as the

ratio of instantaneous peak and the corresponding MDF,

with physiographic characteristics of the basin (Fuller ;
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Silva ; Silva & Tucci ). Taguas et al. () estab-

lished possible linear relationships between annual IPF

and the corresponding MDF stream for southeastern

Spain, and a regional equation to estimate IPF from MDF

was developed. This equation was applied to a series of

flows of nine stations in the southeast basin of Spain, and

a significant improvement was achieved when applying

this formula in comparison to the traditional method of

Fuller. This study indicates possible restrictions to take

into account when the traditional hydrological models are

applied in semi-arid areas. The second approach includes

methods that use the sequence of MDF data to estimate

the peak flow (Jarvis ; Langbein ; Linsley et al.

; Sangal ).

Using data-driven techniques such as artificial neural

networks (ANNs) and adaptive neuro-fuzzy inference sys-

tems (ANFISs) is another possibility for solving this

problem. In the last few decades, many types of data-

driven model have been developed to simulate hydrologic

processes, and this has led to an increasing interest in

ANN and ANFIS techniques that consider non-linearity in

the hydrological process. Karunanithi et al. () predicted

river flow using adaptive ANNs; Hsu et al. () evaluated

the application of ANNs for rainfall-runoff processes; Minns

& Hall () and Tokar & Johnson () employed this

method as a tool for rainfall-runoff modeling; Dawson &

Wilby (a) applied ANNs for rainfall-runoff modeling;

Dawson & Wilby (b) also compared the application of

different types of ANN for river flow forecasting; Luk

et al. () tried to forecast rainfall events using ANNs;

Bhattacharya & Solomatine () used ANN techniques

to evaluate stage discharge relationships; Dastorani &

Wright () completed a research project on flow esti-

mation for ungauged catchments using a neural network

method; and Dastorani & Wright () used ANNs for

real-time river flow prediction in a multi-station catchment.

Dastorani & Wright () employed ANNs to optimize the

results of a hydrodynamic approach used for river flow pre-

diction; Jacquin & Shamseldin (), after a general

overview about the use of fuzzy inference systems in river

flow forecasting, stated that fuzzy inference systems can be

used as effective tools for river flow forecasting, even

though their application is rather limited in comparison to

the popularity of neural network models. Kisi () used
a neurowavelet conjunction model (a combination of a dis-

crete wavelet transform and an ANN) for intermittent

stream flow forecasting, and compared the results to those

of the single ANN model. Comparison of the results

showed higher accuracy of the combined model over the

single ANN model. Dastorani et al. (a) evaluated the

application of ANN and ANFIS models for reconstruction

of missing flow data, and reported their superior abilities

compared to the related traditional methods. Dastorani

et al. (b) used ANNs for estimation of instantaneous

peak flow using daily flow data, and compared the results

to existing empirical methods. Shamseldin () used

ANNs with different input patterns for real-time flow fore-

casting in Sudan, and mentioned the considerable

potential of ANNs for river flow forecasting. Seckin ()

used ANN and ANFIS models to predict flood discharge

at ungauged catchments in Turkey. The results were com-

pared to those presented by regression techniques,

showing higher accuracy of the outputs produced by ANN

and ANFIS models over the regression techniques. Kisi &

Partal () used a combined model called a wavelet-

neuro-fuzzy model (a combination of wavelet transform

and the neuro-fuzzy techniques) to forecast monthly

stream flow, and compared the results to those presented

by the classic neuro-fuzzy method. Comparison of results

indicated higher accuracy of the predictions presented by

the combined model over the classical neuro-fuzzy model.

In this research, after evaluation of some existing

methods, several ANN- as well as ANFIS-based models

have been developed and used to estimate instantaneous

peak flow using daily flow data. However, it must be men-

tioned that the proposed method is applicable for the places

where long daily flow data series are available but the instan-

taneous peak flow data series are short. This method cannot

be used where only daily flow data are available. The results

produced by these models have been compared to those pre-

sented by the most famous existing methods, and related

strengths and limitations have been discussed.
MATERIALS AND METHODS

The methods used in this research are briefly presented in

the following subsections.
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The Fuller method

Fuller () used data from 24 river basins with drainage

areas varying from 3.06 to 151,592 km2 and proposed the

relationship:

Qmax ¼ Q 1þ 2:66A0:3� �
(1)

where Qmax is the predicted peak flow (m3/s), Q is the maxi-

mum MDF (m3/s) and A is the drainage area (km2).

Following Fuller’s method, many other authors have

presented relationships between the ratio of peak flow and

the MDF as a function of the drainage area for different

regions of the world. Table 1 summarizes several formulae

proposed in the literature.

The Sangal method

A more recent and well-known technique proposed by

Sangal () is based on the assumption of a triangular

hydrograph:

Qmax ¼
4Q2 �Q1 �Q3

� �
2

(2)

where Qmax is the predicted instantaneous peak flow (m3/s),

Q2 is the MDF of the day that contains the peak (m3/s), and
Table 1 | Relationship between the ratio of peak flow and mean daily flow as a function of

drainage area in the literature (Fill & Steiner 2003)

Equation Region of study Author

Qmax/Qd¼ 3.9A*�0.22 Rocky Mountains Gray ()

Qmax/Qd¼ 10A*�0.46 Cypress Hills Gray ()

Qmax/Qd¼ 11A*�0.26 Central Plains Gray ()

Qmax/Qd¼0.37A
*�0.38 Manitoba Encarp Gray ()

Qmax/Qd¼1þ 1.2A�0.036 Portugal Correia ()

Qmax/Qm¼ 1þ 68A�0.5 Italy Tonini (1939)a

Qmax/Qm¼ 32A�0.313 Italy (A< 120 km2) Cottechina
(1965)a

Qmax/Qm¼ 16A�0.19 Italy (A> 120 km2) Cottechina
(1965)a

Qmax/Qm¼ 2.39A�0.112 Italy Tonini (1969)a

Qmax/Qd¼ 1þ 15.03A�0.59 Brazil Tucci ()

Note: A¼ drainage area (km2); A*¼ drainage area (mi2); Qmax¼ peak flow; Qd¼ highest

observed flow; Qm¼maximum mean daily flow. aReported in Canuti & Moisello (1981).
Q1 and Q3 are the MDFs for the posterior and anterior day,

respectively (m3/s).

Sangal () used the MDF data of 3 consecutive days.

The method was tested with streams in Ontario, Canada,

using 3,946 station-years of flow data collected from 387

stations. The method leads to results with reasonable accu-

racy, but it is downward biased for small basins.

Despite the fact that almost half of the data used in San-

gal’s study are from snowmelt floods, his method has been

widely used in practice for flood routing through reservoirs

for feasibility studies of hydroelectric plants in different

parts of the world. For watersheds with drainage areas

greater than 1,000 km2, results based on Sangal’s method

have indicated that calculated peak flow values are signifi-

cantly higher (about 50%) than the observed values

(Sangal ). This trend of overestimating theoretical peak

flows has been the motivation to review Sangal’s

methodology.

The Fill and Steiner method

Fill & Steiner () presented a formula almost similar to

the Sangal () method to estimate the instantaneous

peak flow from the MDF of 3 consecutive days including

the peak day. The 3 days are the day with the maximum

MDF and the adjacent days. Similar to the Sangal ()

formula, it is assumed that the peak flow could be

estimated by a linear combination of the MDFs of these

days:

Qmax ¼ 0:8Q2 þ 0:25 Q1 þQ3ð Þ (3)

where Qmax is the predicted instantaneous peak flow (m3/

s), Q2 is the MDF of the peak day (m3/s), and Q1 and Q3

are the MDFs of the day preceding and succeeding the

peak day (m3/s), respectively.

As can be seen, the equations presented by Sangal ()

and Fill & Steiner () are mostly similar. In both

methods, peak flow is estimated using daily flow data of 3

consecutive days, with higher effects of the peak day (Q2).

However, in analyzing the results computed by Equation

(3), Fill & Steiner () evaluated the correlation between

the ratio of the estimated and the observed peak flow

value and the ratio of the average of the MDFs of the
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1st and 3rd days and the MDF of the peak day. Next, it was

verified that if a correction factor ‘k’ is applied to Equation

(3), it would be possible to obtain better agreement between

estimated and observed data. Hence:

Qmax ¼ 0:8Q2 þ 0:25 Q1 þQ3ð Þ½ �=k (4)

The factor ‘k’ may be obtained from linear regression

between the hydrograph shape factor x¼ (Q1þQ3)/2Q2

and k for the observed cases.
The ANN-based method

In this research, in addition to the three above-mentioned

methods, the ANN technique was also used to estimate

instantaneous peak flow data using daily measured flow

data. The ANN architecture used was a three-layer feed-

forward network (Figure 1).

This type of network is normally trained with the back-

propagation algorithm. The backpropagation rule

propagates the errors through the network and allows adop-

tion of hidden processing elements. One hidden layer with a

tangent sigmoid transfer function was used, while the output

layer function was a logistic one. As the figure shows in this

study, the number of processing elements (nodes) in the

hidden layer was two, and the backpropagation Leven-

berg–Marquardt algorithm was used as the training

algorithm for updating the network weights. The number

of epochs was 1,000, with an acceptable error of 0.00001.

Annual MDF data were used as the input, and instantaneous

peak flow data of the same year were used as the network

output. Matlab software was used for construction and

implementation of the ANN model. Several ANN struc-

tures, including radial-basis, Hopfield, generalized

regression and cascade-forward networks, were also used

and the presented results were evaluated. However, feed-

forward networks presented the most reliable outputs.
Figure 1 | A typical three-layer feedforward neural network used in this research.
The ANFIS-based method

ANFIS is another model used to estimate instantaneous

peak flow data series using daily measured flow data in

this research. ANFIS is an improved tool and a data-

driven modeling approach for determining the behavior

of imprecisely defined complex dynamical systems (Kim

& Kasabov ). Kurian et al. () state that ANFIS

model has human-like expertise within a specific domain

and learns to perform better in changing environments. A

neuro-fuzzy system is defined as a combination of the

ANN and the fuzzy inference system. Neuro-fuzzy systems

have attracted growing interest in various scientific and

engineering areas due to the increasing need of intelligent

systems (Abraham & Nath ). Figure 2 represents a typi-

cal ANFIS architecture that is based on the work of Jang

().

Layer 1: Every node in this layer is an adaptive node

with a node function that may be a generalized bell member-

ship function (MF) (Equation (5)) or a Gaussian MF

(Equation (6)):

μAi
xð Þ ¼ 1

1þ x� ci
ai

����
����
2bi

(5)

μAi
xð Þ ¼ exp � x� ci

ai

� �2
" #

(6)

where ai, bi and ci are parameters determining the

shape of the MFs. In addition, x is the input to node i,

and Ai is the linguistic label (for example, low and high)

or simply fuzzy numbers associated with this node

function.

Layer 2: Every node in this layer is a fixed node labeledQ
, representing the firing strength of each rule, and is calcu-

lated by the fuzzy AND connective of ‘product’ of the
Figure 2 | A typical ANFIS architecture based on Jang (1993) used in this research.



Table 2 | The gauging stations used in this research

Station
code

Climate
condition Latitude Longitude

Elevation (m
above sea
level)

Drainage
area (km2)

31-011 Semi-arid 37W300 45W010 1,390 418

14-101 Sub-humid 36W020 51W090 1,790 725

41-009 Semi-arid 32W210 50W000 2,000 817

42-003 Semi-arid 32W390 50W280 2,100 1,440

12-005 Semi-arid 37W280 55W290 132 1,524

47-015 Arid 35W180 52W250 1,000 3,209

12-023 Semi-arid 37W130 55W000 30 6,560

31-015 Semi-arid 38W070 46W240 1,450 7,432

1093 M. T. Dastorani et al. | River instantaneous peak flow estimation using daily flow Journal of Hydroinformatics | 15.4 | 2013
incoming signals using:

wi ¼ μAi
xð Þ × μBi

xð Þ
i ¼ 1, 2

(7)

where μAi
xð Þ and μBi

xð Þ are membership grades of fuzzy sets

A and B, and wi is the firing strength of each rule.

Layer 3: Every node in this layer is a fixed node

labeled N, representing the normalized firing strength of

each rule. The ith node calculates the ratio of the ith

rule’s firing strength to the sum of two rules’ firing

strengths using:

wi ¼ wi

w1 þw2

i ¼ 1;2
(8)

where w
i
is the normalized firing strength that is the ratio

of the ith rule’s firing strength (w
i
) to the sum of the first

and second rules’ firing strengths (w
1
, w

2
).

Layer 4: Every node in this layer is an adaptive node

with a node function (Equation (9)), indicating the contri-

bution of ith rule toward the overall output:

wi zi ¼ wi pi xþ qi yþ rið Þ (9)

where zi is equal to pi xþ qi yþ rið Þ, and pi, qi and ri are con-

sequent parameters.

Layer 5: The single node in this layer is a fixed node

labeled
P

, indicating the overall output as the summation

of all incoming signals calculated by:

Z ¼
X
i

wi zi ¼
P

i wi ziP
i wi

(10)

where Z is the summation of all incoming signals.

When inspecting the above layers, the three different

types of components that can be adapted as follows are

important (Lughofer ).

1. Premise parameters as nonlinear parameters that appear

in the input MFs.

2. Consequent parameters as linear parameters that appear

in the rule consequents (output weights).
3. Rule structure that needs to be optimized to achieve a

better performance.

In this study, different MFs were used including Gaus-

sian, triangle, trapezoidal, sigmoidal and generalized bell

MFs, and the results were compared. Finally, the model

with the generalized bell MF presented the more accurate

results in the testing phase. There is a wide variety of algor-

ithms available for training a network and adjusting its

weights. In this study, after consideration of the available

algorithms, the hybrid algorithm (a combination of gradi-

ent descent and least squares) was used for training.

Matlab software was used for construction and implemen-

tation of the ANFIS model. Different numbers of epochs,

including 100, 300, 500, 1,000, 1,500, 2,000 and 2,500,

were used and evaluated, but 500 was the appropriate

number of epochs to obtain more accurate results in the

testing phase.
Study sites and data

Records of MDF and peak flow data from eight stations

located in different places in Iran were applied in this

study. The drainage areas varied from 418 to 7,432 km2.

Table 2 shows the gauging station code, climate condition,

drainage area and location of the sites. The length of data

series used in this research was 30 years (1975–2005),

which was divided into two parts. The first part (24 years)

was for training of the machine-learning models, and the

remaining 6 years for testing purposes. Generally, this is

not enough data for data-driven models, but this is what



Table 4 | Values of RMSE calculated for the results of different methods (testing phase)

RMSE (m3/s)

Station code Fuller Sangal Fill & Steiner ANN ANFIS

31-011 19.01 21.42 13.67 7.45 4.81

14-101 15.63 20.77 9.44 13.94 5.58

41-009 4.15 14.05 9.03 4.03 1.42

42-003 60.03 85.9 70.45 118.41 40.47

12-005 203.55 150.85 189.51 131.04 32.30

47-015 37.7 36.01 28.80 6.71 5.84

12-023 18.02 22.8 30.30 9.66 6.63

31-015 30.45 68.66 59.61 22.05 14.52

Table 3 | Data used for training and testing of ANN and ANFIS models (station code 12-005)

Data used for training Data used for testing

Year Daily flow (m3/s) Peak flow (m3/s) Year Daily flow (m3/s) Peak flow (m3/s) Year Daily flow (m3/s) Peak flow (m3/s)

1977 9.23 10.8 1989 32.8 42 2001 86.4 95.50

1978 3.04 3.67 1990 81.2 162 2002 74.48 85.40

1979 14.5 18.07 1991 95 95 2003 53.32 138.00

1980 137 214 1992 8.95 13.4 2004 15.7 48.50

1981 9.83 15.5 1993 74.1 124 2005 73.8 127.00

1982 32.4 38.1 1994 23.9 66.4 2006 225 783.00

1983 4.56 4.9 1995 5.6 7.7 — — —

1984 3.03 3.23 1996 10.1 85 — — —

1985 9.1 13.2 1997 8.19 42 — — —

1986 8.7 11.57 1998 61.4 197.39 — — —

1987 45.9 168 1999 80.2 257 — — —

1988 16.8 25.2 2000 90.4 120.3 — — —
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was available on the studied stations. Therefore, 80% (24

data) was used for training and the remaining 20% (six

data) was used for testing. It is clear that when few data

are available, it is not possible to use many parameters in

ANNs and ANFISs to train. Table 3 shows data used for

training and testing of ANN and ANFIS models for one of

the stations (station code 12-005) as an example.

In this study, for comparing the results, two perform-

ance criteria were used: root mean square error (RMSE)

and coefficient of determination (R2), which are calculated,

respectively, by Equations (11) and (12):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

O
i
�P

i

� 	2

vuut (11)

R2 ¼ 1�

Pn
i¼1

Oi � Pið Þ2

Pn
i¼1

Oi �O
� �2 (12)

where n is the number of data points, Oi is the observed

value, Ō is the mean of the observed values, and Pi is the

predicted value. Smaller values of RMSE show satisfactory

results. R2 assesses the goodness of fit by indicating the devi-

ation of the estimates values from the line of the best fit or

the regression line. The R2 value can vary between min
infinity and 1. A value close to 1 indicates a satisfactory

result, while a low value or close to 0 implies inadequate

quality of the results.
RESULTS AND DISCUSSION

For comparison of the results of the proposed ANN- and

ANFIS-based methods and those of Fuller (), Sangal

() and Fill & Steiner (), the values of R2 and

RMSE were computed for each site. The RMSE values are

shown in Table 4. Figures 3 and 4 show the quality of



Figure 3 | Instantaneous peak flow estimated by different methods versus the observed values in gauging station code 14-101.
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estimations made by different methods against the measured

values for gauging stations codes 14-101 and 12-005, respect-

ively, in the testing phase as samples. Results taken in the

training phase in station code 12-005 are shown in Figure 5.

The quality of the results produced by these methods

varies, and as Table 4 shows, in all cases ANFIS presented

the most accurate results in comparison to other applied

methods. It would be interesting to compare the data-

driven models with traditional methods. According to the

results, the ANFIS model shows superiority in the accuracy

of estimations. The results produced by ANN also show rela-

tively good levels of accuracy in some cases, but not all. In

all eight stations, the accuracy of the ANN outputs is

lower than the ANFIS outputs. Comparing the outputs of
ANN models to those of empirical methods (Fuller ;

Sangal ; Fill & Steiner ) indicates that in six stations

out of eight, the accuracy of the ANN-based model is better.

However, among the remaining two stations, the outputs of

the Fill & Steiner method shows higher accuracy in station

code 14-101, whereas in station code 42-003, the accuracy of

the results presented by empirical methods is higher than

those of the ANN models. In general, the results presented

by the Sangal method are the poorest outputs in this

research. The present study confirms the very high potential

of the ANFIS model to be used for estimation of instan-

taneous peak flow from the MDF data. It seems that this

model can perform quite well, and can be used as a powerful

tool over existing methods for generation of required data.



Figure 4 | Instantaneous peak flow estimated by different methods versus the observed values in gauging station code 12-005.

Figure 5 | Instantaneous peak flow estimated by different methods versus observed

values in gauging station code 12-005 (training phase).
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Due to lack of appropriate performance of traditional

and statistical formulae used in hydrology, the interest of

applying data-driven models such as ANNs and ANFISs

for hydrological simulations is further increased. However,

one of the major limitations of ANNs is their lack of expla-

natory power, also referred to as their ‘black box problem’.

Neuro-fuzzy techniques remove some of the shortcomings

of ANNs. They merge neural networks and fuzzy logic

into an integrated system, with relatively higher abilities.

The obtained results confirmed the main hypothesis of

the research (preference of the data-driven techniques over

traditional methods on peak flow data estimation using
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daily records). However, it can be seen that although a large

number of studies has been carried out and reported on,

applications of ANN and ANFIS in hydrology, none of

them is related to estimation of instantaneous peak flow

using daily data series. Therefore, more investigations need

to be completed on application of the mentioned techniques

in this specific field.

The five methods mentioned earlier have been applied

to the same problem under similar conditions and compared

with the same performance indices. Referring to the relative

performance of the five methods (Table 4), it can be

observed that the lowest RMSE between observed and simu-

lated results in all of the stations belonged to the ANFIS

method. In fact, these results indicate that ANFIS is superior

for estimation of instantaneous peak flow. Such superiority

may be problem related, and may need extensive appli-

cations on various data sets to be generalized. However,

one can say that the superiority of this technique might be

attributed to its ability to capture the nonlinear dynamics

of the data. Table 4 and Figures 3 and 4 (as samples) clearly

show that the behavior of the used models varies when deal-

ing with data in different gauging stations.

It should be noted that some recent studies have indi-

cated that the noise that exists in hydrologic data may

limit the performance of many modeling techniques. Some

methods have been proposed to reduce the level of noise

in the data set, which may lead to improvement in the accu-

racy of the estimation of instantaneous peak flow data. It

seems suitable that machine-learning techniques such as

ANFIS have better abilities to deal with the problem of

noise in data.

Extreme hydrologic events have great importance in

most countries, including Iran, regarding the economic

damage they imply. The commonly used design parameter

for hydraulic structures is the maximum annual instan-

taneous stream flow recorded in conventional gauging

stations. However, most available data in different parts of

Iran are mean daily stream flows. In most of the stations,

for example, daily mean flow data are available for 40

years, whereas the related instantaneous peak flow data can

be found for only 30 years. In such a case, the peak flow

data for the remaining 10 years can be estimated with high

accuracy using the proposed models to prolong the peak

data time series, which is important in water-related projects.
In this condition, models are trained using the mentioned 30

year data (as both mean daily and peak flow data are avail-

able). Inadequate peak data are possibly the problem for

most developing countries, not just Iran, and finding a soph-

isticated approach to use the mean daily data to predict peak

values (with acceptable accuracy) is an important step ahead

in optimization of water-related projects.
CONCLUSIONS

This research was designed to evaluate the applicability of

machine-learning techniques, including ANNs and ANFISs

for estimation of instantaneous peak flow from MDF data in

different climatic regions. It can be observed from the results

of this research that the proposed ANFIS-based method dis-

plays an average relative RMSE considerably lower and an R2

higher than other methods used. Comparing the results taken

from this research shows the ability of ANFIS over the existing

mentioned methods for this specific application. Important

improvements of the results produced by machine-learning

methods compared to traditional methods shows the superior

abilities of machine-learning techniques to solve the problem

of inadequatemeasured instantaneous peakflowdata, and opti-

mize water-related designs. In fact, the proposed method

considerably improves the accuracy and precision of other tra-

ditional methods. This suggests that it is an appropriate method

for estimating missing instantaneous peak flows for flood

studies and the design of hydraulic structures when MDFs

have been measured for long enough, but the instantaneous

peak flows data series are short. A regional analysis is possible

using different regressions for each basin or group of similar

basins if sufficient numbers of data are available. This approach

may result in further improvement of the accuracy. Of course,

the methodology proposed in this study is not the last step for

the estimation of instantaneous peak flows. More research in

this subject is recommended inorder toobtainbetter estimators,

including methods using basin physiographic characteristics.
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