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Abstract: In this paper we consider the general compartmental models for cancer chemother-
apy as an optimal control problems over a fix therapy interval with drug dosages as controls
and with arbitrary objectives (linear, quadratic or nonlinear). These models are based on
cell-cycle kinetics. Here we use the measure theoretical approach for obtaining the optimal
solutions of these problems. In this approach, the optimal control problems are converted
to the corresponding linear programming problems. Using optimal solutions of these linear
programming problems, we can construct the approximate optimal control and optimal state
for original problem.
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1. Introduction

Mathematical models for cancer chemotherapy have a long history [1,2,3,4]. In this paper we consider
the general form of mathematical models based on cell-cycle dynamics which was firstly introduced by
Kimmel and Swiernaik [5,6,7] and has been analyzed in some papers [8,9,10,11,12,13]. Different phases
of the cell-cycle are modeled as compartments and the average numbers of cancer cells and various
drug dosages form the state variables and control variables respectively in these models. The papers
[6,14,15,16] explain cell-cycle dynamic and here we do not repeat it. The numerical and theoretical
methods in the above papers are usually based on the Pontryagin maximum principle and bang bang
controls which give the necessary conditions for optimality. But, in this paper we use a different approach
based on measure theory and obtain the approximate optimal solutions of the problem.

An optimal control problem for General n-Compartmental Models in Cancer Chemotherapy can be stated
as follows:
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Minimize I(N(·), u(·)) = rN(tf ) +

∫ tf

t0

f(t, N(t), u(t)) (1)

subject to Ṅ(t) = (A+
m∑
i=1

uiBi(t))N(t), N(t0) = N0 (2)

where the components of the state vectorN(·) = (N1(·), N2(·), · · · , Nn(·)) and control variable u(·) =
(u1(·), u2(·), · · · , um(·)) denote the average numbers of cancer cells and various drug dosages, respec-
tively. In the dynamics (2) matrices A and Bi , i = 1, 2, · · · ,m are constant n× n matrices such that all
of matrices A +

∑m
i=1 uiBi(t) have negative diagonal and nonnegative off-diagonal entries. The objec-

tive function (cost function) I(N(·), u(·)) can be considered as different forms. In some papers (see [9,
10,12, 16]), I(N(·), u(·)) is considered as linear functional

I(N(·), u(·)) = rN(tf ) +

∫ tf

t0

(qN(t) + su(t)) dt

where r = (r1, r2, · · · , rn), q = (q1, q2, · · · , qn) and s = (s1, s2, · · · , sm) are row vectors of weights
where components of r are positive and components of vectors q and s are non-negative. In addition, the
objective function in problem (1)-(2) may be as the following quadratic functional

I(N(.), u(.)) = rN(tf ) +

∫ tf

t0

(
qN2(t) + su2(t) + pN(t) + hu(t)

)
dt.

However, in this paper one consider the general objective function of (1) where function f(., ., .) may be
linear, quadratic or nonlinear.

Note that we can write the final state N(tf )as follows:

N(tf ) = N(t0) +

∫ tf

t0

Ṅ(t) dt

= N(t0) +

∫ tf

t0

(A+
m∑
i=1

uiBi(t) )N(t) dt (3)

Thus if the final state N(tf ) is unknown, we may replace the objective function of (1) with the following
equivalent objective function:

I(N(·), u(·)) =
∫ tf

t0

(r(A+
m∑
i=1

uiBi(t) )N(t) + f(t, N(t), u(t))) dt (4)

The above result is used in the simulation in Section 3 of this paper.
The structure of this paper is as follows: in Section 2, the measure theoretical approach is introduced

for approximation optimal solutions of an optimal control problem. In Section 3, we use the approach
of Section 2 for obtaining the approximate optimal solution of problem (1)-(2). In addition, the results
for some compartmental models which are discussed in paper [17] are simulated and compared. The
conclusions of this paper are stated in Section 4.
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2. Measure theoretical approach

In this section, we are going to introduce the measure theoretical approach (see [18]) for solving an
optimal control problem. Consider the following optimal control problem:

Minimize I(x(.), u(.)) =

∫ tf

t0

f(t, x, u)dt (5)

subject to ẋ(t) = g(t, x, u), t ∈ [t0, tf ] (6)

x(t0) = x0, x(t0) = xf

where x(· · · ) and u(· · · ) are the state and control variables, respectively. We assume J = [t0, tf ] is a
fixed interval. Measure theory approach is successfully used in the many research and has gave good
results (see [19,20,21,22]).

Definition 1 We call p = (x(·), u(·)) is an admissible pair if the following conditions hold:

i) The n-vector function x(·) satisfies x(t) ∈ A, t ∈ J and be absolutely continuous on J .

ii) The m-vector function u(·) be Lebesgue measurable function on Jand takes its values in U ⊂ Rm.

iii) The n-vector function x(·) satisfies boundary conditions x(t0) = x0and x(t0) = xf .

iv) The pair p = (x(·), u(·)) satisfies equation ẋ(t) = g(t, x, u).

We suppose that the set of all admissible pairs is nonempty and denote it by W . Let p ∈ Wand
Ω = J × A× U . We consider the following map:

Λp : F ∈ C(Ω) 7→
∫
J

F (t, x, u) dt, (7)

where C(Ω)is the space of all continuous function on Ω.

Proposition 1 The transformation p → Λpof the admissible pairs p = (x(·), u(·)) ∈ W into mappings
Λpdefined in (7) is injection.

Proof. See [18].
By the Riesz representation theorem there exists a positive Radon measure µ on Ω such that

Λp(F ) =

∫
J

F (t, x, u) dt =

∫
Ω

F dµ = F (µ), F ∈ C(Ω) (8)

Here, the space of all positive Radon measures on Ω will be denoted by M+(Ω). In measure theoretical
approach for obtaining optimal state and control of problem (5)-(6) a measure µ∗ ∈M+(Ω) is identified
such that be equal to functional Λp∗ where p∗ = (x∗(·), u∗(·)) is an optimal admissible pair for problem
(5)-(6).

Let B be an open ball in Rn+1containing J × Aand C ′(B) be the space of all bounded real-valued
continuously differentiable functions on B such that the first derivative is also bounded. We define
function φgfor all φ ∈ C ′(B)as follows:

φg(t, x(t), u(t)) =
∂φ

∂t
+ g(t, x(t), u(t))

∂φ

∂x
. t ∈ J (9)
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We have ∫
J

φg(t, x(t), u(t)) dt = φ(tf , x(tf ))− φ(t0, x(t0)) = ∆φ (10)

Now, let J0 = (t0, tf ), we denote the space of all infinity differentiable functions on J0with compact
support by D(J0) and define

ψj(t, x(t), u(t)) = xj(t)ψ
′(t) + g(t, x(t), u(t))ψ(t) (11)

ψ ∈ D(J0), j = 1, 2, · · · , n.

Thus ∫
J

ψj(t, x(t), u(t)) dt = 0 (12)

since ψ(t0) = ψ(tf ) = 0. Moreover, if C1(Ω)be space of all function in C(Ω)that depends only on time,
then ∫

J

θ(t, x(t), u(t)) dt = aθ, θ ∈ C1(Ω) (13)

where aθis the integral of function θon J . By relations (8),(10),(12) and (13), we can change problem
(5)-(6) as follows:

Minimize
µ∈M+(Ω)

µ(f) (14)

subject to µ(φg) = ∆φ, φ ∈ C ′(B) (15)

µ(ψj) = 0, ψ ∈ D(J0), j = 1, 2, · · · (16)

µ(θ) = aθ, θ ∈ C1(Ω) (17)

Now, we topologize the space M+(Ω) by the weak∗−topology (see [? ]) and define the set Q ⊂M+(Ω)

of measure satisfying equations (15), (16) and (17).

Proposition 2 (i)The functional I : µ ∈ Q 7→ µ(F ) ∈ R is continuous. (ii) In the topology induced by
weak∗− topology on M+(Ω), set Q is compact. (iii) There is an optimal measure µ ∈ Q such that.

µ∗(F ) = inf
µ∈Q

µ(F )

Proof. See [18].
Now, the minimizing problem (14)-(17) is an infinite dimensional problem. We are interested in

approximation of this infinite dimensional problem by a finite dimensional problem. Let {φi ∈ C ′(B) :

i ∈ N}be total set in C ′(B). In addition, assume{χh ∈ D(J0) : h ∈ N}total set in D(J0). Define the set
Q(M1,M2) ⊂M+(Ω)of measures satisfying

µ(φg
i ) = ∆φi, i = 1, 2, · · · ,M1 (18)

µ(χh) = 0, h = 1, 2, · · · ,M2 (19)

here without less of generality, we ignore function θ ∈ C1(Ω), however we will used this function latter.

Proposition 3 Let η(M1,M2) = inf
µ∈Q(M1,M2)

µ(f). Then η(M1,M2) tends to inf
µ∈Q

µ(f) while M1 and

M2 tend to infinity.
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Proof. See page 25 of [18].

Now, for triple z = (t, x, u) ∈ Ω, consider unitary atomic measure δ(z) ∈ M+(Ω)with support the
singleton set {z}as follows:

δ(z)F = F (z), F ∈ C(Ω)

Proposition 4 let µ∗(f) = inf
µ∈Q(M1,M2)

µ(f). Then there exist coefficients α∗
k ≥ 0 and pointsz∗k ∈ Ω for

k = 1, 2, ...,M1 +M2 such that

µ∗ =

M1+M2∑
k=1

α∗
k δ(z

∗
k) (20)

Proof: As a result of Rosenbloom [24], where can be seen the proof in Appendix A.5 in [18].

Thus using (18), (19) and (20) we can approximate problem (14)-(17) as the following nonlinear
optimization problem with unknown variables αkand zk for k = 1, 2, ...,M1 +M2:

Minimize

M1+M2∑
k=1

αk f(zk)

subject to

M1+M2∑
k=1

αk φ
g
i (zk) = ∆φi , i = 1, 2, · · · ,M1

M1+M2∑
k=1

αk χh(zk) = 0 , h = 1, 2, · · · ,M2 (21)

αk ≥ 0, k = 1, 2, · · · ,M1 +M2

The following proposition helps us to convert the nonlinear problem (21) to the linear programming
problem.

Proposition 5 Let ω be a countable dense subset of Ω. For given ε > 0 there exists a measure ν ∈
M+(Ω) such that

|(µ∗ − ν)(f)| < ε, |(µ∗ − ν)(φg
i )| < ε, |(µ∗ − ν)(χh)| < ε

i = 1, 2, · · · ,M1, h = 1, 2, · · · ,M2

and measure ν has the form ν =
∑M1+M2

k=1 α∗
k δ(zk) where the coefficient α∗

k for k = 1, 2, ...,M1 +M2

are the same as in the optimal measure (20) and zk ∈ ω, k = 1, 2, · · · ,M1 +M2.

Proof. See page 29 of [18].
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Thus, by attention to the above results, we obtain the following linear programming problem which
has unknown variables α1, α1, · · · , αN :

Minimize

N∑
k=1

αk f(zk)

subject to

N∑
k=1

αk φ
g
i (zk) = ∆φi , i = 1, 2, · · · ,M1

N∑
k=1

αk χh(zk) = 0 , h = 1, 2, · · · ,M2

N∑
k=1

αkθs(zk) = as, s = 1, 2, · · · , L (22)

αk ≥ 0, k = 1, 2, · · · ,M1 +M2

where N ≫ M1 +M2 and zk, k = 1, 2, · · · ,M1 +M2 is chosen fix point in the kthgrid of ω. Note that
in problem (22) the set {θs : s = 1, 2, · · · }is a total set for the space C1(Ω) which θsfor all s = 1, 2, · · ·
satisfies equation (17).

By solving the problem (20), we gain coefficients α∗
1, α

∗
2, · · · , α∗

N of measure µ∗which is as

µ∗ ≃
N∑
k=1

α∗
k δ(zk)

Now, we may construct a constant piecewise optimal control using coefficient α∗
1, α

∗
2, ...., α

∗
Nbased on

given analysis in Section 5 of the Rubio ([18]). In addition, for known control we can reach to the optimal
state by solving dynamical system ẋ = g(t, x, u)using Runge Kutta method in numerical analysis.

In this paper, we choose functions in total sets {φi : i = 1, 2, · · · ,M1}, {χh : h = 1, 2, · · · ,M2}and
{θs : s = 1, 2, · · · , L} as follows:

φi(t, x) = xi, i = 1, 2, · · · ,M1, θs(t) =

1 t ∈ Js

0 o.w

χh(t) =

sin( 2πht
tf−t0

) h = 1, 2, · · · , M2

2

1− cos(
2π(h−M2

2
)t

tf−t0
) h = M2

2
+ 1, M2

2
+ 2, · · · ,M2

where Js = (
(s−1)(tf−t0)

L
,
s(tf−t0)

L
), s = 1, 2, ..., L and M2 is a even number.

Remark 1 Note that the set Ω = J ×A× Umust be covered with a grid, where the grid will be defined
by taking points in Ω as zk = (tk, xk, uk), k = 1, 2, ..., N .

3. Simulation results

In the current section, we apply the measure theoretical approach on the following example.
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Example 1 Consider the following compartmental problem in cancer chemotherapy:

Minimize r1N1(tf ) + r2N2(tf ) + r3N3(tf ) +

∫ tf

0

u1(t) dt

subject to Ṅ1(t) = −a1N1(t) + 2a3(1− u1)N3(t),

Ṅ2(t) = a1N1(t)− a2(1− u2)N2(t),

Ṅ3(t) = a2(1− u2)N2(t)− a3N3(t) (23)

N1(0) = 15.45, N2(0) = 0.85, N3(0) = 3.85

where a1 = 0.197, a2 = 0.395, a3 = 0.107 and tf = 7. The problem (23) is discussed in paper
[17] where it is assumed that 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 0.3 . Now we apply the measure the-
oretical approach to obtaining approximate optimal states N∗

1 (·), N∗
2 (·), N∗

3 (·) and optimal control
u∗1(·), u∗2(·). Note that for objective function, we may use of the relation (4). Here, we assume that
x(·) = (x1(·), x2(·), x3(· · · )) = (N1(·), N2(·), N3(·)) and M1 = 3,M2 = 4, L = 14. Choose function
φi(·, ·), i = 1, 2, 3 and χh(·, ·), h = 1, 2, 3, 4 as follows:

φ1(t, x) = x1, φ2(t, x) = x2, φ3(t, x) = x3 (24)

χ1(t) = sin(2πt
7
), χ2(t) = sin(4πt

7
), χ3(t) = 1− cos(2πt

7
), χ4(t) = 1− cos(4πt

7
) (25)

Moreover, we suppose that 0 ≤ xj ≤ 20, j = 1, 2, 3 and Ω = [0, 7] × [0, 20] × [0, 20] × [0, 20] ×
[0, 1] × [0, 0.3], and divide intervals [0, 7], [0, 20], [0, 1] and [0, 0.3] to the 14, 10, 4, and 3 equidistance
subintervals, respectively. By these assumptions we have N=168000. From above subintervals, we may
divide the set Ω to the 168000 grid. By solving linear programming (22) and applying analysis in Section
5 of the Rubio ([18]) we obtain optimal states and controls which is illustrated in Figures 1-3. Also, in
Tables 1 and 2, are illustrated the switching times of optimal controls of problem (23) on interval [0,7].
In addition, we compare the obtained results of measure approach with results appeared in [17] for
problem (23) in Table 3. By this comparison, we reach to this fact which obtained optimal control of
measure theoretical approach for problem (23) is better from obtained local optimal control in [17].

4. Conclusions

In this article, we proposed the measure theoretical approach which allows us to approximate optimal
control and optimal states corresponding compartmental models in cancer chemotherapy. We showed
that solving an optimal control problem can be converted to the linear programming problem which its
optimal solutions help us to construct a constant piecewise optimal control. This obtained control and
dynamical equation of optimal control problem gave the optimal state by numerical methods (such as
Runge Kutta method). The efficiency of measure approach in optimal control of cancer chemotherapy
was stated in numerical simulations. In all papers [9,10,11,17] in order to facilitate the computations
, final states are considered as a fixed numbers. In fact, minimum principle, which is used in these
papers, unable solves the mentioned optimal control problems which have the unknown final states. But,
by measure theory approach we could solve optimal control problems with unknown final states. In
addition, measure approximate approach can be applied to optimal control of cancer chemotherapy with
objective functions linear, quadratic or nonlinear.
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Figure 1. Obtained optimal states corresponding to the example 3.1
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Figure 2. Optimal control u ∗
1(.) of example 3.
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Figure 3. Optimal control u ∗
2(.) of example 3.1
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Table 1. Switching times in control u ∗
1(.) on time interval [0,7]

1.676 1.761 1.819 2.608 2.625 2.670 2.734 3.609 3.653

Table 2. Switching times in control u ∗
2(.) on time interval [0,7]

4.069 4.266 4.547 4.703 6.563 6.773

Table 3. Comparison of obtained results of optimal control of compart-
mental problem (23) by applying two approaches

Comparison obtained results Measure approach Presented approachin [17]
Optimal value ofobjective function 20.7058 20.7200

Final state of N∗
1 (.) 3.9988 5.0000

Final state of N∗
2 (.) 8.0712 8.5000

Final state of N∗
3 (.) 3.7137 5.0000
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