
Acta Mech
DOI 10.1007/s00707-012-0711-3

Vali Parvaneh · Mahmoud Shariati · Hamid Torabi

Bending buckling behavior of perfect and defective
single-walled carbon nanotubes via a structural
mechanics model

Received: 21 July 2010 / Revised: 1 April 2012
© Springer-Verlag 2012

Abstract A structural mechanics model is employed for the investigation of the bending buckling behavior
of perfect and defective single-walled carbon nanotubes (SWCNTs). The effects of different types of defects
(vacancies and Stone–Wales defects) at various locations on the critical bending buckling moments and cur-
vatures are also studied for zigzag and armchair nanotubes with various aspect ratios (length/diameter). The
locations of defects are along the length of the nanotube and around the circumference. Moreover, the results of
this structural mechanics model are compared with a finite element model. The simple continuum model, espe-
cially, could be adopted to predict the critical buckling moments and curvatures of SWCNTs with large aspect
ratio. Finally, the results of the present structural model are compared with those from molecular dynamics
(MD) simulation, and there is good agreement between our model and the MD model.

1 Introduction

In 1991, Ijima [1] discovered carbon nanotubes (CNTs) by chance while studying manufacturing methods for
fullerenes. Carbon nanotubes excited interest in nanoscale materials research mainly because of their unusual
mechanics structure. This led to extensive research on carbon nanotubes as components of nanomechanics
devices. Wang et al. [2] used an advanced finite element analysis package, ABAQUS, and found the relation-
ship of the nonlinear bending moment–curvature of carbon nanotubes. They also utilized this relationship and
a nonlinear vibration analysis method that captured the rippling deformation on the inner arc of the bent nano-
tube to show that the effective bending modulus of carbon nanotubes decreases substantially with increasing
diameter. An extensive finite element analysis was carried out by Yao et al. [3] to investigate the buckling
behaviors of SWCNTs and MWCNTs under bending deformation. They showed the relationships between the
bending buckling loads and the bending angle or curvature for CNTs with the geometrical parameters, such as
tube diameter, length, and chirality. Guo et al. [4] employed the atomistic-scale finite element method to study
the bending buckling of single-walled carbon nanotubes. The simulation showed that the appearance of kinks
associated with the large deformation nearby reduces the slope of the strain energy curve in the post-buckling
stages and hence increases the flexibility of the SWCNTs. Leung et al. [5] proposed the idea of “spatial peri-
odic strain” and obtained a rational equivalent relationship and achieved an efficient model, which links the
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molecular mechanics with the continuum mechanics. Their model is another improvement of the model of
Odegard et al. [6].

Han et al. [7] studied the instability of a double-walled carbon nanotube embedded in an elastic medium
with pure bending. The effects of the surrounding elastic medium and the Van der Waals forces between the
inner and outer nanotubes were taken into account. Based on their model, they derived a model in terms of the
buckling modes of the shell from which the critical bending moment can be predicted. Sun and Liew [8] studied
the bending buckling of single-walled carbon nanotubes in the theoretical scheme of the higher-order gradient
continuum. They also developed a mesh-free method to implement the numerical modeling of SWCNTs and
simulated their bending buckling behavior numerically with the developed method.

Due to the application of carbon nanotubes in various industries such as NEMS, a mechanical analysis of
these nanotubes under different loading and boundary conditions is necessary. Among these analyses, bending
buckling is very important. Thus, we have tried to predict the critical bending buckling moments of SWCNTs.
The method employed for this analysis is a structural mechanics approach. Different defects may exist in
carbon nanotubes, which have an effect on the critical bending buckling moments. Therefore, the influence of
various vacancy and Stone–Wales defects is also investigated in the analysis.

2 Simulation method

2.1 Application of the structural model to SWCNTs

We have proposed a structural mechanics method to model the carbon nanotubes. The detailed derivation
procedure for the formulation and other features of this model can be found in our previous work [9].

The total steric potential energy due to interactions between carbon atoms can be represented by Eq. (1)
[10]:

utotal = ur + uθ + uφ + uω (1)

where ur , uθ , uφ , and uω are bond energies associated with bond stretching, angle variation or bond bending,
dihedral angle torsion, and out-of-plane torsion, respectively.

In this model, Morse potentials are employed for stretching and bending potentials, and a periodic type of
bond torsion is applied for torsion and out-of-plane torsion interactions (Eqs. 2– 5),

ur = De

{[
1 − e−β(r−r0)

]2 − 1

}
, (2)

uθ = 1

2
kθ (θ − θ0)

2 [
1 + ksextic(θ − θ0)

4] , (3)

uφ = 1

2
kφ [1 + cos (nφ − φ0)] , (4)

uω = 1

2
kω [1 + cos (nω − ω0)] . (5)

As indicated in Figs. 1a and 2, a nonlinear axial spring is used for modeling of the angle variation interaction
between atoms. The relationship between changes in the bond and the corresponding change in length of the
spring for small displacements can be expressed simply by Eq. (6) [6],

�θ ≈ 2 (�R)

r0
, r0 = 0.142 nm (6)

Therefore, we can simplify Eq. (3)–(6):

uθ = 2

r2
0

kθ (R − R0)
2

[
1 + 16

r4
0

ksextic(R − R0)
4

]
. (7)

The stretch force, the angle variation moment, the dihedral angle torque, and out-of-plane torque can be
obtained from differentiations of Eqs. (2), (7), (4), (5) as functions of bond stretch, bond angle, dihedral angle,
and out-of-plane angle variation, respectively:
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Fig. 1 a A hexagonal unit cell, b location of local coordinates of each connector
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Fig. 2 Spring and connector elements corresponding to the interactions of carbon atoms. a The angle variation interactions,
b the stretching and torsional interactions, c total interactions
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T (φ − φ0) = 1

2
kφn sin (nφ − φ0) , (10)

T (ω − ω0) = 1

2
kωn sin (nω − ω0) . (11)

A nonlinear connector is considered for modeling of the stretching and torsional interactions and a nonlinear
spring for modeling of the angle variation interaction (see Fig. 2). Carbon atoms in ABAQUS are modeled by
a discrete rigid sphere so that connector elements between atoms are adjoined to reference points at the center
of the sphere, and a local coordinate is set at the center of each atom (see Figs. 1b, 2). This local coordinate is
a combination of a Cartesian coordinate for stretching and a rotational coordinate for torsion. The X direction
of these coordinates is in the connector direction, and the Z direction is vertical to the central axis of the
nanotube. Because we can only use a linear spring in the CAE space of ABAQUS, by changing the linear
spring command to a nonlinear spring command in the input file, and by applying the nonlinear data for F(�R)
versus �R using Eq. (9), we can apply the bond bending spring to the model. For applying bond stretch and
torsion forces to the connectors, we can apply the nonlinear stiffnesses in three directions (X , Y , Z ) directly.
For stretching stiffness in the X direction, we can obtain the nonlinear data for F(�r) versus �r by Eq. (8),
and for torsional stiffness in X direction, we can obtain the nonlinear data for T (�φ) versus �φ by Eq. (10).
For torsional stiffness in the Y direction, we can obtain the nonlinear data for T (�ω) versus �ω by Eq. (11).

Here, we take E = 1, 170 GPa and ν = 0.196 for the Young’s modulus and Poisson’s ratio of single-
walled carbon nanotubes, respectively. We used kr = 800 nN/nm, kθ = 1.42 nN/nm Rad−2, kφ = kω =
0.0418 nN nm, which are consistent with the values reported in the literature [11,12]. This structural model
was successfully used for predicting the mechanical properties and axial buckling behavior of single-walled
carbon nanotubes. It is employed here for the bending buckling of single-walled carbon nanotubes.
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Fig. 3 Configuration of simulated single-walled carbon nanotube with the loading, boundary conditions, and location of defects
(A, B, and C) in ABAQUS
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Fig. 4 Variation of the critical bending buckling curvature with diameter for SWCNT. The tube length is fixed at 24 nm

3 Results and discussion

The critical bending buckling moments and curvatures as well as the influence of vacancy and Stone–Wales
defects were predicted by our structural model. Zigzag (12,0) and armchair (7,7) nanotubes with various aspect
ratios (L/d) were employed for this study. First, we fixed the tow planes at the ends of the nanotube and applied
a moment to the center of the tow planes (see Fig. 3).

It is seen from Fig. 4 that the feature of the diameter-dependent critical bending buckling curvature is
captured by the present model, and the critical bending buckling curvature decreases with increasing tube
diameter. The solid line is the fitting line using the formula κcr = a/d2 line. The present fitted value of a is
0.08574 nm.

To verify the above described model, in Fig. 4, we have compared the present results to those of Yakobson
et al. [13], Cao and Chen [14] and Yao et al. [3]. From this figure, it can be found that the present results of
zigzag model are very close to those of Cao and Chen [14]. Their calculated fitted value of a is 0.0738 nm.

As shown in Fig. 3, defects are around the circumference of the nanotube for three situations: A, B, and C .
Figures 5 and 6 show the critical bending buckling moments for zigzag (12,0) and armchair (7,7) nanotubes
with different aspect ratios, respectively. The critical buckling moments and curvatures were obtained by the
continuum model, in addition to our present model.

With increasing aspect ratio, shell and Euler modes will occur, respectively. When the Euler buckling
mode occurs (aspect ratio of up to 30), the critical buckling moments and curvatures follow from the contin-
uum model (E = 1.07 TPa, t = 0.34 nm). Therefore, we can calculate the critical buckling moments and
curvatures by the continuum model simply enough for the long carbon nanotubes. Similar results can be seen
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Fig. 5 Influence of the aspect ratio of (12,0) and (7,7) nanotube on the critical bending buckling moments

in other works such as the axial buckling behavior of carbon nanotubes in which by increasing the aspect ratio
first they locally buckle and then globally buckle [15,16], and the torsional buckling behavior in which for
slender SWCNTs with fixed diameter the critical torsional angle is approximately proportional to the length,
consistent with the conventional shell theory [17]. It is also seen that the critical moments and curvatures are
approximately constant when shell mode shapes occur. Then, with increasing nanotube aspect ratio and Euler
mode shapes, critical moments decrease.

Types of vacancy and Stone–Wales defects for the study of defects in carbon nanotubes are illustrated in
Figs. 7 and 8, respectively. Vacancies result from missing carbon atoms in the CNT walls. The defects included
are single vacancies (one atom missing), tow opposite vacancies, double-vacancies (two adjacent atoms miss-
ing), and triple vacancies (three adjacent atoms missing). By removing the carbon atoms from the nanotube, all
of the interactions (springs and connectors) between bonds will remove. Unlike the vacancy defects in which
bonds have been removed, the carbon bonds in Stone–Wales defects will not remove but will rotate. All of the
defects in Figs. 7 and 8 are situated at the middle of the nanotube. It is clear that the critical buckling moments
and curvatures will decrease more for a triple vacancy than for the other tow vacancies, and vacancy defects
have more effect than Stone–Wales defects in general.

The simulation results show that the influence of the location of the defect on the critical bending buckling
moments and curvatures is significant. By displacing the defects at the circumference of the nanotube, we have
found that the critical point for the existence of the defect is at the location C of the carbon nanotube. All of
the defects in Figs. 5 and 6 are situated at the middle and location C of the nanotube.

As indicated in Figs. 5 and 6, the defects have a very weak effect on the critical buckling moments and
curvatures when the Euler mode occurs. Of course, it should be noted that for defective nanotubes the Euler
mode will happen later; it occurs at an aspect ratio of approximately 35 for a Stone–Wales defect. One can
conclude from the above observations that it would be safer to choose long-length defective nanotubes.

The mode shapes according to the displacement contours are represented for various buckling modes of
perfect zigzag nanotubes in Fig. 9. With increasing aspect ratio, the shell mode shapes are converted to the
Euler mode shape. In addition, the mode shapes of defective nanotubes with a Stone–Wales defect (location B)
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Fig. 6 Influence of the aspect ratio of a (12,0) and (7,7) nanotube on the critical bending buckling curvatures
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(a) (b) 

Fig. 7 Construction of a (12,0) zigzag (a) and a (7,7) armchair (b) SWNT with a Stone–Wales defect

for two different lengths of armchair nanotubes are compared. These defects will vary the mode shapes from
5.165 nm and larger. This length for zigzag nanotubes is larger than that for armchair nanotubes; this means that
zigzag nanotubes are more resistant to defects than armchair nanotubes. The mode shapes of perfect zigzag and
armchair nanotubes are similar; however, they are not similar when there are defects. The difference between
the angles of defects in zigzag and armchair nanotubes may be one reason for this difference. Furthermore,
the mode shapes of vacancy and Stone–Wales defects at the middle of the nanotubes are illustrated in Fig. 10.
It can be deduced, with decreasing area of vacancy defect, that the distribution of load on the carbon atoms
becomes more uniform.
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Fig. 9 The mode shapes of (12,0) SWCNTs under bending moment for various lengths

Figure 11 shows curves of the critical bending buckling moment versus the displacement of defects
along the nanotube for different aspect ratios of nanotubes. The locations of the single vacancy defect are
L0 = 0.9L , L0 = 0.75L , and L0 = 0.5L , where L0 is the distance of the defect from the load application
point, and L is the length of the nanotube.
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Fig. 10 Mode shapes according to displacement contours of defective nanotubes with various vacancies and Stone–Wales defects
at the middle of the nanotube for zigzag (L = 4.118 nm) CNTs
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Fig. 11 Critical bending buckling moments for various locations of vacancy defects along zigzag CNTs

When the defect is located at mid-height, the cylindrical nanotube’s buckling capacity is almost equivalent
to the load level at which the first local buckling occurs. When the defect is located near the loaded end,
a transition from the first local buckling mode to a higher local buckling mode would take place, which could
significantly increase the nanotubes’ buckling capacity.

Results indicate that with the displacement of the defect toward the load application point, the reduction
in the critical buckling load will become minor; hence, the critical point for the existence of the defect is at the
middle of the carbon nanotube.

The mode shapes of defective nanotubes with a single vacancy at different locations of the nanotubes are
compared in Fig. 12. The displacement contour is uniformly distributed on the atoms at the regions around the
defect when it is situated at the middle of the carbon nanotube.
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Fig. 12 Buckling mode shapes of zigzag CNT with a single vacancy at L0 = 0.9L , 0.75L and 0.5L

4 Conclusions

The effects of the type and location of vacancy and Stone–Wales defects on the bending buckling behavior of
SWCNTs under bending moments were studied based on a structural mechanics approach using ABAQUS
software. From these investigations, the following results can be drawn:

1. We can calculate the critical bending buckling moments and curvatures for sufficiently long nanotubes
using simple continuum models.

2. The vacancy and Stone–Wales defects have a significant effect on the critical buckling moments when
shell modes occur. This effect for a vacancy defect is more significant than for Stone–Wales defects.

3. The defects cause the Euler mode to occur later, and it would be safer to choose long-length defective
nanotubes.

4. A double-vacancy decreases the critical buckling moment more than tow opposite vacancy defects.
5. The locations of defects on the nanotube have a significant effect on the critical buckling moments and

curvatures of (12,0) and (7,7) CNTs such that the critical location of the defect is at the middle and location
C of them.

6. The present structural model can be used for the prediction of the bending buckling behavior of SWCNTs
due to the good agreement with the MD simulation.
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