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ABSTRACT 

This paper presents, an efficient approach for solving Euler-Lagrange Equation which arises from calculus of variations. 
Homotopy analysis method to find an approximate solution of variational problems is proposed. An optimal value of 
the convergence control parameter is given through the square residual error. By minimizing the square residual error, 
the optimal convergence-control parameters can be obtained. It is showed that the homotopy analysis method was valid 
and feasible to the study of variational problems. 
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1. Introduction 

There has been a considerable renewal of interest in the 
classical problems of the calculus of variations both from 
the point of view of mathematics and of applications in 
physics, engineering, and applied mathematics. The di- 
rect method of Ritz and Galerkin in solving variational 
problems has been of considerable concern and is well 
covered in many textbooks [1-3]. Chen and Hsiao [4] 
introduced the Walsh series method to variational prob- 
lems. Due to the nature of the Walsh functions, the solu- 
tion obtained were piecewise constant. Razzaghi [5] ap- 
plied the Fourier series, to derive a continuous solution 
for the second example in [4] which is an application to 
the heat conduction problem. Very recently, Dehghan 
and Tatari applied the Adomian decomposition method 
and variational iteration method to solve variational 
problems in [6,7], respectively and Abdulaziz, Hashim 
and Chowdhury applied the homotopy perturbation 
method to solve variational problems in [8]. 

One of the semi-exact methods for solving nonlinear 
Equation which does not need small/large parameters is 
HAM, first proposed by Liao in 1992 [9-13]. Since Liao 
[10] for the homotopy analysis method was published in 
2003, more and more researchers have been successfully 
applying this method to various nonlinear problems in 
science and engineering, such as the viscous flows of 
non-Newtonian fluids [14], the KdV-type equations [15], 

finance problems [16], nonlinear optimal control pro- 
blems [17] and so on. 

The HAM contains a certain auxiliary parameter  
which provides us with a simple way to adjust and con- 
trol the convergence region and rate of convergence of 
the series solution. Moreover, by means of the so-called 

-curve, it is easy to determine the valid regions of  
to gain a convergent series solution. Thus, through HAM, 
explicit analytic solutions of nonlinear problems are pos- 
sible. In this paper, we will adopt the homotopy analysis 
method (HAM), for solving the Euler-Lagrange equation, 
which arises from problems in calculus of variations. 

h

hh

2. Basic Idea of HAM 

To describe the basic ideas of the HAM, we consider the 
following differential Equation  

  = 0,N u                    (1) 

where  is a nonlinear operator, N   denotes indepen- 
dent variable,  u   is an unknown function, respect- 
tively. For simplicity, we ignore all boundary or initial 
conditions, which can be treated in the similar way. By 
means of generalizing the traditional homotopy method, 
Liao [9] constructs the so-called zero-order deformation 
Equation  

        01 ; = ;q L q u qhH N q        ,         (2) 

where  0,1q  is the embedding parameter, 0h   is *Corresponding author. 
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a non-zero auxiliary parameter,  is an auxil- 
iary function,  is an auxiliary linear operator, 

  0H  
L  0u   

is an initial guess of  u  ,  is a unknown 
function, respectively. It is important, that one has great 
freedom to choose auxiliary things in HAM. Obviously, 
when  and , it holds  

 ;q 

= 0q = 1q

       1 = ,0=;0 ,u ; u  

q

            (3) 

respectively. Thus, as  increases from 0 to 1, the 
solution  varies from the initial guess  ; q   0u   to 
the solution u  . Expanding  0u   in Taylor series 
with respect to , we have  q

 

 

 0; =q u  
m




   ,m
mu q

=1

          (4) 

where 

 
=0

;
=

m

mm q

 


 
=1

=
m

1
.

!

q

,

m 

 

q

 u

u              (5) 

If the auxiliary linear operator, the initial guess, the 
auxiliary parameter  and the auxiliary function are so 
properly chosen, the series (4) converges at , then 
we have  

h
= 1q

0 mu u 


                (6) 

which must be one of solutions of original nonlinear 
equation, as proved by Liao [10]. As =h 1  and 

, Equation (2) becomes   H  = 1

 q L   1 ; ;q q     0u   

    0 1= ,u u

  q N 

 , ,n nu

= 0,



  (7) 

which is used mostly in the homotopy perturbation 
method [18], where as the solution obtained directly, 
without using Taylor series. According to the definition 
(5), the governing equation can be deduced from the 
zero-order deformation Equation (2). Define the vector 

.  

m

!

 1 = hH 

u

  

 

 

Differentiating Equation (2)  times with respect to 
the embedding parameter  and then setting  
and finally dividing them by , we have the so-called 

th-order deformation Equation  

q

 m   

 

= 0q



m
m

m m m mu R  u 1 ,L u    (8) 

where 

 1

1 1

;
m

N q

m q

 


 

1,

> 1.



mu

=0

1
=

1 !

m

q






 

.       (9) m mR u

and 

0,
=

1,m

m

m






             (10) 

It should be emphasized that   for  is 

governed by the linear Equation (8) under the linear 
boundary conditions that come from original problem, 
which can be easily solved by symbolic computation 
software such as Matlab. For the convergence of the 
above method we refer the reader to Liao’s work. If 
Equation (1) admits unique solution, then this method 
will produce the unique solution. 

1m

Remark 1. In 2007, Yabushita et al. [19] applied the 
HAM to solve two coupled nonlinear ODEs, and sug- 
gested the so-called optimization method to find out two 
optimal convergence-control parameters by means of the 
minimum of the square residual error integrated in the 
whole region having physical meanings. Their approach 
is based on the square residual error 

   
2

=0

= d
M

k
k

h N u 


  
,     

        (11) 

of a nonlinear Equation , where  

=0k

  = 0N u   
 M

ku   gives the M th-order HAM approximation. 
Obviously,   0h   (as ) corresponds to a 
convergent series solution. For given order 

M 
M  of 

approximation, the optimal value of  is given by a 
nonlinear algebraic equation  

h

 d
= 0,

d

h

h


 

We use exact square residual error (11) integrated in 
the whole region of interest , at the order of approxi-
mation M.  



3. Statement of the Problem 

Let us consider the simplest form of the variational pro- 
blems 

     1

0
= , ,

x

x
y x F x y x y x x     d ,      (12) 

where   is the functional whose extremum must be 
found. In order to find the extreme value of  , the 
boundary conditions of the admissible curves are given 
by 

   0 1= , = ,y x b y x a             (13) 

The necessary condition for the solution to problem 
(12) is to satisfy the Euler-Lagrange equation:  

 d
= 0,

dy yF F
x

               (14) 

with the boundary conditions given in (13). 
The boundary value problem (14) does not always 

have a solution and if the solution exists, it may not be 
unique. Note that in many variational problems the exis-
tence of a solution is obvious from the physical or geo-
metrical meaning of the problem and if the solution of 
Euler’s Equation satisfies the boundary conditions, it is 
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d ,

nonlinear parts of the equation. unique. Also this unique extremal will be the solution of 
the given variational problem. From Equation (20), we define the nonlinear operator 

The form of a variational problem involving two de-
rivative can be considered as      

2
3

2

;
; = ; 8 ,xx q

N x q x q e
x


 


    

     (21) 

       1

0
= , , ,

x

x
y x F x y x y x y x x         (15) According to the initial condition denoted by (19), it is 

natural to choose 
where   is the functional that its extremum must be 
found. To find the extreme value of  , the boundary 
conditions of the admissible curves are known in the fol-
lowing form 

  3
0 = .xy x e  

We choose the linear operator 

   2

2

;
; = ,

x q
L x q

x





   

           (22)    
   

0 1 1 2

0 3 1

= , = ,

= , =

y x y x

y x y x 4.

 

  
           (16) 

with the property  1 2 = 0L c c x , where  are 
coefficient. 

1 2,c c
where , = 1,2,3, 4i i  are known. 

The necessary condition for the solution of the prob-
lem (15) is to satisfy the Euler-Lagrange Equation  

As mentioned in Section 2, we get the so-called 
th-order deformation equation:  m

2

2

d d
= 0,

d d

F F F

y x y yx

     
          

      (17)        1 1= ,m m m m mL y x y x hH x R     y  

where 
with boundary conditions given in (16). 

   
2

31
1 12

= 1 8 .xm
m m m m

y
R y e

x


 


  


y  The Euler-Lagrange equations (14), (17) are in general 
a nonlinear differential equation, which does not always 
have an analytic solution. Now, the terms of the HAM solution can be given by  

4. Numerical Results 3
0 = , = 0, = 1,2,3,x

ny e y n   

Hence, the solution to (20) is   3= xy x e  which is the 
exact solution.  

To demonstrate the effectiveness of the HAM algorithm 
discussed above, several examples of variational prob-
lems will be studied in this section. Example 4.2. We consider the following brachisto-

chrone problem: Example 4.1. We consider the following variational 
problem: 

 
 

22
1

0

1
min = d ,

1

y x
x

y x


 
   

          (23)    
21 3

0
min = 4 d ,xy x y x e x    

e

,

       (18) 

subject to the boundary conditions  subject to the boundary conditions  

    30 = 1, 1 = .y y               (19)    0 = 0, 1 = 0.5.y y               (24) 

The corresponding Euler-Lagrange Equation is given 
by The corresponding Euler-Lagrange Equation is given by 

 
21

=
2 1

y
y ,

y




                  (25) 
38 = 0xy y e                   (20) 

subject to the boundary conditions (19). 
To solve Equation (20) by means of HAM, we con-

sider the following process after separating the linear and 
with boundary conditions (24). The exact solution to the 
brachistochrone problem (23) in implicit form is 

 

  2

2

, = 0.381510869 0.618489131

0.1907554345
0.8092445655arctan 0.5938731505 = 0.

0.381510869 0.618489131

F x y y y

y
x

y y

   

   
    





 

 
follows: Following Zhang and He [20], we can expand the non-  

linear term 


1

1 y
 in (25) using the Taylor series as  

 
21

1 ,
1

y y
y

  

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Hence, we can rewrite the Euler-Lagrange Equation 
(25) as follows: 

 2 2 2 2 21
= 1

2
y y y y yy y y        ,      (26) 

To solve Equation (26) by means of HAM, we define 
the nonlinear operator  

       

     

   

2
2 2

2

2 2

2

; 1
; = ; ;

2
1 1

; ;
2 2
1 1 1

; ; .
2 2 2

x q
N x q x q x q

x

;x q x q x q

x q x q


 

  

 


   

  

  



 

From the initial conditions (24), the initial guess is  

  2
0

1
= .

2
y x x


 

As mentioned in Section 2, we get the so-called 
th-order deformation equation with  m

 

 

2 1
1

1 12
=0 =0 =0

1

1
=0 =0

1
1

=0

1

1 1
=0

1
= ,

2

1

2

1
,

2

1 1 1
1 .

2 2 2

jm k
j im i

m m m k k j
k j i

m k
j k j

m k
k j

m
k m k

k

m

k m k m m
k

yy
R y y

y

x xx

y y
y

x x

y y

x x

y y y 




   




 


 



  




 

  
    

 


 

   

  

 





y


 

Now, the terms of the HAM solution can be given by 

2 4 6 8
1

2 4 6 8
2

2 2 3

5 6 7

10

5167 3 1 1 1
= ,

6720 4 48 240 448

5167 3 1 1 1
=

6720 4 48 240 448

320585329 3 5167 11

403603200 4 80640 96

5167 77 5167 389

268800 2880 376320 26880
271 29

403200

y h x x x x x

y h x x x x x

h x x x 4

8

x

x x x

x

     
 
     
 

x

   


   

 

 

12 14

4 3

5

221760 163072

1 1 1
.

448 448 448

x x

x x x

 


  

In Figures 1-4, we plot the comparison of error func- 
tion  , mF x   for  with . 
Figure 5 shows the 4-term HAM approximate solution 

= 2,3,4,5m = 1, 0.9, 0.8h   

 4 x  of (26). When , it is easily seen that the 
solutions above are exactly the solutions in [8]. Therefore, 
the HPM solution is indeed a special case of the HAM 
solution when . 

= 1h 

1=h

By HAM, it is easy to discover the valid region of h, 
which corresponds to the line segments nearly parallel to 
the horizontal axis. To find a proper value of  the - 
curve of  given by the 8th-order HAM appro-  

h h
(0.1)y

 

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

x
|F

(x
,φ

2)|

 

 
|F(x,φ

2
)|(h=−1)

|F(x,φ
2
)|(h=−.9)

 

Figure 1. Error function (h = –1, h = –0.9). 
 

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

x

|F
(x

,φ
3)|

 

 
|F(x,φ

3
)|(h=−1)

|F(x,φ
3
)|(h=−.8)

 
Figure 2. Error function (h = –1, h = –0.8). 

 

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

x

|F
(x

,φ
4)|

 

 
|F(x,φ

4
)|(h=−1)

|F(x,φ
4
)|(h=−.8)

 
Figure 3. Error function (h = –1, h = –0.8). 
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Figure 4. Error function (h = –1, h = –0.8). 
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0

x
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Figure 5. The 4th-order HAM results. 
 
ximation is drawn in Figure 6, which clearly indicates 
that the valid region of  is about . h 1.4 0.2h   

As mentioned in Section 2, the optimal value of  is 
determined by the minimum of , corresponding to the  

h

5

nonlinear algebraic Equation 5d
= 0

dh


. Our calculations  

showed that,  has its minimum value at –0.9. 5

Example 4.3. We consider the following variational 
problem: 



   

       
π

2 22
0

min ,

= 2

y x z x

y x z x y x z x x

   

    d ,

    (27) 

subject to the boundary conditions 

   π π
0 = 0,  = 1, 0 = 0,  = 1.

2 2
y y z z

       
   

    (28) 

The corresponding system of Eulers differential equa-
tions is given by 

= 0, = 0,y z z y             (29) 

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−5

0

5

10

h

y(
.1

)

 

Figure 6. The h-curve of y(0.1) 8th-order HAM. 
 
with boundary conditions (28). The exact solution to the 
variational problem (27) is as follows [6]: 

       = sin , = sin .y x x z x  x  

To solve the Equations (29) by means of homotopy 
analysis method, we choose the initial guess 

 
 

0

0

= sin cos ,

= sin cos .

y x A x B x

z x C x D x




          (30) 

We now define a nonlinear operators as: 

       

       

2
1

1 1 2 22

2
2

2 1 2 12

;
; , ; = ; ,

;
; , ; = ; .

x q
N x q x q x q

x

x q
N x q x q x q

x


  


  


   


   

 

As mentioned in Section 2, we get the so-called th- 
order deformation Equation with 

m

 

 

2
1

1, 1 12

2
1

2, 1 12

= ,

= ,

m
m m m

m
m m m

y
R z

x

z
R y

x


 


 










y

z

 

and initial conditions:  

     
     
0 = 0; 0 = 0,

0 = 0; 0 = 0.

m m x

m m x

y y

z z
 

We start with an initial approximation  we can 
obtain directly the other components as:  

0 0, y z




  


1

2

= s

cos sin cos ,

= 1 sin

cos sin cos ,

y h B D Ax Cx A x

B x C x D x

y h h B D Ax Cx A

B x C x D x

    

  

     

  



in

x  
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


  


1

2

= s

cos sin cos ,

= 1 sin

cos sin cos ,

z h B D Ax Cx A x

B x C x D x

z h h B D Ax Cx A

B x C x D x

    

  

     

  



in

x  

Imposing the boundary conditions on  and , we 

obtain . Hence with 
1y 1z

=h= 1, = 0,A B = 1, = 0C D 1 , 
the exact solution of the problem will be obtained. In 
Figures 7 and 8, we compare the exact solution 

   ,y x z x

0 1t 

 with the 2-term HAM approximate solution, 

for . Figures 9 and 10 shown the -curve of h
π π

, 
4 4

y z  
  
  





 given by the 8th-order HAM approxi- 

mation. 
As mentioned in Section 2, the optimal value of  is 

determined by the minimum of , corresponding to the  
h

2
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Figure 7. Comparison between the HAM solution of y(x) 
and the exact solution. 
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Figure 8. Comparison between the HAM solution of z(x) 
and the exact solution. 
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Figure 9. The h-curve of  
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π
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4
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Figure 10. The h-curve of  
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nonlinear algebraic Equation 2d
= 0

dh


. Our calculations  

showed that, 2  has its minimum value at . 1
Example 4.4. In this example we consider the varia- 

tional problem 

      1 2 2

0
min = d ,y x y x y x x          (31) 

subject to the boundary conditions  

   
       
0 = 0, 0 = 1,

1 = sinh 1 , 1 = cosh 1 ,

y y

y y




          (32) 

which has the the exact solution    = sinhy x x . 
The Euler-Lagrange Equation of this problem can be 

written in the following form  

   (4) = 0.y x y x           (33) 

Applying the homotopy analysis method for solving 
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this problem,we consider the transformation  

         
2 3

1 2 3 4

d d d
= , = , = , = ,

d d d

y y y
y x y x y x y x y x

x x x
 

we rewrite the above fourth-order boundary value prob-
lem as a system of differential equations  

 1
2

d
=

d

y
y x

x
,                (34) 

 2
3

d
=

d

y
y x

x
,                (35) 

 3
4

d
=

d

y
y x

x
,                (36) 

 4
3

d
=

d

y
y x

x
,                (37) 

To solve Equations (34)-(37) by means of the HAM, 
we choose the initial approximations  

       1,0 2,0 3,0 4,0= 0, = 1, = , = .y x y x y x A y x B   (38) 

Furthermore, we define a system of nonlinear opera- 
tors as 

     

     

     

     

1
1 2

2
2 3

3
3 4

4
4 3

;
; = ; ,

;
; = ;

;
; = ;

;
; = ; )

i

i

i

i

x q
N x q x q

x
x q

N x q x q
x
x q

N x q x q
x
x q

N x q x q
x


 


 


 


 


   


   


   


   

,

,

.

 

As mentioned in Section 2, we get the so-called th- 
order deformation Equation with  

m

 

 

 

 

1, 1
1, 1, 1 2, 1

2, 1
2, 2, 1 3, 1

3, 1
3, 3, 1 4, 1

4, 1
4, 4, 1 3, 1

= ,

= ,

= ,

= .

m
m m m

m
m m m

m
m m m

m
m m m

y
R y

x
y

R y
x

y
R y

x
y

R y
x


 


 


 


 



















y

y

y

y

 

We start with an initial approximation, we can obtain 
directly the other components as:  

 1,1 = ,y x h x  

   1,2

1
= 2 2

2
y x hx h hAx   ,  

 


1,3

2 2 2 21
= 6 12 6 6 6

3

y x

hx h hAx h x B h xA h     
 

  


2 2 2
1,4

2 3 3 3 2 3 3

1
= 24 72 36 12 72

24

72 12 36 24 ,

y x hx h hAx h x B h xA

h h Ax h Bx xh A h

    

    



 

 2,1 = ,y x hA  x

   2,2

1
= 2 2

2
,y x hx A hA hxB    

 
2,3

2 2 2 2

( )

1
= 6 12 6 6 6

6

y x

hx A hA hxB h Ax h xB h A     



 ,

 3,1 = ,y x hB  x

   3,2

1
= 2 2

2
y x hx B hB hAx  


 

,

 4,1 = ,y x hA  x

   4,2

1
= 2 2

2
,y x hx A hA hxB    

 

 
4,3

2 2 2 21
= 6 12 6 6 6

6

y x

hx A hA hxB h Ax h xB h A     



 ,

when = 1h  , it is easily seen that the solutions above 
are exactly the solutions in [6],  

   
2 3 4 57

1,
=1 2! 3! 4! 5!n = .

n

Ax Bx Ax Bx
y x y x x      

on on  we 

have  

Imposing the boundary conditi  7

1,=1 nn
y x

= 0.00002714, = 1.00011628.A B  

In Figure 11, we compare the exact solution  y x  
with the 10-term HAM approximate solution, and
the numerical results can be seen in Table 1. 

As mentioned in Section 2, the optimal value of  is 
de he  

 also 

h
o ttermined by the minimum of 7 , corresponding t  

nonlinear algebraic Equation 7d
= 0


. Our c

dh
showed that, 7

alculations  

  has its minimum value at 1 . 

5. Conclusion 
In this paper,  have successfully develop
solving variat al problems. It is apparent

 ,

 we ed HAM for 
ion ly seen that 

werful and efficient technique in find-
tions for wide classes of linear and 

HAM is a very po
ing analytical solu
nonlinear problems. By minimizing the the square resid-
ual error, the optimal convergence-control parameters  

Copyright © 2012 SciRes.                                                                                  AM 



J. SABERI-NADJAFI  ET  AL. 880 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y(
x)

 

 
HAM
Exact

 

Figure 11. Comparison between the 10-term HAM so
and the exact solution. 
 

Table 1. The result of the HAM for n = 7 and h = –1. 

lution 

x HAM Exact Solution Absolute Error 

0.0 0 0 0 

0.

0

0.30452 0.30452 7.0619 × 10–7

1 0.10017 0.10017 1.1647 × 10–7 

0.2 .20134 0.20134 3.8964 × 10–7 

0.3  

0.4 0.41075 0.41075 9.5376 × 10–7 

0.5 0.52109 0.52110 1.0221 × 10–6 

0.6 0.63665 0.63665 8.0956 × 10–7 

0.7 0.75858 0.75858 2.4125 × 10–7 

0.8 0.88811 0.88811 6.9035 × 10–7 

0.9 1.02650 1.02650 1.8466 × 10–6 

1.0 1.17520 1.17520 2.8035 × 10–6 
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