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We present a new approach for solving nonsmooth optimization problems and a system of nonsmooth equations which is based
on generalized derivative. For this purpose, we introduce the first order of generalized Taylor expansion of nonsmooth functions
and replace it with smooth functions. In other words, nonsmooth function is approximated by a piecewise linear function based
on generalized derivative. In the next step, we solve smooth linear optimization problem whose optimal solution is an approximate
solution of main problem. Then, we apply the results for solving system of nonsmooth equations. Finally, for efficiency of our
approach some numerical examples have been presented.

1. Introduction

As we all know, many problems of considerable practical
importance can be related to the solution of nonsmooth
optimization of problems (NSOPs) and system of nonsmooth
equations. In general, optimization a function is one of the
most important problems of real life and plays a fundamental
role in mathematics and its applications in the other disci-
plines such as control theory, optimal control, engineering,
and economics.

Nonsmooth optimization is one of the research areas in
computational mathematics, applied mathematics, and engi-
neering design optimization and also is widely used in many
of practical problems. It is necessary to know that several
important methods for solving difficult smooth problems
lead directly to the need to solve nonsmooth problems, which
are either smaller in dimension or simpler in structure. For
instance, decomposition methods for solving very large scale
smooth problems produce lower-dimensional nonsmooth
problems; penalty methods for solving constrained smooth
problems result in unconstrained nonsmooth problems; non-
smooth equation methods for solving smooth variational

inequalities and smooth nonlinear complementarity prob-
lems give arise to systems of nonsmooth equations (see
[1]).

The well-known methods for nonsmooth optimization
include subgradientmethod, cutting-planesmethod, analytic
center cutting-planes method, bundle method, trust region
method, and bundle trustering method (see [2]).

Note that the most difficult type of optimization problem
to solve is a nonsmooth problem. Nonsmooth optimization
refers to the more general problem of minimizing functions
that are typically not differentiable at their minimizers. The
focus of this paper is the numerical solution of NSOPs and
system of nonsmooth equations. The techniques for solving
the minimization problems and nonsmooth equations are
closely related.

The outline of the paper is as follows. In Section 2, we
introduce the reader to a new generalized derivative (GD) for
one variable and multivariable functions (see Kamyad et al.
[3]). A new approach for NSOP based on GD is studied in
Section 3. Also, using the last section, an approach for solving
system of nonsmooth equations is considered in Section 4.
Some conclusive remarks are given in Section 5. Finally, we



2 Journal of Mathematics

present some examples of the efficiency of our approach in
Section 6.

2. Preliminaries

In this section, we present definitions and results concerning
with GD, which are needed in the remainder of the paper.
Since the early 1960s several generalized theories of differen-
tiation have been proposed by different authors. A first major
step in this direction camewith the dissertation of Rockafellar
[4], who introduced subgradients for convex functions.
Another breakthrough occurred when Clarke [5] found a
way of extending Rockafellar’s ideas to the broader class of
lower semicontinuous, proper functions.This line of ideas has
given rise to an extensive amount of research, continuing to
the present (see [6]). It is commonly recognized that these
GDs are not practical and applicable for solving problems.
We mainly utilize the new GD of Kamyad et al. [3] for
nonsmooth functions.This kind of GD is particularly helpful
and practical when dealing with nonsmooth continuous and
discontinuous functions and it can be easily computed. In
what follows, let us now devote just two short sections to
the GD of Kamyad et al. in two cases, one and multivariable
functions.

2.1. GD of One-Variable Nonsmooth Functions. Let 𝑉 ={𝑣𝑘(⋅) : 𝑣𝑘(𝑥) = sin 𝑘𝜋𝑥 : 𝑥 ∈ [0, 1], 𝑘 = 1, 2, . . .}. For
function 𝑓(𝑥) on [0, 1], we define the following functional
optimization problem:

Minimize 𝐽 (𝑔 (⋅)) = ∞∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
𝑣𝑘 (𝑥) 𝑔 (𝑥) 𝑑𝑥 − 𝜆𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
subject to ∫𝑠𝑖+𝛿

𝑠𝑖−𝛿

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑠𝑖) − (𝑥 − 𝑠𝑖) 𝑔 (𝑠𝑖)󵄨󵄨󵄨󵄨𝑑𝑥 ≤ 𝜀𝛿2,
𝑔 (⋅) ∈ 𝐶 [0, 1] , 𝑠𝑖 ∈ (𝑖 − 1𝑚 , 𝑖𝑚) ,

𝑖 = 1, 2, . . . , 𝑚,
(1)

where 𝑣𝑘(⋅) ∈ 𝑉, 𝜆𝑘 = −∫1
0
𝑣󸀠𝑘(𝑥)𝑓(𝑥)𝑑𝑥, 𝑘 = 1, 2, 3, . . . and𝜀, 𝛿 are positive sufficiently small numbers. Moreover, 𝑠𝑖 ∈((𝑖 − 1)/𝑚, 𝑖/𝑚), 𝑖 = 1, 2, . . . , 𝑚 are arbitrary numbers. For

instance, we can choose the middle points, that is, 𝑠𝑖 = (2𝑖 −1)/2𝑚, 𝑖 = 1, 2, . . . 𝑚.

Theorem 1 (see [3]). Let 𝑓(⋅) ∈ 𝐶1[0, 1] and 𝑔∗(⋅) be the
optimal solution of the functional optimization problem (1).
Then 𝑔∗(⋅) ∈ 𝐶1[0, 1] and 𝑓󸀠(⋅) = 𝑔∗(⋅).
Definition 2. Let 𝑓(⋅) be a continuous nonsmooth function
on the interval [0, 1] and 𝑔∗(⋅) be the optimal solution
of the functional optimization problem (1). We denote the
generalized first derivative (GFD) of𝑓(⋅) by 𝜕𝑥𝑓(⋅) and define
as 𝜕𝑥𝑓(⋅) = 𝑔∗(⋅).
Remark 3 (see [3]). Note that if 𝑓(⋅) is a smooth function on[0, 1] then the 𝜕𝑥𝑓(⋅) in Definition 2 is𝑓󸀠(⋅). Further, if 𝑓(⋅) is

a nonsmooth integrable function on [0, 1] then GFD of 𝑓(⋅)
is an approximation for first derivative of 𝑓(⋅).

In what follows, the problem (1) is approximated to the
following finite dimensional problem (see [3]):

Minimize 𝐽 (𝑔 (⋅)) = 𝑁∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
𝑣𝑘 (𝑥) 𝑔 (𝑥)𝑑𝑥 − 𝜆𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
subject to ∫𝑠𝑖+𝛿

𝑠𝑖−𝛿

󵄨󵄨󵄨󵄨𝑓(𝑥)−𝑓(𝑠𝑖) − (𝑥 − 𝑠𝑖) 𝑔 (𝑠𝑖)󵄨󵄨󵄨󵄨𝑑𝑥 ≤ 𝜀𝛿2,
𝑔 (⋅) ∈ 𝐶 [0, 1] , 𝑠𝑖 ∈ (𝑖 − 1𝑚 , 𝑖𝑚) ,

𝑖 = 1, 2, . . . , 𝑚,
(2)

where𝑁 is a given large number. We assume that 𝑔𝑖 = 𝑔(𝑠𝑖),𝑓𝑖1 = 𝑓(𝑠𝑖 − 𝛿), 𝑓𝑖2 = 𝑓(𝑠𝑖 + 𝛿), and 𝑓𝑖 = 𝑓(𝑠𝑖) for all𝑖 = 1, 2, . . . , 𝑚. In addition, we choose the arbitrary points 𝑠𝑖 ∈((𝑖 − 1)/𝑚, 𝑖/𝑚), 𝑖 = 1, 2, . . . , 𝑚. By trapezoidal and midpoint
integration rules, problem (2) can be approximated to the
following problem in which 𝑔1, 𝑔2, . . . , 𝑔𝑚 are its unknown
variables:

Minimize
𝑁∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛿
𝑚∑
𝑖=1

𝑣𝑘𝑖𝑔𝑖 − 𝜆𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

subject to 󵄨󵄨󵄨󵄨𝑓𝑖1 − 𝑓𝑖 + 𝛿𝑔𝑖󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑓𝑖2 − 𝑓𝑖 − 𝛿𝑔𝑖󵄨󵄨󵄨󵄨 ≤ 𝜀𝛿 ,
𝑖 = 1, 2, . . . , 𝑚.

(3)

Lemma 4. Let pairs (𝑣∗𝑖 , 𝑢∗𝑖 ), 𝑖 = 1, 2, . . . , 𝑚 be the optimal
solutions ofthe following LP problem:

Minimize
𝑣𝑖,𝑢𝑖

𝑚∑
𝑖=1

𝑣𝑖
subject to 𝑣𝑖 ≥ 𝑢𝑖, 𝑣𝑖 ≥ −𝑢𝑖, 𝑣𝑖 ≥ 0, 𝑢𝑖 ∈ 𝐼 .

(4)

Then 𝑢∗𝑖 , 𝑖 = 1, 2, . . . , 𝑚 are the optimal solutions of
the following nonlinear programming (NLP) problem:
Minimize 𝑢∈𝐼 ∑𝑚𝑖=1 |𝑢𝑖| where 𝐼 ⊂ R is a compact set.

Proof. Since (𝑣∗𝑖 , 𝑢∗𝑖 ), 𝑖 = 1, 2, . . . , 𝑚 are the optimal solutions
of the LP problem, so they satisfy the constraints. Thus we
have 𝑣∗𝑖 ≥ 𝑢∗𝑖 and 𝑣∗𝑖 ≥ −𝑢∗𝑖 for 𝑖 = 1, 2, . . . , 𝑚. Hence, |𝑢∗𝑖 | ≤𝑣∗𝑖 , 𝑖 = 1, 2, . . . , 𝑚 and so ∑𝑚𝑖=1 |𝑢∗𝑖 | ≤ ∑𝑚𝑖=1 𝑣∗𝑖 . Now, let there
exist 𝑢∗𝑖 ∈ 𝐼, 𝑖 = 1, 2, . . . , 𝑚 such that ∑𝑚𝑖=1 |𝑢∗𝑖 | < ∑𝑚𝑖=1 |𝑢∗𝑖 |.
Define 𝑣∗𝑖 = |𝑢∗𝑖 | for 𝑖 = 1, 2, . . . , 𝑚. Then 𝑣∗𝑖 ≥ 𝑢∗𝑖 and 𝑣∗𝑖 ≥−𝑢∗𝑖 . Moreover, ∑𝑚𝑖=1 𝑣∗𝑖 = ∑𝑚𝑖=1 |𝑢∗𝑖 | and hence

𝑚∑
𝑖=1

𝑣∗𝑖 =
𝑚∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢∗𝑖 󵄨󵄨󵄨󵄨 <
𝑚∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢∗𝑖 󵄨󵄨󵄨󵄨 <
𝑚∑
𝑖=1

𝑣∗𝑖 . (5)

So ∑𝑚𝑖=1 𝑣∗𝑖 < ∑𝑚𝑖=1 𝑣∗𝑖 ; this is a contradiction.
Now, by Lemma 4 and techniques of mathematical pro-

gramming, problem (3) may be converted to the following
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equivalent LP problem in which 𝑔𝑖, 𝑖 = 1, . . . , 𝑚, 𝜇𝑘, 𝑘 =1, 2, . . . , 𝑁, and 𝜔𝑖, 𝑧𝑖, 𝑢𝑖, 𝑣𝑖 for 𝑖 = 1, 2, . . . , 𝑚 are decision
variables of the problem:

Minimize
𝑁∑
𝑘=1

𝜇𝑘
subject to −𝜇𝑘 + 𝛿 𝑚∑

𝑖=0

𝑣𝑘𝑖𝑔𝑖 ≤ 𝜆𝑘, 𝑘 = 1, 2, . . . , 𝑁

− 𝜇𝑘 − 𝛿 𝑚∑
𝑖=0

𝑣𝑘𝑖𝑔𝑖 ≤ −𝜆𝑘, 𝑘 = 1, 2, . . . , 𝑁
(𝑢𝑖 + 𝑣𝑖) + (𝜔𝑖 + 𝑧𝑖) ≤ 𝜀𝛿, 𝑖 = 1, 2, . . . , 𝑚
𝑢𝑖 − 𝑣𝑖 − 𝛿𝑔𝑖 = 𝑓𝑖1 − 𝑓𝑖, 𝑖 = 1, 2, . . . , 𝑚
𝜔𝑖 − 𝑧𝑖 + 𝛿𝑔𝑖 = 𝑓𝑖2 − 𝑓𝑖, 𝑖 = 1, 2, . . . , 𝑚
𝜔𝑖, 𝑧𝑖, 𝑢𝑖, 𝑣𝑖, 𝜇𝑘 ≥ 0, 𝑘 = 1, 2, . . . , 𝑁;

𝑖 = 1, 2, . . . , 𝑚.
(6)

Remark 5. Note that 𝜀 and 𝛿 must be selected as sufficiently
small numbers and arbitrary points 𝑠𝑖 ∈ ((𝑖 − 1)/𝑚, 𝑖/𝑚), 𝑖 =1, 2, . . . , 𝑚 can be chosen as arbitrary numbers.

Remark 6. Note that if 𝑔∗𝑖 , 𝑖 = 1, . . . , 𝑚 are optimal solutions
of problem (6), then we have 𝜕𝑥𝑓(𝑠𝑖) ≈ 𝑔∗𝑖 , 𝑖 = 1, 2, . . . , 𝑚.

2.2. GD of Multivariable Functions. In this section, we are
going to introduce functional optimization problems that
their optimal solutions are the partial derivatives of smooth
function on Ω ⊂ R𝑛. First, we select arbitrary (but fixed)
index 𝑖 ∈ {1, 2, . . . , 𝑛} and calculate the partial differentiation
of 𝑓(⋅) : Ω → R respect to 𝑥𝑖. Without loss of generality,
assume Ω = [0, 1]𝑛 and define Ω as follows:

Ω = {(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) : 𝑥𝑖 ∈ [0, 1]} ⊂ [0, 1]𝑛−1.
(7)

Now, select𝑁 as a sufficiently large number and partΩ to
the similar grids Ω𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑛−1 such that these grids
cover set Ω. In the next step, we consider arbitrary points𝑠𝑗 ∈ Ω𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑛−1 as 𝑠𝑗 = (𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑠𝑗𝑖+1 , . . . , 𝑠𝑗𝑛).
Moreover, we define the following vector for all 𝑠𝑗 ∈ Ω𝑗:

𝑟𝑗 (𝑡) = (𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑡, 𝑠𝑗𝑖+1 . . . , 𝑠𝑗𝑛) ,
𝑡 ∈ [0, 1] , 𝑗 = 1, 2, . . . , 𝑁𝑛−1. (8)

Let 𝑓(⋅) : Ω → R and define ℎ𝑗(𝑡) = 𝑓(𝑟𝑗(𝑡)), 𝑡 ∈ [0, 1]
for 𝑗 = 1, 2, . . . , 𝑁𝑛−1. Now, suppose 𝜀 > 0 and 𝛿 > 0 are two
sufficiently small given numbers and 𝑁 ∈ N be sufficiently
large number. For given continuous function𝑓 : Ω → R, we

define the following functional optimization problem for any𝑗 = 1, 2, . . . , 𝑁𝑛−1:
Minimize
𝑔(⋅)∈𝐶[0,1],

𝐽𝑗 (𝑔 (⋅)) = ∞∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
𝑣𝑘 (𝑡) 𝑔 (𝑡) 𝑑𝑡 − 𝜆𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

subject to ∫𝑤𝑝+𝛿
𝑤𝑝−𝛿

󵄨󵄨󵄨󵄨󵄨ℎ𝑗 (𝑡)−ℎ𝑗 (𝑤𝑝)−(𝑡 − 𝑤𝑝) 𝑔(𝑤𝑝)󵄨󵄨󵄨󵄨󵄨𝑑𝑥 ≤ 𝜀𝛿2,
(9)

where 𝑤𝑝 ∈ ((𝑝 − 1)/𝑁, 𝑝/𝑁), 𝑝 = 1, 2, . . . , 𝑁 are fixed and
arbitrary points; for example, it can be chosen by 𝑤𝑝 = (2𝑝 −1)/2𝑁, 𝑝 = 1, 2, . . . , 𝑁.

Also, 𝑣𝑘(⋅) ∈ 𝑉, 𝜆𝑗,𝑘 = −∫1
0
𝑣󸀠𝑘(𝑡)ℎ𝑗(𝑡)𝑑𝑡 and for all 𝑗 =

1, 2, . . . , 𝑁𝑛−1, 𝑘 = 1, 2, 3, . . ..
Theorem 7. Let 𝑓 ∈ 𝐶1(R) and 𝑔∗𝑗 (.) be the optimal
solution of the functional optimization problem 𝑃𝑗, for 𝑗 =1, 2, . . . , 𝑁𝑛−1 defined by (9). Then 𝑔∗𝑗 (⋅) ∈ 𝐶1([0, 1])

𝜕𝑓𝜕𝑥𝑖 (𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑡, 𝑠𝑗𝑖+1 , . . . , 𝑠𝑗𝑛) = 𝑔
∗
𝑗 (𝑡) , 𝑡 ∈ [0, 1] ,

(10)

where 𝑠𝑗 = (𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑠𝑗𝑖+1 , . . . , 𝑠𝑗𝑛) ∈ Ω𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑛−1.
Proof. (see [3]).

Now, the generalized partial derivative (GPD) of nons-
mooth function 𝑓 : Ω ⊂ R𝑛 → Rmay be defined as follows.

Definition 8. Let 𝑖 ∈ {1, 2, . . . , 𝑛}be a fixed and arbitrary index
and 𝑠𝑗 = (𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑠𝑗𝑖+1 , . . . , 𝑠𝑗𝑛) ∈ Ω𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑛−1.
Moreover, let function 𝑓 : Ω ⊂ R𝑛 → R be a continuous
nonsmooth function and 𝑔∗𝑗 (⋅), 𝑗 = 1, 2, . . . , 𝑁𝑛−1 is the
optimal solution of the functional optimization problem (9).
We denote the GPD of 𝑓(⋅) with respect to variable 𝑥𝑖 by𝜕𝑖𝑓 and define as 𝜕𝑖𝑓(𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑡, 𝑠𝑗𝑖+1 , . . . , 𝑠𝑗𝑛) = 𝑔∗𝑗 (𝑡),𝑡 ∈ [0, 1].
Remark 9. Note that if 𝑓 : Ω ⊂ R𝑛 → R is a smooth
function then for fixed index 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑠𝑗 =
(𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑠𝑗𝑖+1 , . . . , 𝑠𝑗𝑛) ∈ Ω𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑛−1,
𝜕𝑖𝑓 (𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑡, 𝑠𝑗𝑖+1 , . . . , 𝑠𝑗𝑛)

= 𝜕𝑓𝜕𝑥𝑖 (𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑡, 𝑠𝑗𝑖+1 , . . . , 𝑠𝑗𝑛) , 𝑡 ∈ [0, 1] .
(11)

Further, if 𝑓(⋅) is a continuous nonsmooth function, then the
GPD of 𝑓(⋅) with respect to variable 𝑥𝑖 is an approximation
for first derivative of function 𝑓(⋅)with respect to variable 𝑥𝑖.

However, the optimization problem (9) is an infinite
dimensional problem and hence it is approximated as
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the following finite dimensional problems:

Minimize 𝐽𝑗 (𝑔 (⋅)) = 𝑀∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
𝑣𝑘 (𝑡) 𝑔 (𝑡) 𝑑𝑡 − 𝜆𝑗𝑖 ,𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
subject to ∫𝑤𝑝+𝛿

𝑤𝑝−𝛿

󵄨󵄨󵄨󵄨󵄨 ℎ𝑗𝑖 (𝑡) − ℎ𝑗𝑖 (𝑤𝑝) − (𝑡 − 𝑤𝑝) 𝑔 (𝑤𝑝)󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ≤ 𝜀𝛿2,
𝑔 (⋅) ∈ 𝐶 [0, 1] , 𝑤𝑝 ∈ (𝑝 − 1𝑁 , 𝑝𝑁) ,

𝑝 = 1, 2, . . . , 𝑁,
(12)

where 𝑀 is a given large number. We assume that 𝑣𝑘𝑝 =
𝑣𝑘(𝑤𝑝), 𝑔𝑝 = 𝑔(𝑤𝑝), ℎ1,𝑝𝑗 = ℎ𝑗(𝑤𝑝−𝛿), ℎ2,𝑝𝑗 = ℎ𝑗(𝑤𝑝+𝛿) andℎ𝑝𝑗 = ℎ𝑗(𝑤𝑝), for all 𝑝 = 1, 2, . . . , 𝑁. In addition, we choose
the arbitrary points 𝑤𝑝 ∈ ((𝑝 − 1)/𝑁, 𝑝/𝑁), 𝑝 = 1, 2, . . . , 𝑁.

Similar to the Section 2.1, problem (12) may be converted
to the following equivalent finite linear programming (𝐹𝐿𝑃)
problem which 𝑔𝑗𝑝, 𝑝 = 1, . . . , 𝑚, 𝜇𝑘, 𝑘 = 1, 2, . . . , 𝑁, and𝑦𝑝, 𝑧𝑝, 𝑢𝑝, 𝑞𝑝 for 𝑝 = 1, 2, . . . ,𝑀 are decision variables of the
problem:

Minimize
𝑀∑
𝑘=1

𝜇𝑘

subject to − 𝜇𝑘 + 𝛿 𝑁∑
𝑝=1

𝑣𝑘𝑝𝑔𝑗𝑝 ≤ 𝜆𝑗,𝑘,

− 𝜇𝑘 − 𝛿 𝑁∑
𝑝=1

𝑣𝑘𝑝𝑔𝑗𝑝 ≤ 𝜆𝑗𝑖 ,𝑘,
(𝑢𝑝 + 𝑞𝑝) + (𝑦𝑝 + 𝑧𝑝) ≤ 𝜀𝛿,
𝑢𝑝 − 𝑞𝑝 − 𝛿𝑔𝑗𝑝 = ℎ1,𝑝𝑗 − ℎ𝑝𝑗 ,
𝑦𝑝 − 𝑧𝑝 + 𝛿𝑔𝑗𝑝 = ℎ2,𝑝𝑗 − ℎ𝑝𝑗 ,
𝑦𝑝, 𝑧𝑝, 𝑢𝑝, 𝑞𝑝, 𝜇𝑘 ≥ 0,
𝑘 = 1, 2, . . . ,𝑀, 𝑝 = 1, 2, . . . , 𝑁,

(13)

where 𝜆𝑗𝑘 for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑁𝑛, and 𝑘 = 1, 2,3, . . . ,𝑀 satisfy the relations

𝜆𝑗,𝑘 = −∫1
0
𝑣󸀠𝑘 (𝑡) ℎ𝑗 (𝑡) 𝑑𝑡. (14)

Remark 10. Note that if𝑔∗𝑗𝑝,𝑝=1, . . . , 𝑁 are optimal solutions
of problem (13), then 𝜕𝑖𝑓(𝑠𝑗1 , . . . , 𝑠𝑗𝑖−1 , 𝑤𝑝, 𝑠𝑗𝑖+1 , . . . , 𝑠𝑗𝑛) = 𝑔∗𝑗𝑝
for 𝑝 = 1, . . . , 𝑁.

3. Nonsmooth Optimization Problems

The focus of this paper is the following NSOP:

Min
𝑥∈Ω

𝑓 (𝑥) , (15)

where the objective function 𝑓 : Ω → R is assumed
to be nonsmooth function and the feasible set Ω ⊆ R𝑛

is a compact set. Throughout the whole paper we assume
that there exists a solution for problem (15). NSOP has been
used in many of branches of sciences such as engineering,
economics, andmathematics. An increasing number of prac-
tical problems require minimizing a nonsmooth, nonconvex
function on a convex set, including image restoration, signal
reconstruction, variable selection, optimal control, stochastic
equilibrium problems, and spherical approximations. Also,
a number of constrained optimization problems can be
reformulated as problem (15) by using exact penalty methods
(see [7]). However, many well-known optimization algo-
rithms lack effectiveness and efficiency in dealing with non-
smooth, nonconvex objective functions. Furthermore, for
non-Lipschitz continuous functions, the Clarke generalized
gradients [8] cannot be used directly in the analysis. Further,
smooth approximations for optimization problems have been
studied for decades, including complementarity problems,
variational inequalities, second order cone complementar-
ity problems, semidefinite programming, semi-infinite pro-
gramming, optimal control, and eigenvalue optimization (see
[9]).

A well known way to seek numerical solution of problem
(15) is to replace it by a suitable piecewise linear function.
With this linearization we can construct a piecewise linear
approximation to the NSOP.

In this paper, we describe a class of approximations which
are constructed as piecewise linear functions based on GD of
nonsmooth functions.

Without less of generality, we firstly let Ω = [0, 1] be a
closed interval and let us take a partition ofΩ,

0 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑖−1 < 𝑥𝑖 < ⋅ ⋅ ⋅ < 𝑥𝑛 = 1, (16)

where 𝑥𝑖 = 𝑥0 + 𝑖𝛿, 𝑖 = 0, 1, . . . , 𝑛 and 𝛿 > 0 is a
sufficiency small number. In addition, we select mid points𝑠𝑖 ∈ (𝑥𝑖−1, 𝑥𝑖), 𝑖 = 1, 2, . . . , 𝑛. In order to derive piecewise
linear approximations, we introduce the generalized first
order Taylor expansion of continuous nonsmooth function𝑓(𝑥) on Ω𝑖 = [𝑥𝑖−1, 𝑥𝑖], 𝑖 = 1, 2, . . . , 𝑛 based on the GD as
follow:

𝑓 (𝑥) ≅ 𝑓𝑖 (𝑥) = 𝑓 (𝑠𝑖) + (𝑥 − 𝑠𝑖) 𝜕𝑥𝑓 (𝑠𝑖) ,
𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖] , 𝑖 = 1, 2, . . . , 𝑛. (17)

Moreover, we can approximate function 𝑓(𝑥) on interval[0, 1] as follows:
𝑓 (𝑥) ≅ 𝑛∑

𝑖=1

𝑓𝑖 (𝑥) 𝜒[𝑥𝑖−1 ,𝑥𝑖] (𝑥) , 𝑥 ∈ [0, 1] . (18)

We restrict our treatment to first order generalized derivative
for obtaining a practical and useful general approach. In this
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connection, we note that 𝑓𝑖(𝑥) is a linear approximation for
nonsmooth function 𝑓(𝑥) on [𝑥𝑖−1, 𝑥𝑖].
Theorem 11. Let 𝑓(𝑥) be a continuous nonsmooth function
on the interval Ω = [0, 1] and 𝜀, 𝛿 > 0 are sufficiency small
numbers. The best linear approximation for function 𝑓(𝑥) on
interval [𝑥𝑖−1, 𝑥𝑖], 𝑖 = 1, 2, . . . , 𝑛, in passing points (𝑠𝑖, 𝑓(𝑠𝑖)),𝑖 = 1, 2, . . . , 𝑛, is function 𝑓𝑖(𝑥), 𝑖 = 1, 2, . . . , 𝑛 defined by (17).
Proof. Let 𝜑(⋅) ∈ C[0, 1], and define

𝜇𝜑𝑖 (𝑥) = 𝑓 (𝑠𝑖) + (𝑥 − 𝑠𝑖) 𝜑 (𝑠𝑖) ,
𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖] , 𝑖 = 1, 2, . . . , 𝑛. (19)

Now, assume that𝛼𝜑𝑖 =‖𝑓(⋅)−𝜇𝜑𝑖 (⋅)‖[𝑥𝑖−1 ,𝑥𝑖]where ‖𝐾(⋅)‖[𝑥𝑖−1 ,𝑥𝑖]=∫𝑥𝑖
𝑥𝑖−1

|𝐾(𝑡)|𝑑𝑡. Since 𝜀, 𝛿 > 0 are sufficiency small numbers, we
have 𝜀𝛿 < 𝛼𝜑𝑖 . On the other hand, by constraints of problem
(1), ‖𝑓(⋅) − 𝑓𝑖(⋅)‖[𝑥𝑖−1,𝑥𝑖] ≤ 𝜀𝛿2. Thus
󵄩󵄩󵄩󵄩𝑓(⋅) − 𝑓𝑖(⋅)󵄩󵄩󵄩󵄩[𝑥𝑖−1,𝑥𝑖] < 󵄩󵄩󵄩󵄩𝑓(⋅) − 𝜇𝜑𝑖 (⋅)󵄩󵄩󵄩󵄩[𝑥𝑖−1 ,𝑥𝑖], 𝑖 = 1, 2, . . . , 𝑛

(20)

and this shows that the best linear approximation for function𝑓(𝑥) on interval [𝑥𝑖−1, 𝑥𝑖] in passing points (𝑠𝑖, 𝑓(𝑠𝑖)), 𝑖 =1, 2, . . . , 𝑛, is function 𝑓𝑖(𝑥).
The approximation (17) will be used in nonsmooth

optimization approach in the next part. The next theorem
indicates how to find minimum of nonsmooth function in
our approach.

Theorem12. Let𝑓(𝑥) be a nonsmooth function on the intervalΩ = [0, 1] and 𝜀, 𝛿 > 0 are sufficiency small numbers. Then

Min
𝑥∈[0,1]

𝑓 (𝑥) = Lim
𝑛→ ∞

( Min
𝑖=1,2...,𝑛

( Min
𝑥∈[𝑥𝑖−1,𝑥𝑖]

𝑓𝑖 (𝑥))) , (21)

where 𝑓𝑖(𝑥), 𝑖 = 1, 2, . . . , 𝑛, is defined by (17).
Proof. If 𝑛 tends to infinity then by definition of points 𝑥𝑗,𝑗 = 1, 2, . . . , 𝑛 we have 𝛿 → 0. So by the constraints
of the problem (2), we have ‖𝑓(⋅) − 𝑓𝑗(⋅)‖[𝑥𝑗−1 ,𝑥𝑗] ≤ 𝜀𝛿2.
Hence, Lim𝑛→∞‖𝑓(⋅) − 𝑓𝑗(⋅)‖[𝑥𝑗−1 ,𝑥𝑗] = 0 and we can write
Lim𝑛→∞𝑓𝑗(⋅) = 𝑓(⋅) for 𝑗 = 1, 2, . . . , 𝑛. So for 𝑥 ∈ [0, 1],
there exits an index 𝑗 ∈ {1, 2, . . . , 𝑛} such that 𝑓𝑗(𝑥) =∑𝑛𝑖=1 𝑓𝑖(𝑥)𝜒[𝑥𝑖−1 ,𝑥𝑖](𝑥). Thus, achieve the following relation
Lim𝑛→∞(∑𝑛𝑖=1 𝑓𝑖(𝑥)𝜒[𝑥𝑖−1 ,𝑥𝑖](𝑥)) = 𝑓(𝑥). Now, assume that𝑓(𝑥∗) = Min𝑥∈[0,1]𝑓(𝑥). So

Lim
𝑛→∞

( 𝑛∑
𝑖=1

𝑓𝑖 (𝑥∗) 𝜒[𝑥𝑖−1 ,𝑥𝑖] (𝑥∗)) = Min
𝑥∈[0,1]

𝑓 (𝑥) , (22)

On the other hand, there is an index 𝑘 ∈ {1, 2, . . . , 𝑛} such
that 𝑥∗ ∈ [𝑥𝑘−1, 𝑥𝑘] and
𝑓𝑘 (𝑥∗) = 𝑛∑

𝑖=1

𝑓𝑖 (𝑥∗) 𝜒[𝑥𝑖−1 ,𝑥𝑖] (𝑥∗) = Min
𝑖=1,2,...,𝑛

Min
𝑥∈[𝑥𝑖−1,𝑥𝑖]

𝑓𝑖 (𝑥) .
(23)

Hence, by the relations (22) and (23) we conclude

Lim
𝑛→∞

( Min
𝑖=1,2...,𝑛

( Min
𝑥∈[𝑥𝑖−1 ,𝑥𝑖]

𝑓𝑖 (𝑥))) = Min
𝑥∈[0,1]

𝑓 (𝑥) . (24)

For the main result of Theorem 12, we can approximate
the problem (15) with the following problem:

Min
𝑖=1,2,...,𝑛

Min
𝑥∈[𝑥𝑖−1,𝑥𝑖]

(𝑓 (𝑠𝑖) + (𝑥 − 𝑠𝑖) 𝜕𝑥𝑓 (𝑠𝑖)) , (25)

where 𝑛 is a sufficiency big number.
Awell knownway to seek optimal solution of the problem

(25) is to convert it to a min-max problem based on the
following remark.

Remark 13. Finding the minimum of function 𝑓 on a certain
domain is really the same as finding the maximum of −𝑓 on
that domain.

So for attaining to feasible solution of problem (25) we
have the following problem:

Min
𝑖=1,2,...,𝑛

Max
𝑥∈[𝑥𝑖−1,𝑥𝑖]

(−𝑓 (𝑠𝑖) − (𝑥 − 𝑠𝑖) 𝜕𝑥𝑓 (𝑠𝑖)) . (26)

Now, we assume

𝑧 = Max
𝑥∈[𝑥𝑖−1,𝑥𝑖]

(−𝑓 (𝑠𝑖) − (𝑥 − 𝑠𝑖) 𝜕𝑥𝑓 (𝑠𝑖)) , ∀𝑖 = 1, 2, . . . , 𝑛.
(27)

It has become clear that the problem (26) is equivalent to the
following linear programming problem:

Min 𝑧
subject to 𝑧 ≥ −𝑓 (𝑧𝑖) − (𝑧𝑖 − 𝑠𝑖) 𝜕𝑖𝑓 (𝑠𝑖)𝑥𝑖−1 ≤ 𝑧𝑖 ≤ 𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑛, (28)

where the decision variables are 𝑧𝑖, 𝑖 = 1, 2, . . . , 𝑛 and 𝑧. After
solving the LP problem (28), we obtain optimal solutions 𝑧∗𝑖 ,𝑖 = 1, 2, . . . , 𝑛 and 𝑧∗. Then, we choose 𝑧∗𝑝 such that 𝑧∗ =−𝑓(𝑧∗𝑝) − (𝑧∗𝑝 − 𝑠𝑝)𝜕𝑝𝑓(𝑠𝑝). Now, 𝑥∗ = 𝑧∗𝑝 is an approximate
optimal solution for main problem (15).

Note that in the connection of multivariable functions𝑓 : Ω ⊂ R𝑚 → R, also above-mentioned theorems
hold for problem (15). Without less of generality, we let Ω =[0, 1]𝑚. Here, we can approximate function 𝑓(⋅) with a linear
approximation as follows:

𝑓 (𝑥1, . . . , 𝑥𝑚) ≅ 𝑓𝑖 (𝑥1, . . . , 𝑥𝑚)
= 𝑓 (𝑠𝑖1, . . . , 𝑠𝑖𝑚)+(𝑥1 − 𝑠𝑖1) 𝜕𝑥1𝑓 (𝑠𝑖1, . . . , 𝑠𝑖𝑚)
+ ⋅ ⋅ ⋅ + (𝑥𝑚 − 𝑠𝑖𝑚) 𝜕𝑥𝑚𝑓 (𝑠𝑖1, . . . , 𝑠𝑖𝑚) ,

(29)

where 𝜕𝑥𝑖𝑓(𝑠𝑖1, . . . , 𝑠𝑖𝑚), 𝑖 = 1, 2, . . . , 𝑛 are the GDs of 𝑓(⋅)
with respect to 𝑥𝑖 in point (𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖𝑚) ∈ [0, 1]𝑚. Here, we
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Figure 1: The graph of 𝑓(𝑥) of Example 1.
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Figure 2: The graph of GD of Example 1.

select similar setsΔ 𝑖, 𝑖 = 1, 2, . . . , 𝑛 such that∪𝑛𝑖=1Δ 𝑖 = [0, 1]𝑚.
Moreover, similar to Theorem 11, we can prove that

Min
𝑥∈[0,1]𝑚

𝑓 (𝑥1, . . . , 𝑥𝑚) = Min
𝑖=1,2...,𝑛

Min
𝑥∈Δ 𝑖

𝑓𝑖 (𝑥1, . . . , 𝑥𝑚) . (30)

Similar to one-variable case, we obtain a LP problem
to the approximate optimal solution of nonsmooth problem
Min𝑥∈Ω=[0,1]𝑚𝑓(𝑥) as follows:

Min 𝑧
subject to 𝑧 ≥ −𝑓 (𝑠𝑖1, . . . , 𝑠𝑖𝑚)− (𝑧𝑖1 − 𝑠𝑖1) 𝜕𝑥1𝑓 (𝑠𝑖1, . . . , 𝑠𝑖𝑚)− ⋅ ⋅ ⋅ − (𝑧𝑖𝑚 − 𝑠𝑖𝑚) 𝜕𝑥𝑚𝑓 (𝑠𝑖1, . . . , 𝑠𝑖𝑚) ,𝑧𝑖𝑚 ∈ Δ 𝑖, 𝑖 = 1, 2, . . . , 𝑛,

(31)

where the decision variables are 𝑧𝑖𝑗, for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =1, 2, . . . , 𝑚 and 𝑧. After solving the LP Problem (31), we obtain
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Figure 3: The graph of 𝑓(𝑥) of Example 2.
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Figure 4: The graph of GD of Example 2.

optimal solutions 𝑧∗𝑖𝑗 for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚 and 𝑧∗.
Then, we choose 𝑧∗𝑝𝑗, 𝑗 = 1, 2, . . . , 𝑚 such that

𝑧∗ = −𝑓 (𝑠𝑝1, . . . , 𝑠𝑖𝑚) − (𝑧∗𝑝1 − 𝑠𝑝1) 𝜕𝑥1𝑓 (𝑠𝑝1, . . . , 𝑠𝑝𝑚)
− ⋅ ⋅ ⋅ − (𝑧∗

𝑝𝑚
− 𝑠𝑝𝑚) 𝜕𝑥𝑚𝑓 (𝑠𝑝1, . . . , 𝑠𝑝𝑚) .

(32)

Now, (𝑥∗1 , . . . , 𝑥∗𝑚) = (𝑧∗𝑝1, . . . , 𝑧∗𝑝𝑚) is an approximate optimal
solution for main problem (15).

4. System of Nonsmooth Equations

We consider the system of 𝑛 nonsmooth equations with 𝑛
variables

𝐺 (𝑥) = 0, (33)

where 𝐺 : Ω ⊂ R𝑛 → R𝑛 is assumed to be nonsmooth
function. We assume that there exists a unique solution
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Table 1: Comparison of the Zhang’s method and our approach.

Zhang’s method (NFFM1) Zhang’s method (NFFM2) Our approach (𝑛 = 200) Our Approach (𝑛 = 400) Exact solution
0.999832 1.000041 1.000017 0.999997 1
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Figure 5: The graph of function 𝑓(⋅, ⋅) of Example 3.
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Figure 6:The graph of GD of 𝑓(⋅, ⋅)with respect to 𝑥 for Example 3.

𝑥∗ ∈ Ω such that 𝐺(𝑥∗) = 0. Many efforts have been done
for solving nonsmooth system of equations (for more details
refer [10, 11]). These methods are very useful but they are not
simple and practical in the nonsmooth case. Here, according
to Section 3, we introduce an approach based on GD which
is useful for nonsmooth equations.

In what follows, we firstly convert the problem (33) to
the corresponding NLP problem and in the next step, by
the linearization method of previous section, we obtain an
LP problem for approximating solution of the problem (33).
Define the following NLP problem:

Min
𝑥∈Ω

𝑛∑
𝑖=1

𝐺2𝑖 (𝑥) , (34)
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Figure 7:The graph of GD of 𝑓(⋅, ⋅)with respect to 𝑦 for Example 3.
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Figure 8: The graph of function 𝑓(𝑥) of Example 4.

where 𝐺(𝑥) = (𝐺1(𝑥), 𝐺2(𝑥), . . . , 𝐺𝑛(𝑥))𝑇 and 𝑥 = (𝑥1, 𝑥2,. . . , 𝑥𝑛).
Lemma 14. Let 𝑥∗ = (𝑥∗1 , 𝑥∗2 , . . . , 𝑥∗𝑛 ) ∈ Ω be the optimal
solution of the problem (34). Then 𝑥∗ = (𝑥∗1 , 𝑥∗2 , . . . , 𝑥∗𝑛 ) is a
solution for problem (33), that is, 𝐺(𝑥∗) = 0.
Proof. It is trivial that𝐺21(𝑥)+𝐺22(𝑥)+ ⋅ ⋅ ⋅+𝐺2𝑛(𝑥) ≥ 0, 𝑥 ∈ Ω,
and

Min
𝑥∈Ω

𝑛∑
𝑖=1

𝐺2𝑖 (𝑥) ≥ 0. (35)
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Figure 9: The graph of GD of Example 4.
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Figure 10: The graph of function 𝑓(𝑥) of Example 5.

Table 2: Numerical results of Example 3.

𝑁 Approximate optimal solution Approximate optimal value

20 𝑥 = 0.02500000 𝑓(𝑥, 𝑦) = −1.43627670𝑦 = 0.97500000
100 𝑥 = 0.00500000 𝑓(𝑥, 𝑦) = −1.48745150𝑦 = 0.99500000
200 𝑥 = 0.00250000 𝑓(𝑥, 𝑦) = −1.49373789𝑦 = 0.99750000
500 𝑥 = 0.00100000 𝑓(𝑥, 𝑦) = −1.49749806𝑦 = 0.99900000

On the other hand, there is an 𝑥 ∈ Ω such that 𝐺(𝑥) = 0 and
hence 𝐺𝑖(𝑥) = 0, 𝑖 = 0, 1, . . . , 𝑛. So we have

0 = 𝑛∑
𝑖=1

𝐺2𝑖 (𝑥) = Min
𝑥∈Ω

𝑛∑
𝑖=1

𝐺2𝑖 (𝑥) , (36)

hence 𝑥 = 𝑥∗ and 𝐺(𝑥∗) = 0.
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Figure 11: The graph of GD of Example 5.

Now, we can replace the problem (33) with the NLP
problem (34). Here, we assume 𝑓(𝑥) = ∑𝑛𝑖=1 𝐺2𝑖 (𝑥), 𝑥 ∈Ω, and corresponding to the Section 3, use the linearization
method based on GD and solve the LP problem (28) for
the one variable functions or the problem (31) for the
multivariable functions (for more details of GD, see Sections
2.1 and 2.2).

5. Numerical Examples

In this section, we present some numerical results in order
to illustrate the performance of established approach. Three
NSOPs and three nonsmooth equations were solved; some of
them are multidimensional problems. One of the aims is to
show the efficiency of our approach in the connections with
nonsmooth functions.

Example 1. Consider the following problem of one variable of
nonsmooth optimization:

Min
𝑥∈[0,1]

𝑓 (𝑥) = ||𝑥 − 0.25| − 0.5| . (37)

The exact solution of Example 1 is 𝑥∗ = 0.75, 𝑓∗ = 0 in 𝑥 ∈[0, 1].The function𝑓(𝑥) is nondifferentiable at 𝑥 = 0.25, 0.75
in the interval [0, 1] and according to the problem (28), the
acheived approximate solution for 𝑛 = 50 is 𝑥∗ = 0.750000,𝑓∗ = 4.2974512887 × 10−12. Here, the function 𝑓(𝑥) is
illustrated in Figure 1 and the GD of 𝑓(𝑥) has been shown
in Figure 2.

Example 2. Consider the following NSOP which has been
introduced by Zhang et al. in [2]:

Min
𝑥∈[−10,10]

𝑓 (𝑥) = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 − 14
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨sin(𝜋(1 + 𝑥 − 14 ))󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 1.
(38)

According to Figure 3, the exact global minimizer is 𝑥∗ =1. The comparison results of our approach and [2] show
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Table 3: Numerical results of Example 6.

𝑁 Approximate optimal solution Approximate optimal value

50 𝑥 = 0.49000000 𝑓1(𝑥, 𝑦) = 0.01000000𝑦 = 0.49000000 𝑓2(𝑥, 𝑦) = 0.02000000
100 𝑥 = 0.49500000 𝑓1(𝑥, 𝑦) = 0.00500000𝑦 = 0.49500000 𝑓2(𝑥, 𝑦) = 0.01000000
200 𝑥 = 0.49750000 𝑓1(𝑥, 𝑦) = 0.00250000𝑦 = 0.49750000 𝑓2(𝑥, 𝑦) = 0.00500000
500 𝑥 = 0.49900000 𝑓1(𝑥, 𝑦) = 0.00100000𝑦 = 0.49900000 𝑓2(𝑥, 𝑦) = 0.00200000

0
0.50.5

1
0

0.5

1

1.5

2

2.5

xy

f(
x,
y)

0

1

Figure 12: The graph of 𝑓(𝑥, 𝑦) of Example 6.

that our approach has acceptable precision and accuracy (see
Table 1). The GD of 𝑓(𝑥) has been shown in Figure 4.

Example 3. Let the following NSOP:

Min
𝑥∈[0,1],𝑦∈[0,1]

𝑓 (𝑥, 𝑦) = 𝑥𝑦2 − 󵄨󵄨󵄨󵄨sin𝜋 (𝑦 − 0.5)󵄨󵄨󵄨󵄨 − 𝑦 |𝑥 − 0.5| ,
(39)

which has its minimum at 𝑥∗ = 0, 𝑦∗ = 1 (see Figure 5) and
the minimum exact value of 𝑓(𝑥, 𝑦) is 𝑓∗ = −1.5. According
to the problem (31), produces the following approximate
solutions for different values of𝑁 (see Table 2). Figures 6 and
7 have been shown in the graph of GD of 𝑓(𝑥, 𝑦)with respect
to 𝑥 and 𝑦.
Example 4. Consider the following nonsmooth equation

𝑓 (𝑥) = 1 − |0.5 − cos (𝜋𝑥)| = 0, 𝑥 ∈ [0, 1] . (40)

The above problem has an exact root 𝑥∗ = 2/3 ≈ 0.6666667.
According to the problem (34), the approximate solution for𝑛 = 100 is 𝑥 = 0.66499999 and the approximate 𝑓(𝑥) for this
root is 𝑓(0.66499999) = 0.004541. Figures 8 and 9 have been
shown in the graph of function 𝑓(𝑥) and the graph of GD of𝑓2(𝑥), respectively.

Example 5. Consider the following nonsmooth equation:

𝑓 (𝑥) = |𝑥 + 0.25| − |𝑥 − 0.75| + 0.5 |sin𝜋𝑥| = 0,
𝑥 ∈ [−1, 1] . (41)

The function 𝑓(𝑥) is nondifferentiable at 𝑥 = −0.25, 0,0.75 in the interval [−1, 1]. It can be viewed as the place of
the root in Figure 10 and the achived approximate solution
for 𝑛 = 400 is 𝑥 = 0.1424999. Also the approximate value
function for this solution is 𝑓(0.1424999) = 0.001436. The
graph of GD of 𝑓2(𝑥) is illustrated in Figure 11.

Example 6. Consider the following system of nonsmooth
equations:

𝑓1 (𝑥, 𝑦) = 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 + |𝑥 − 0.5| = 0,
𝑓2 (𝑥, 𝑦) = |𝑥 − 0.75| − 𝑦 + 0.25 = 0, (42)

where 𝑥 ∈ [0, 1], 𝑦 ∈ [0, 1]. The exact solution of the above
system is 𝑥∗ = 𝑦∗ = 0.5 (see Figure 12).

According to the problem (34), 𝑓(𝑥, 𝑦) = 𝑓21 (𝑥, 𝑦) +𝑓22 (𝑥, 𝑦) and so we solve Min𝑓(𝑥, 𝑦). Table 3 presents the
results of approximate solution for different values of𝑁.

6. Conclusions

We have shown that NSOP can be approximated by a linear
optimization problem whose solution can be used for that
problem. In this approach, we utilize new GD which it
is practical and useful for nonsmooth functions. Also by
this approach, it is possible to solve system of nonsmooth
equations. The results of numerical examples imply that our
approach is useful with respect to results andmore applicable
to computational assignments.
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