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ABSTRACT 
 

The close relationship between the hierarchical shape functions and the incompatible modes 
in non-conforming finite elements is investigated and a simple approach is presented to 
systematically derive the incompatible modes of any order. The performance of the 
developed non-conforming elements is demonstrated via examples from literature and in 
comparison with the hybrid stress elements. 
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1. INTRODUCTION 
 

In order to increase the accuracy of a finite element analysis elements of higher order, either 
standard or hierarchical, are employed. However, this affects the computational cost of the 
analysis quite dramatically. The main idea in using the non-conforming finite elements is 
adding a few incompatible modes to the approximation polynomials of each element in 
order to overcome the problem of the over stiffness of the lower order elements.  The 
coefficients of the incompatible modes are later condensed out from the formulation and 
consequently, the size of the resulting system of equations is kept unaffected.    

Since the introduction of the incompatible modes in lower order finite element analysis 
by Wilson et al [1] in 1973, an enormous amount of research has been devoted to the 
development and improvement of the performance of the so called non-conforming finite 
elements. For example, see references [2-4,7]. Although the relationship between the 
incompatible displacement modes and the hierarchical shape functions has alluded by a few 
researchers, e.g. in [8], to the best knowledge of the authors, the derivation of these modes 
has been regarded as an intuitive and ad hoc one. This paper aims to present a simple 
approach to derive the incompatible modes from the hierarchical shape functions up to any 
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order and in a systematic way. 
2. INCOMPTIBLE DISPLACEMENT MODES 

 
In the standard rfinite element formulation, the consistency between adjacent elements is 
provided via the satisfaction of the essential and natural boundary conditions for individual 
elements. In practice, this is achieved by using the global degrees of freedom together with 
the common process of assembling the global coefficient matrix [8]. However, in the non-
conforming elements, due to the existence of a few extra parameters, the above condition 
between adjacent elements is not satisfied. Therefore, in the case of using the incompatible 
displacement modes, the consistency condition, in general, is violated. This means that a gap 
between adjacent elements can exist and therefore, the criteria of limited strains at the 
element edges are not guaranteed [7].  

To clarify the problem, the following general single value partial differential equation for 
a boundary value problem is considered 
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Where A is a general differential operator, u is the primary variable, c is a coefficient, n is 
the normal unit vector, t  is the secondary variable and uΓ  and tΓ  are the essential and 
natural boundaries of the problem. In the standard finite element method, the primary 
variable, u, is approximated as  
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Where iN  are the standard shape functions and n is the number of nodes per element. In 

the non-conforming elements the element displacements are expressed as the sum of 
compatible part cu and the incompatible part nu , which are approximated as below 
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One should note that in (3) c

iN  are the same as the n standard bilinear shape functions of 

an element, n
iN  in (4) are the m incompatible shape functions and ai are the incompatible 

A (u)=f ,
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modes’ interpolation parameters. 
As was mentioned above, adding the incompatible displacement modes violates the 

consistency condition. In other words, the displacement compatibility would not exist at the 
edges of elements any more. In addition, according to the convergence criteria, by 
decreasing the size of elements such that the size tends to zero, in the limit, a constant stress 
condition is realized. In this case, since the displacements are linear, the effects of the 
incompatible modes need to be eliminated. The above conditions for non-conforming 
elements are discussed in the following section. 

 
2.1 Consistency condition 
To alleviate the effects of inconsistency in the non-conforming elements and to increase the 
accuracy of solution, the discontinuity needs to be weakened as much as possible. The 
common approach for achieving this is to delete the effects of inconsistency from the 
formulation. For example, in the virtual displacement formulation the work done by the 
element edge traction forces due to the incompatible displacement modes disappears. A 
similar approach can be followed when the total potential energy functional is used [5].  

Applying this idea to the boundary value problem (1) and discretizing the domain of interest into 
a mesh of finite elements, results in 
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where eΓ  represents the total boundary of element e and xn  and yn  are the direction 
cosines of the boundary normal vectors. Since 
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and to ensure condition (5) it is sufficient to write 
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Equation (6) will be used later in order to obtain the appropriate incompatible modes 

from the hierarchical shape functions. 
 

2.2. Convergence criteria 
As the size of the finite elements become smaller and smaller, in the limit, a constant stress 
condition appears. The chosen approximate function should be such as to allow this to 
happen. In other words, one of the criteria for convergence is to satisfy the constant strain 
condition, which is equivalent to the passing of the constant stress patch tests. In the non-
conforming elements with incompatible modes, the above criterion implies that in the case 
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of constant stresses, the strain energy induced by the incompatible modes should be zero 
[5,7]. By implementing the consistency condition as well as the convergence criteria, the 
well-known elements with incompatible modes [7] have been developed.  

 
 

3. DERIVATION OF INCOMPATIBLE MODES  
 

To improve the accuracy of the FE solution, the order of elements may be increased. Adding 
the appropriate hierarchical shape functions to the standard bilinear shape functions of the 
isoparametric plane stress elements can do this. By doing this, the approximated 
displacement function u can be written as 
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where s

iN and h
jN are the standard and the hierarchical shape functions, respectively, and n 

and m are the number of them in the approximation. 
When second order hierarchical shape functions are used, which is equivalent to the 

implementation of the eight node serendipity quadratic element, the incompatible modes 
suggested by Wilson [1, 2] are derived by following the procedure below. A systematic 
approach to the derivation of the incompatible modes in a more general sense is explained 
here. In this further development, in order to increase the accuracy, the quadratic and cubic 
hierarchical shape functions are employed. Therefore, by distinguishing the second and third 
order hierarchical shape function hu in (7) can be written as  21 hhh uuu +=  . 

In the case of a quadrilateral plane element 1hu  and 2hu  are 
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where, 1h

iN , ia , 2h
iN  and ib are the hierarchical shape functions and interpolation 

parameters for second and third order approximations, respectively. By using the second 
order hierarchical shape functions, (8) can be written as  
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It is noted that parameters ia represent the magnitude of the departure from a linear 
approximation at the center of the edges of a quadrilateral element.  

Similarly, 2hu  can be written as 
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The shape functions in (11) are chosen in such a way that they are zero at the middle and 

corners of the edges of a typical bilinear quadrilateral element. Also, the slope at the middle 
of each edge is unity. One should note that, in general, these shape functions are not unique 
and different ones might be used.  

Now, by substituting the hierarchical displacements 1hu  and 2hu and the related shape 
functions from (10) and (11) in place of nu and n

iN  in (6) we can write 
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which are the implementation of the idea at two stages for the hierarchical shape functions 
of different orders. According to the above equations and by substituting equations (10) and 
(11) in (12) and (13), it is noted that the interpolation parameters of the hierarchical shape 
functions are related to each other and are not independent. To simplify the problem, the 
above equations are solved for the case of elements with a constant Jacobian, e.g. 
rectangular elements. In doing so, the following relations are easily resulted 
 
 1 3 1 2 4 2,= = = =a a a a a a  (14) 
and  
 1 3 1 2 4 2, .= = = =b b b b b b  (15) 

 
Now, by using (14) and (15), equations (10) and (11) can be written as 

 1 2 2
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In the equations above, the coefficients of the parameters 121 ,, baa and 2b  are often 
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referred to as incompatible shape functions. 
Following a similar procedure, in the case of three-dimensional eight node brick element 

and choosing the second and third order hierarchical shape functions as    
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Considering (16) and (20), it is observed that the shape functions are exactly the 

incompatible modes suggested by Wilson and Taylor [1, 2]. Also, noted that hiN  are 
renamed as nN  from now on. 

 
 

4. FINITE ELEMENT FORMULATION  
 

The approximated displacement functions 
T

yx u,u=u  for a four-node isoparametric 

element with four incompatible modes for each component of displacement can be written 
as  
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or 
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Using (23) the element strains can be written as  
 

 1 2 ,= + +ε Bu B a B b  (24) 
 

where 1, BB and 2B  are the strain-displacement matrices. Also the stress-strain relationship 
is 
 =σ Dε  (25) 
 
where D  is the elasticity matrix. 

Following a standard approach for the derivation of the finite elements formulation, the 
matrix of coefficients can easily be obtained. For example, by implementing the virtual 
displacement method for a typical element with body forces b  and traction forces t  we 
have 

 
 0 ,

e e e

T T Td d dδ δ δ
Ω Ω Γ

Ω − Ω− Γ =∫ ∫ ∫ε σ u b u t  (26) 

 
and using (24) the variation of ε  is obtained as  
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Now, substituting from (21), (22) and (27) into the first term of (26) and using 

uNu δ=δ  for the other terms, and ignoring the coefficient of TT , au δδ and Tbδ results in a 
system of three equations which in matrix form can be shown as  
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and  
 .
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As mentioned in Section 2.2, the convergence criteria need to be satisfied which is 

equivalent to passing the constant stress patch test [7]. Since equations (28) may not satisfy 
the convergence criteria, some corrections on the terms as defined in (29) are in order. This 
can be achieved by neglecting the contribution of the incompatible modes in the internal 
virtual work as shown in equations (26). Thus 
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Consideringσ  to be constant, from (31) and (32) it can be concluded that we should have  
 

 1 0 ,
e

T d
Ω

Ω =∫ B  (33) 

 
 2 0 .

e

T d
Ω

Ω =∫ B  (34) 

 
Considering the definition of the B  matrix, it can easily be shown that (33) and (34) can 

also be written as  
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Equations (35) can be satisfied by adding constant correction matrices c
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them. Therefore,  
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From (36) and (37) the constant correction matrices can easily be calculated as  
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c
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Therefore, in order to be able to reach the constant stress state, in (28) and (29), 1B  and 

2B  should be used in place of 1B  and 2B  
Additionally, for the constant stress case, σ , in its general form, can be written as 
 

 1 .= +σ DBu DB a  (41) 
 

It should be noted that by considering a higher order extra term in (41), it is impossible to 
reach a constant stress state. From this point, it follows that in (24) and (25) the matrix 2H  
does not need any correction. Thus, (28) will be changed to 

 

 
1 2

1 1 3

2 3 2

,

T T

T

          =               

K E E u f
E H E a 0

b 0E E H
 (42) 

 
Where the bar superscript denotes the corrected matrices. From (42) it is observed that 

the incompatible mode parameters a  and b can be omitted by a conventional static 
condensation procedure. This results in the equivalent stiffness matrix K  where  
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5. NUMERICAL EXAMPLES 
 

Three examples are presented to demonstrate the accuracy of the developed non-conforming 
element. The results are compared with different methods, which are employed in our 
developed finite element code. 
 
Example 1: The cantilever beam of Figure 1, which was solved in [5, 6,7], is considered 
under two load cases:  1) an end moment at the free edge of the beam and 2) a vertical shear 
load at the free edge. The beam is discretized by five trapezoidal elements as illustrated in 
Figures 1.a and 1.b.  



B. Hassani and S.M. Tavakkoli 162 

 

Figure 1. Cantilever beam (a) Distorted mesh (b) Trapeziodal mesh 

 
In Table 1, the resulting vertical displacements for the bottom corner of the free edge of 

the cantilever beam (point A in Figure 1) are compared with those obtained from 
implementing different methods. The reported values and their references are also provided 
in parentheses. 

Table 1. Cantilever beam Figure 1 
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Example 2: A plane stress curved cantilever beam under end shear load, as depicted in 
Figure 2, is considered. Four trapezoidal elements are used for discretizing the domain of the 
problem. The modulus of elasticity and Poisson's ratio are assumed to be 1000 and 0.3, 
respectively. The obtained results are shown in Table 2. 

 

Table 2. Circular beam Figure 2 

 

 

Figure 2. Circular beam under end shear load 

 
Example 3: A twisted beam under end shear load, as illustrated in Figure 3, is considered. 
36 brick elements are used for discretizing of the domain of problem. The modulus of 
elasticity E and the Poisson's ratio are assumed to be 29.0E6 and 0.22, respectively.  Length, 
width and depth of the beam are 12.0, 1.1 and 0.32 respectively and the angle of twist is 90 
degrees. The obtained results are shown in Table 3.   

           

 

Figure 3. Twisted 3D beam 
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Table 3. Twisted 3D Beam 

Element Out-of-plane shear In-plane shear 

Compatible 0.000582694 0.00111884 

Wilson's 0.001730193 0.005384828 

Hybrid 0.001755258 0.00545427 

Present 0.001734881 0.005405259 

Exact 0.001754 0.005424 

 
 

6. CONCLUSION  
 

The so-called incompatible displacement modes are closely related to the hierarchical shape 
functions. As demonstrated in this paper, they can be obtained in a systematic approach and 
up to any desired order. By adding extra incompatible modes to the approximation 
polynomials, more accurate results are obtained. As it is expected, the relative improvement 
in the accuracy of the results, by using higher order modes in comparison with the quadratic 
incompatible mode shapes, is reduced. 
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