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Abstract 
Various numerical techniques such as finite element and boundary element methods are commonly used to analysis engineering 
problems. These methods encounter mesh-related difficulties in dealing with fracture mechanics problems. To overcome these 
difficulties, a number of meshless methods have been developed in recent years. In this paper the Element Free Galerkin method 
based on the linear elastic fracture mechanics is used to model the jointed rock medium under axial loads. The stress intensity 
factors are calculated on the tip of the joints by using J-integrals. The visibility criterion and a cubic spline weight function are 
applied to model rock fractures. In addition, the Lagrange multipliers method is employed to enforce the boundary conditions. To 
verify the computational capability and accuracy of the method, a couple of examples of jointed samples in mode I as well as 
mixed mode are considered and the stress intensity factors are determined. The obtained results by this technique, in comparison 
with analytical methods, show a good accuracy and denote that the Element Free Galerkin method can be used as a proper tool in 
rock fracture mechanics. 
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1.   Introduction 

Rock mass commonly contains fractures in the 
forms of joints and microcracks, and their failure 
strongly depends on the propagation of these 
pre-existing flaws. Propagation of rock mass 
discontinuities is studied in rock fracture 
mechanics. Stress intensity factors (SIF) in linear 
elastic fracture mechanics are the main 
parameters capable to characterize the stress 
field in the vicinity of the crack tip. These factors 
depend on the geometry of the fracture, applied 
stresses and the initial fracture length. Based on 
the loading type that a material is subjected to, 
there are three basic crack propagation modes in 
a fracture process (Fig. 1), namely: Mode I 
(extension, opening), Mode II (in-plane shear), 
and Mode III (out-of-plane shear). Any 
combination of these modes may occur as a 
mixed mode. When the stress intensity factors 
reaches a critical values at some point in a 
structure, a fracture will initiate and propagate. 
Therefore determination of stress intensity 
factors is an essential task: it can be obtained 
from the stress field, the displacement field or 

from energy quantities [1]. In practice, because 
of the mechanical and geometrical complexity of 
most of the problems, commonly a numerical 
method such as the finite element or boundary 
element methods is employed to calculate stress 
intensity factors [2, 3]. 

Finite element and boundary element methods 
encounter mesh-related difficulties in dealing 
with fracture mechanics problems. To alleviate 
these difficulties, various mesh free methods 
such as element-free Galerkin method (EFGM) 
was developed [4]. 

In numerical studies, the stress intensity 
factors is calculated by methods such as 
displacement extrapolation method [5], stress 
extrapolation method [6], J-integral [2], Griffith's 
energy calculations [2], and the stiffness 
derivative technique [2]. In this paper, the 
element-free Galerkin method (EFGM) based on 
linear elastic fracture mechanics was applied to 
determine the tension mode (mode I) and mixed 
mode (mode I and II) Stress intensity factors 
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with the use of J-integrals in fractured rock 
medium under axial loads. To evaluate the 
performance of the EFGM, two examples were 
considered and the results are compared with 
analytical and finite element solutions. 

 

 
Fig. 1. Three basic modes of fracture. 

2.   The EFG method  

The EFG method is one of the most promising 
meshless methods. It essentially consists of two 
aspects; construction of meshless approximation 
using the moving least-square (MLS) technique 
and formulation of Galerkin weak form to 
govern the numerical approximation.  

2.1.   The MLS approximation  

According to Lancaster et al. [7], the local 
approximation hu of a field variable u(x) defined 
in the solution domain,Ω , is expressed as the 
inner product of a vector of the polynomial 
basis, )x(p , and a vector of the coefficients, )x(a  
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where m is the number of monomials in the 
polynomial basis. In the present study on 2-D 
problems, a linear basis, i.e., )y,x,1(pT =  
corresponding to m=3, is used. If the values at a 

set of nodes ,n...,,2,1i,xi =  are known, the 
vector )x(a  can be determined by minimizing a 
weighted, discrete 2L error norm defined as 
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where )x,x(w i  is a weight function defined 
over a compact support (also called the domain 
of influence of node i), iu  the nodal value at ix , 
and n the number of nodes whose domain of 
influence contains the evaluation point, x. The 
weight function rules the nodal influence and 
plays an essential role in the MLS 
approximation. The present study employs the 
cubic spline as the weight function, 
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where the weight parameter s is a normalized 
distance, i.e., 0i r|xx|s −=  ( 0r is the radius of 
influence domain). 

The stationarity of J with respect to )x(a leads 
to the solution of )x(a  

u)x(B)x(A)x(a 1−=  (4) 
 where 

[ ]

m,...,2,1J,I

),x(p)x(p)x,x(w)x(A
n

1i
iJiIiIJ

=

= ∑
=

 
(5) 

[ ]
.m,...,2,1I,n,...,2,1J
),x(p)x,x(w)x(B JIJIJ

==

=  (6) 

)u,...,u,u(u n21
T =  (7) 

A is usually called the ‘‘moment matrix’’. 
Substitution of )x(a  into Eq. (1) gives 
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with )x(iφ  being the shape function in the 
following form: 
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Note however, that the shape function 
obtained does not possess the Kronecker delta 
properties, i.e., 0)x(and1)x( jiii ≠≠ φφ . 

2.2.   The Galerkin weak form for 
elastostatics  

As is well-known the equilibrium of a body that 
occupies the region Ω  bounded by Γ can be 
stated mathematically as follows: 
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where σ , b , u, n, are the stress tensor, the body 
forces, the displacement field and the unit 
outward normal to the boundary ,Γ respectively. 

While t  and u  represent the given traction and 
displacements on the portion tΓ  and uΓ of the 
boundary, respectively. The variational or weak 
form of the Eqs. (10) and (11) is 
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where δ is the variational operator,ε the strain 
tensor, and uWδ  represents a term that is 
introduced to enforce the essential boundary 
conditions. The explicit form of uWδ  depends on 
the method by which the essential boundary 
conditions are applied. We use Lagrange 
multipliers to apply the essential boundary 
conditions [8]. Then, uWδ  is defined as 
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where λ  is the Lagrange multiplier that is 
expressed by 
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where )(sNI  is a Lagrange interpolant and s the 
arc length along the boundary. For elasticity 
problems, the strain can be expressed as 

))((
2
1 Tuu ∇+∇=ε  (15) 

and the stress–strain relationship is 

.:D εσ =  (16) 
Substituting Eq. (8) (which is the 

approximation function of the MLS) and Eqs 
(13)-(16) into Eq. (12), we have 
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In which a comma designates a partial 
derivative with respect to the indicated spatial 
variable; E and υ  are Young’s modulus and 
Poisson’s ratio, respectively. 
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2.3.   Modeling of Geometric Discontinuity  

Geometric discontinuities such as cracks and 
joints can be modeled by the EFG method in 
different ways such as: the visibility criterion, 
the diffraction method and the transparency 
method [9,10]. The visibility criterion is 
employed in the present paper. This criterion 
considers each geometric boundary (external or 
internal edges, cracks, holes, etc.) as an opaque 
surface. To determine the nodes that need to be 
considered in the domain of influence of a point, 
which are required for construction of the shape 
functions, all are connected to the point of 
interest. Such straight lines can be imagined to 
be a ray of light. If the ray encounters an opaque 
surface, such as the boundary of the body or an 
interior discontinuity, it terminates and the 
corresponding node is not included in the 
domain of influence. As an example, in Fig. 1 
the domains of influence of two typical points I 
and J which are located near the joint, are shown 
as shaded areas. All the nodes included in the 
region as defined above, are considered as those 
belonging to the domain of influence and are 
used to calculate the shape functions. 
 

 
Fig. 2. Domain of influence of nodes I and J located near 
a joint [10]. 

3.   J-integral Method  

The J-integral technique, introduced by 
Cherepanov [11] and Rice [12], is widely used in 
rate-independent quasi-static fracture analysis to 
characterize the energy release rate associated 
with crack growth and is defined as 

∫ =−=
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2,1,)( , kdsutWnJ kjjkk (25) 

 
Fig. 3. The J-integral path. 

where Γ  is an arbitrary counter-clockwise path 
remote from the crack tip, beginning on the 
lower crack face and ending on the upper crack 
face, a generic contour surrounding the crack 
front (Fig. 1), εσ .2/1=W  is the strain energy 
density and iijj nt σ= are the tractions evaluated 

along the contour ,Γ with normal unit outward 
components jn . For linear elastic material, J is 

related to the stress intensity factors by 
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in which EE =′  for plane stress state or 
)1/( 2υ−=′ EE for plane strain state [10]. In pure 

mode I fracture: 0=IIK and IK calculated from: 

E
K
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4.   Examples  

The EFGM method was applied to perform 
fracture-mechanics analysis of jointed rock 
mediums. Both single (mode I) and mixed mode 
(modes I and II) were considered and two 
examples are presented. The discretization nodes 
are distributed in a square grid in the domain of 
problems, except for the regions near the crack 
tip which a star-shape pattern are used. For 
numerical integration, a 77×  Gauss quadrature 
in the cells around the crack tip and a 44×  
quadrature in the remaining cells are used. To 
model this problem by EFGM and calculate the 
SIFs by J-integral, the required programs were 
developed in MATLAB based on equations (1) 
to (27).  
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4.1.   Example 1. Central horizontal  joint 
under mode I  

Consider a center horizontal cracked plate under 
a tensile uniform load, as shown in Fig. 3(a), 
with length mmL 200= , width mmW 100=  and 
the crack length of .242 mma =  The far-field 
tension stress is assumed .1 MPa=σ The elastic 
modulus E and Poison’s ratio υ  were 

MPa104.72E 3×=  and 3.0=υ  respectively. 

 

    
                      (a)                                   (b) 

Fig.  4. (a) Geometry of the Center-Cracked Tension 
specimen, (b) J-integral domain. 

Three different paths, with different number 
of nodes located on them, are considered to 
calculate the J-integral (Fig. 3(b)). The obtained 
values for IK , via different paths and various 
numbers of scattered nodes, are shown in Table 
1. Aliabadi [13] has also computed the stress 
intensity factor for this problem and has 
proposed the following formula: 
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By using this polynomial, the value of the 
mode I stress intensity factor is 

mmMPa63.6KI = . This problem was also 
solved by Javidrad [5], using the finite element 
method together with displacement and stress 

extrapolation techniques. He obtained the SIF 
equal to 6.6 mmMPa.  by displacement 
extrapolation method and 6 mmMPa.  by stress 
extrapolation method. The results of element free 
Galerkin match quite well with other solutions.  

Table 1: Mode-I SIF using different domain size and 
various  node numbers 

).( 2/1mmMPaKI  Domain size 

bb 22 ×  32 
nodes 

48 
nodes 

64 
nodes 

aa ×  6.81 6.80 6.81 

aa 2.12.1 ×  6.76 6.74 6.73 

aa 5.15.1 ×  6.78 6.77 6.76 

4.2.   Example 2. Inclined joint under mixed    
mode  

This example involves a central inclined-cracked 
plate as shown in Fig. 4(a) which is subjected to 
far-field compression stress MPa1=σ  in both 
sides. The plate has length mm200L = , width 

mm100W =  and crack length of .mm03a2 =  
A plain stress condition was assumed with 

MPa1050E 3×= and .25.0=υ  The mode I and 
mode II SIFs were calculate according to Eq. 
(26). In this example )45( o=β stress intensity 
factors, IK and IIK are equal and can simply 
determined from Eq. (26) but in general it is 
necessary to use other methods such as M-
integral [14] and decomposition procedure 
[10,15]. Table 2 shows the values of IK  and IIK  
for different domains and various numbers of 
scattered nodes on integral domains. 

The following equations are used to obtain the 
theoretical SIFs [16]: 

βπσ 2
vI sinaK =  

(29) 
ββπσ cossinaK vII −=   

In the above formulation =a half the flaw 
length, β is the flaw inclination angle. Using 
these equations, solutions are:  
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,.43.3 mmMPaKI =  mmMPaKII .43.3−= . 

 

    
                           (a)                                      (b) 

Fig.  5. (a) Geometry of the center-inclined-cracked 
plate,  (b) J-integral domain. 

The results of element free Galerkin show 
good agreement with analytical solutions.  

 Table 2: Mode-I SIF using different domain size and 
various node numbers. 

).( 2/1mmMPaKI  Domain size 

bb 22 ×  
29 nods 41 nods 61 nods 

aa ×  3.54 3.56 3.58 

aa 2.12.1 ×  3.62 3.63 3.64 

aa 5.15.1 ×  3.74 3.76 3.77 

Table 3: Mode-II SIF using different domain size and 
various node numbers. 

).( 2/1mmMPaKII  Domain size 

bb 22 ×  
29 nods 41 nods 61 nods 

aa ×  3.54 3.56 3.58 

aa 2.12.1 ×  3.62 3.63 3.64 

aa 5.15.1 ×  3.74 3.76 3.77 

5.   Conclusions 

The element free Galerkin method was used to 
determine the stress intensity factors in jointed 

rock medium together with the J-integral 
technique. The assumption of linear elastic 
fracture is adopted and the visibility criterion 
was used to model rock fractures. The Lagrange 
multipliers method was employed to enforce the 
boundary conditions. To evaluate the proposed 
model, two examples were considered and mode 
I and mode II SIFs were calculated in cracked 
rock samples. This study shows that the results 
of the EFGM are in a very good agreement with 
other solutions obtained by either analytical or 
the finite elements. It seems that the element free 
Galerkin method can be used as a significant tool 
in rock fracture mechanics. 
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