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ABSTRACT 
Stress intensity factor is the one of most important parameters in rock fracture 
mechanics. In practice, this factor is commonly calculated by various numerical 
techniques such as finite element and boundary element methods. These methods 
encounter mesh-related difficulties in dealing with fracture mechanics problems. In this 
paper the Element Free Galerkin method based on the linear elastic fracture mechanics 
was used to determine tension-mode stress intensity factor in jointed rock medium using 
stress extrapolation method. The visibility criterion was applied to model the rock 
fractures. In addition, Lagrange multipliers method was employed to enforce the 
boundary conditions. To verify the computational capability and accuracy of the 
method, an example of jointed sample including horizontal joint was considered under 
tension load and the stress intensity factor was determined and evaluated. The stress 
extrapolation method with %7 difference in comparison with analytical method has high 
precision and it also shows good agreement with the displacement extrapolation method 
based upon finite element method.  

Keywords: Element Free Galerkin method, Stress intensity factor, stress extrapolation 
method, Rock fracture mechanics, Tension mode. 

 

1 – INTRODUCTION 
Fracture mechanics of rock materials is of essential significance for the design and 
reliable operation of structures constructed in rock medium. The mechanical behavior of 
jointed rock masses is mostly controlled by fractures or joints. Depending on the 
loading levels and the geometry of the fractures in rock medium, these may be 
propagated and cause to rupture of rock masses. As is well-known, the stress intensity 
factor (SIF) in linear elastic fracture mechanics is the main parameter capable to 
characterize the stress field in the vicinity of the crack tip. Its determination is a crucial 
task: it can be obtained from the stress field, the displacement field or from energy 
quantities [1]. In practice, commonly a numerical method such as finite element or 
boundary element is employed to calculate SIF [2,3]. Finite element and boundary 
element methods encounter mesh-related difficulties in dealing with fracture mechanics 
problems. To remove these difficulties, various mesh free methods such as element-free 
Galerkin method (EFGM) was developed [4].  
Based on the geometry and loading condition, a crack propagates under the three basic 
failure modes or the mixed-mode condition (Fig. 1). Mode I is the tensile opening 
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mode, mode II is the in-plane sliding or shear and mode III is the tearing or out of plane 
mode [5]. 
 

 
Figure 1. Three basic modes of crack propagation [5]. 

 
In numerical studies, the stress intensity factor is calculated by methods such as 
displacement extrapolation method, stress extrapolation method, J-integral [2]. In this 
paper, the element-free Galerkin method was used based on linear elastic fracture 
mechanics to determine the tension mode (mode I) Stress intensity factor in fractured 
rock medium. The method was evaluated by an example and the results were compared 
with the results of analytical and finite element methods. 
 

2. THE EFG METHOD 
The EFG method is one of the most promising meshless methods. It essentially consists 
of two aspects construction of meshless approximation using the moving least-square 
(MLS) technique and formulation of Galerkin weak form to govern the numerical 
approximation [6].  
 

2.1. The MLS approximation 

According to Lancaster et al. [7], the local approximation hu of a field variable u(x) 
defined in the solution domain, Ω , is expressed as the inner product of a vector of the 
polynomial basis, )x(p , and a vector of the coefficients, )x(a  
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where m is the number of monomials in the polynomial basis. In 2-D problems, a linear 
basis, i.e., 3mtoingcorrespond);y,x,1(pT == , is used. If the values at a set of nodes, 
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where )x,x(w i  is a weight function defined over a the domain of influence of node i, 

iu  the nodal value at ix , and n the number of nodes whose domain of influence 
contains the evaluation point, x. The present study employs the cubic spline weight 
function. The stationarity of J with respect to )x(a  leads to the solution of )x(a  
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Substitution of )x(a  into Eq. (1) gives 
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2.2. The Galerkin weak form for elastostatics 
As is well-known the equilibrium of a body that occupies the region Ω  bounded by 
Γ can be stated mathematically as follows [6]: 

Ω=+σ∇ in0b.  (8) 

tu ontn.,onuu Γ=σΓ=      (9) 
where σ , b , u, n, are the stress tensor, the body forces, the displacement field and the 
unit outward normal to the boundary Γ ,respectively. While t and u represent the given 
traction and displacements on the portion tΓ  and uΓ of the boundary, respectively. The 
variational or weak form of the Eqs. (8) and (9) is 

,0=−Γ−Ω−Ω ∫∫∫ ΓΩΩ u
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 where δ is the variational operator,ε  the strain tensor, and uWδ  represents a term that is 
introduced to enforce the essential boundary conditions. By the use of Lagrange 
multipliers to apply the essential boundary conditions, uWδ  is defined as [8] 
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where λ  is the Lagrange multiplier. Substituting Eq. (7) and (11) into Eq. (10), we have 
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where E and υ  are Young’s modulus and Poisson’s ratio of the material.  

Geometric discontinuities such as cracks and joints can be modeled by the EFG method 
in different ways such as: visibility criterion, diffraction method and transparency 
method [4]. The visibility criterion is employed in the present paper.  
 

4 - STRESS EXTRAPOLATION METHOD  
We explain the stress extrapolation method by a straight forward example. Consider 
center-cracked tension plate (Fig. 2), based on the Westergaard stress function, the 
stress field in the vicinity of this crack can be written as Tailor expansion [9]: 
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In the vicinity of crack tip, we can dispense the higher order terms, hence we have: 
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π21
IKc =   (22) 

 
Figure 2. Geometry of the Center-Cracked Tension plate [9]. 
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Consequently, the stress components in the vicinity of this crack tip can be written as 
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Where xyyx and τσσ , are stress components, IK is the mode I stress intensity factor and 
),( θr  is the polar coordinates. Along the crack face ( 0=θ ), the normal stress will be 

r
K I
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σ θ 20 ==  (24) 

Theoretically, the opening mode value of K can be obtained from the yσ  stress ahead of 
the crack by following equation 

rK yI πσ θ 2.0=
∗ =   (25)  

In the stress extrapolation method, IK is found by extrapolating the *
IK  along the crack 

face [2]. With the values of ∗
IK  along the crack face, linear regression is employed to 

determine a "best" straight line. The stress intensity factor, K, is the y-axis intercept of a 
best-fit line through the data. 
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4. NUMERICAL EXAMINATION AND CONCLUSIONS 
The validity of the EFGM and displacement extrapolation technique is tested by an 
example; a rectangular rock specimen with 2100200 mm× dimensions containing a 
central horizontal crack by length of 24 mm was considered and loaded by 1 MPa 
tension stress (Fig. 3-a). Young module and Poison ratio of the sample are 72.4 GPa and 
0.3 respectively. To model this problem by EFGM and calculate the SIF by stress 
extrapolation, the required programs were developed in MATLAB based on equations 
(1) to (26). 

 

4. 1. Determination of SIF by EFGM model and Stress extrapolation method 

To determine SIF by EFGM, 1426 nodes were distributed in problem domain (Fig. 3-b). 
As explained, to indicate stress intensity factor, the normal stress ( yσ ) must be 
obtained. By the element free Galerkin method the model is solved and normal stress is 
calculated (see fig. 3-c). 
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  (a)                                (b)                                (c) 

Figure 3. a) Geometry of the Center-Cracked Tension specimen, b) Distribution of 
nodes in EFGM model, c) Normal Stress ( yσ ). 

 

As mentioned before, to obtain mode I stress intensity factor, element free Galerkin 
results ( ry πσ 2. ) are plotted as a function of the distance from crack tip and best-fit 
line is found by linear regression. The intersection of this line with y-axis indicates the 
stress intensity factor. Figure 4 illustrates the stress extrapolation method; the stress 
intensity factor is obtained equal to mm.MPa88.5 .  

 

 
Figure 4. Illustration of the stress extrapolation method; central crack, IK = 5.88. 

 

4. 1. Determination of SIF by Analytical and Finite Element methods 
By the use of analytical method available for this problem, the mode I stress intensity 
factor ( IK ) is calculated as follows: 
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This problem was solved using finite element method together with displacement and 
stress extrapolation techniques by Javidrad [10]. He obtained the SIF equal to 6.6 

mmMPa.  by displacement extrapolation method and 6 mmMPa.  by stress 
extrapolation method.  
 

4. 3. Comparison of EFGM Result with Analytical and Finite Element Methods 
The result of element free Galerkin method is compared with the results of analytical 
and finite element methods. Table 1 shows this comparison. 

 

Table 1. Comparison of EFGM Result with Analytical and Finite Element Methods 

Method 
Stress Extrapolation 

by EFGM 
Analytical 

Method 

Displacement 
Extrapolation by 

FEM 

Stress 
Extrapolation by 

FEM 

IK  

mmMPa.  
5.88 6.29 6.6 6 

 

According to Tab.1 the result of stress extrapolation technique with element free 
Galerkin method with %7 difference in comparison with analytical method is accurate 
and has excellent agreement with stress extrapolation by finite element method. 
 

5. CONCLUSION  
Stress intensity factor is the one of most important parameters in rock fracture 
mechanics. Determination of this parameter is necessary to study the fracture 
propagation and also its direction. The element free Galerkin method based on the linear 
elastic fracture mechanics was used to determine tension-mode stress intensity factor in 
jointed rock medium using stress extrapolation technique. By the use of an example the 
validity of the EFGM and stress extrapolation method was evaluated and the results 
were compared with analytical finite element methods. This comparison indicates that 
these methods, with %7 difference in comparison with analytical method, are high 
accurate and also have excellent agreement with the stress extrapolation method based 
upon finite element method. Consequently the EFGM together with the stress 
extrapolation technique can be used as significant tools in rock fracture mechanics. 
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