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Abstract The effect of thermal shock on a cracked

functionally graded material (FGM) layer is considered

using the extended finite element method. Classical cou-

pled thermoelastic equations are used in the calculations.

The coupled dynamical system of equations obtained from

the extended finite element discretization is solved by the

Newmark method in the time domain. Micromechanical

models for conventional composites are used to estimate

the material properties of functionally graded layer. The

interaction integral is then employed to calculate the

dynamic thermal stress intensity factors (SIFs) at each time

step. The effects of initial crack angle and volume fraction

profiles of FGMs on SIFs are studied. Also crack propa-

gation phenomenon is investigated in this paper. We have

used MATLAB software to do the different stages of

simulation from mesh generation to numerical computation

of SIFs. Some numerical examples are implemented to

investigate the validity and accuracy of attained results.

Keywords Coupled thermoelasticity � Fracture � Thermal

shock � Crack propagation � FGMs

List of symbols

A Element area, area (m2)

A� Area associated with the domain J-integral,

area (m2)

a Crack length, length (m)

a Vector of nodal unknowns associated with FE

shape functions, length (m)

Bf Body force vector, force (N/m3)

Bx and By Body force vector components, force (N/m3)

b Vector of nodal unknowns associated with

heaviside enriched shape functions, length (m)

c Vector of nodal unknowns associated with

crack tip enriched shape functions, length (m)

C Damping matrix

Cijkl Material constitutive matrix components

(N/m2)

ct Specific heat capacity [J/(kg K)]

D Material modulus matrix (N/m2)

E Young’s modulus (N/m2)

Fm Crack tip enrichment functions (m0.5)

Fr Force vector (N)

H Heaviside enrichment function, dimensionless

J J integral (N/m)

K Stiffness matrix

Keq Equivalent dynamic stress intensity factor

(N/m1.5)

KI Mode I stress intensity factor (N/m1.5)

KIC Fracture toughness (N/m1.5)

KID Fracture toughness (N/m1.5)

KII Mode II stress intensity factor (N m1.5)

k Thermal conductivity [W/(m K)]

L Length of specimen, length (m)

M Mass matrix (kg)

MI M-integral (N/m)

m Number of crack tip enrichment functions (m)

N FEM shape function, dimensionless

nx and ny Unit vectors in x and y directions

p Power exponent determining the volume

fraction profiles, dimensionless
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q Smoothing weight function, dimensionless

qi Component of heat flux vector per unit area

(W/m2)

R Generated heat per unit volume (W/m3)

r Polar coordinate system component, length

(m)

S Vector of XFE shape functions

T Temperature (K)

Tf Traction force vector (N/m2)

t Time (s)

tD Dimensionless time, dimensionless

tx
n Traction vector components at x direction

(N/m2)

ty
n Traction vector components at y direction

(N/m2)

u Displacement vector (m)

V Volume (m3)

Vi Volume fraction of inclusion, dimensionless

W Height of specimen, length (m)

X Global Cartesian coordinate system

component

x Local Cartesian coordinate system component

Greek symbols

a Coefficient of thermal expansion (1/K)

b Coupling term [N/(m2 K)]

bi Universal functions, dimensionless

c Coefficient of Newmark method, dimensionless

f Coefficient of Newmark method, dimensionless

dij Kronecker delta, dimensionless

e Strain tensor, dimensionless

eaux Auxiliary strain tensor, dimensionless

eij
m Mechanical strain component, dimensionless

h Temperature change (K)

l Lamé constant (N/m2)

k Lamé constant (N/m2)

t Poisson’s ratio, dimensionless

q Density (kg/m3)

u Polar coordinate system component, dimensionless

r Stress tensor (N/m2)

raux Auxiliary stress tensor (N/m2)

U Enrichment shape function, dimensionless

W Enrichment shape function, dimensionless

x The angle between local and global coordinate

systems, dimensionless

xc Crack propagation direction, dimensionless

D Nodal displacements and temperature changes

vector

Subscripts

h Relative to nodes in an element

i Relative to components of Cartesian coordinate

system

j Relative to components of Cartesian coordinate

system

l Relative to the shape functions

m Relative to crack tip enrichment functions

n Relative to nodes, time step and component of

coordinate system

ne Relative to nodes in element e

ns Relative to XFE shape functions

tip Relative to crack tip

1 Relative to the horizontal axis of coordinate system

2 Relative to the vertical axis of coordinate system

Superscript

aux Relative to auxiliary field

1 Introduction

Functionally graded materials (FGMs) are a new class of

composite materials characterized by the gradual variation

in microstructure and material properties. FGMs were

initially designed as thermal barrier materials for aerospace

structural applications and fusion reactors. They are now

developed for general use as structural components in

extremely high-temperature environments. The ability to

predict the response of FGM plates and shells when sub-

jected to thermal and mechanical loads is of prime interest

to structural analysis. FGM components are generally

constructed to sustain severe temperature gradients. Con-

tinuously varying the volume fraction of the mixture in the

FG materials eliminates the interface problems and alle-

viates thermal stress concentrations and causes a more

smooth stress distribution [1]. Ceramic materials, because

of their excellent properties at high temperatures and their

superior wear and corrosion resistance, are used widely in

structure of FGMs. One major limitation of ceramics is

their intrinsic brittleness that can result in fracture under

severe thermal shocks. Therefore, the fracture analyses of

FGMs under thermal shocks are important to their per-

manence in engineering applications.

To adapt the standard finite element method to fracture

computations, the extended finite element method (XFEM)

has been developed which completely avoids remeshing [3,

4, 26]. Also see Stolarska et al. [32] where it was combined

with level sets. This XFEM is based on the partition of

unity [24]. In this method, a discontinuous enrichment

function is used along the crack path to describe a dis-

continuous displacement [26].

The response of functionally graded cracked layers

under thermal shocks is found in just a few articles. Noda

[28] and Fujimoto and Noda [8, 9] have done a series of

works on using the finite element method to obtain the

crack stress intensity factors (SIFs) under thermal loading

70 J Braz. Soc. Mech. Sci. Eng. (2013) 35:69–81

123

Author's personal copy



conditions. They considered homogeneous and FGMs and

examined the influence of material gradation and thermal

shock on crack propagation. They considered the heat

conduction equation where thermo-coupling has been

ignored. Lee and Erdogan [23], Bao and Cai [2], Lee and

Erdogan [22], Quian et al. [29] and Gaudette et al. [10]

focused on investigation of delamination and cracking of

FGMs at coating-substrate interfaces due to thermal loads.

Jin and Paulino [18] studied an edge crack in a strip of a

FGM under transient thermal loading conditions. They

employed a multi-layered material model to obtain the

temperature field. Hosseini-Tehrani et al. [14] and Hosse-

ini-Tehrani et al. [15] employed the boundary element

method to investigate the effect of the coupling and inertia

terms in dynamical thermal loading problems.

Duflot [5] investigated the static case of thermoelastic

fracture by XFEM where both 2D and 3D problems with

different crack face thermal boundary conditions are

included. Kc and Kim [19], using the finite element method

evaluated the non-singular T-stress and mixed-mode SIFs

in FGMs under steady-state thermal loads via interaction

integral. Zamani and Eslami [35] employed the finite ele-

ment method to obtain the SIF for a functionally graded

cracked body under coupled classical thermoelastic

assumption. They assumed that the crack remains station-

ary within simulation. Also the XFEM formulation was

implemented by Zamani and Eslami [36] to model the

effect of the mechanical and thermal shocks on a cracked

body. The crack was assumed to be stationary. Feng and

Jin [7] examined the fracture behavior of an FGM plate

containing parallel surface cracks with alternating lengths

subjected to a thermal shock. Ekhlakov et al. [6] developed

a boundary-domain element method (BDEM) for a tran-

sient thermoelastic crack analysis in isotropic, continuously

non-homogeneous and linear elastic FGMs. They consid-

ered a stationary edge crack in a two-dimensional finite

domain subjected to a thermal shock and computed SIFs.

The study of crack propagation phenomena in a func-

tionally graded cracked layer under thermal shock and

using the coupled thermoelastic equations is not found in

previous articles. In present study, the XFEM formulation

is implemented to model the effect of thermal shocks on a

functionally graded cracked layer under coupled classical

thermoelastic assumption. The Newmark time integration

scheme is used to solve the dynamical system of matrix

equations obtained from the spatial discretization of initial

coupled equations. The most general form of interaction

integral for FGMs is extracted based on the non-equilib-

rium formulation and also dynamical SIFs are computed in

each time step. A MATLAB code is developed to imple-

ment the different stages of computation from mesh gen-

eration to calculation of the SIFs and crack propagation

simulation. Some numerical examples are implemented to

investigate the validity and accuracy of the written com-

puter program. The effects of initial crack angle and vol-

ume fraction profiles of FGMs on the SIFs are investigated

in this paper. The crack is assumed to be moving under a

thermal shock higher than its critical value. Also crack

propagation phenomenon is considered which seems not to

be reported with this condition in previous works.

2 General problem formulation

2.1 Space discretization

The general governing equations of the classical coupled

thermoelasticity are the equation of motion (Eq. 1) and the

first law of thermodynamics (Eq. 2), as [13].

rij;j þ Bi ¼ q€ui ð1Þ

qi;i þ qct
_hþ T0ð1þ h=T0Þb_eii ¼ R ð2Þ

If the temperature change (h) is small compared to the

reference temperature T0, Eq. (2) may be approximately

written in the simpler form [13].

qi;i þ qct
_hþ T0b_eii ¼ R ð3Þ

The system of coupled equations 1 and 2 does not have a

general analytical solution. The extended finite element model

of the problem is obtained by discretizing the solution domain

into a number of arbitrary elements. In the XFEM formulation,

a standard local displacement approximation around the crack

is enriched with discontinuous jump function across the crack

faces and the asymptotic crack tip displacement field around

the crack tip [4]. The same procedure is used for the

temperature enrichment [5]. The formulation of the XFEM

for displacement components can be written as [36]

uðx; y; tÞ ¼
X

N

Nnðx; yÞanðtÞ þ
X

n2Ncr

Nnðx; yÞ½Hðx; yÞ

� Hðxn; ynÞ�bnðtÞ þ
X

m

X

n2Ntip

Nnðx; yÞ½Fmðr;uÞ

� Fmðrn;unÞ�cnmðtÞ ð4Þ

where Ncr is the set of nodes that the discontinuity has in its

influence domain, while Ntip is the set of nodes inside a

predefined area around the crack tip (see Fig. 1). Here, H(x, y)

is Heaviside enrichment function and {Fm} represents crack

tip enrichment functions.

Fmf g ¼ r0:5 sinðu=2Þ; r0:5 cosðu=2Þ;
�

r0:5 sinðuÞ sinðu=2Þ; r0:5 sinðuÞ cosðu=2Þ
� ð5Þ

where r and u are the usual crack tip polar coordinates.

Also anðtÞ ¼ au
nðtÞ; av

nðtÞ
� �T

, bnðtÞ ¼ bu
nðtÞ; bv

nðtÞ
� �T

and

cnmðtÞ ¼ cu
nmðtÞ; cv

nmðtÞ
� �T

are vectors of nodal unknowns.
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In this study, the crack faces are assumed to be adiabatic

so the temperature is discontinuous along the crack faces and

the heat flux is singular at the crack tip. Thus, the temperature

field is discretized similar to the displacement field, but only

with the first crack tip enrichment function [36].

hðx; y; tÞ ¼
X

all nodes

Nnðx; yÞaT
n ðtÞ þ

X

n2Ncr

Nnðx; yÞ Hðx; yÞ½

� Hðxn; ynÞ�bT
n ðtÞ þ

X

n2Ntip

Nnðx; yÞ r0:5 sinðu=2Þ
�

� r0:5 sinðun=2Þ
�
cT

n ðtÞ ð6Þ

where aT
n ðtÞ, bT

n ðtÞ and cT
n ðtÞ are the nodal unknowns cor-

responding to temperature field.

Now, the base element (e) with n nodal points is considered

and the displacement components and temperature change in

the element (e) are approximated by compact forms as follows:

ueðx; y; tÞ ¼ Nhðx; yÞau
hðtÞ þ Uhðx; yÞbu

hðtÞ
þWhmðx; yÞcu

hmðtÞ ð7Þ

veðx; y; tÞ ¼ Nhðx; yÞav
hðtÞ þ Uhðx; yÞbv

hðtÞ
þWhmðx; yÞcv

hmðtÞ ð8Þ

heðx; y; tÞ ¼ Nhðx; yÞaT
h ðtÞ þ Uhðx; yÞbT

h ðtÞ
þWhmðx; yÞcT

hmðtÞ
h ¼ 1; 2; . . .; ne m ¼ 1; 2; 3; 4

ð9Þ

where ne is number of nodes in element (e) and cT
nmðtÞ is

component of vector cTðtÞ defined by

cTðtÞ ¼ cT
11; 0; 0; 0; c

T
21; 0; 0; 0; c

T
31; 0; 0; 0; c

T
41; 0; 0; 0;

� �

ð10Þ

Also U and W exhibit the enriched parts of both

displacement and temperature fields. They can be related to

face and tip enrichment, respectively (Eqs. 11 and 12).

Uhðx; yÞ ¼ Nhðx; yÞ Hðx; yÞ � Hðxh; yhÞ½ �
Whðx; yÞ ¼ Nhðx; yÞ r0:5 sinðu=2Þ � r0:5

h sinðuh=2Þ;
� ð11Þ

r0:5 cosðu=2Þ � r0:5
h cosðuh=2Þ;

r0:5 sinðuÞ sinðu=2Þ � r0:5
h sinðuhÞ sinðuh=2Þ;

r0:5 sinðuÞ cosðu=2Þ � r0:5
h sinðuhÞ cosðuh=2Þ

�
ð12Þ

Using Eqs. (7)–(9) one can evaluate the first and second

derivatives in time (Eqs. (13)–(17)).

_ueðx; y; tÞ ¼ Nhðx; yÞ _au
hðtÞ þ Uhðx; yÞ _b

u

hðtÞ
þWhmðx; yÞ _cu

hmðtÞ
ð13Þ

€ueðx; y; tÞ ¼ Nhðx; yÞ€au
hðtÞ þ Uhðx; yÞ€bu

hðtÞ
þWhmðx; yÞ€cu

hmðtÞ
ð14Þ

_veðx; y; tÞ ¼ Nhðx; yÞ _av
hðtÞ þ Uhðx; yÞ _b

v

hðtÞ
þWhmðx; yÞ _cv

hmðtÞ
ð15Þ

€veðx; y; tÞ ¼ Nhðx; yÞ€av
hðtÞ þ Uhðx; yÞ€bv

hðtÞ
þWhmðx; yÞ€cv

hmðtÞ
ð16Þ

_heðx; y; tÞ ¼ Nhðx; yÞ _aT
h ðtÞ þ Uhðx; yÞ _b

T

h ðtÞ
þWhmðx; yÞ _cT

hmðtÞ
h ¼ 1; 2; . . .; ne m ¼ 1; 2; 3; 4

ð17Þ

Applying the weighted residual integral to the equation

of motion (Eq. 1) and the energy equation (Eq. 3) with

respect to the weighting functions Sl(x, y), the formal

Galerkin approximations reduce to
Z

VðeÞ

ðrij;j þ Bi � q€uiÞSl dV ¼ 0; l ¼ 1; 2; . . .; ns ð18Þ

Z

VðeÞ

ðqi;i þ qct
_hþ T0b _ui;i � RÞSl dV ¼ 0; l ¼ 1; 2; . . .; ns

ð19Þ

where ns is the number of shape functions of element (e)

and Sl is component of vector

S ¼ N1;N2;N3;N4;U1;U2;U3;U4;W1m;W2m;W3m;W4mf g
m ¼ 1; 2; 3; 4 ð20Þ

Hooke’s law correlates the stress tensor to the displace-

ment components and temperature change h via Eq. (21).

rij ¼ lðui;j þ uj;iÞ þ ½kuk;k � bh�dij ð21Þ

where b ¼ að3kþ 2lÞ and h ¼ ðT � T0Þ. According to

Fourier’s law of heat conduction we have,

qi ¼ �kijh;j ð22Þ

where kij is the coefficient of thermal conduction for a

general anisotropic material. By substituting Eqs. (7)–(9),

Fig. 1 Selection of enriched nodes for edge crack. Circled nodes are

enriched by the discontinuity function whereas the squared nodes are

enriched by the crack tip enrichment functions

72 J Braz. Soc. Mech. Sci. Eng. (2013) 35:69–81

123

Author's personal copy



(21) and (22) into Eqs. (18) and (19) and using the Gauss

divergence theorem, after some manipulations, the

following equations for two-dimensional coupled

thermoelasticity will be obtained.

Z

VðeÞ

qSlNh dV

0
B@

1
CA€au

h þ
Z

VðeÞ

qSlUh dV

0
B@

1
CA€bu

h

þ
Z

VðeÞ

qSlWhm dV

0
B@

1
CA€cu

hm

þ
Z

VðeÞ

½ðkþ 2lÞSl;xNh;x þ lSl;yNh;y�dV

0

B@

1

CAau
h

þ
Z

VðeÞ

½ðkþ 2lÞSl;xUh;x þ lSl;yUh;y�dV

0
B@

1
CAbu

h

þ
Z

VðeÞ

½ðkþ 2lÞSl;xWhm;x þ lSl;yWhm;y�dV

0

B@

1

CAcu
hm

þ
Z

VðeÞ

½kSl;xNh;y þ lSl;yNh;x�dV

0
B@

1
CAav

h

þ
Z

VðeÞ

½kSl;xUh;y þ lSl;yUh;x�dV

0

B@

1

CAbv
h

þ
Z

VðeÞ

½kSl;xWhm;y þ lSl;yWhm;x�dV

0
B@

1
CAcv

hm

�
Z

VðeÞ

bSl;x NhaT
h þ UhbT

h þWhmcT
hm

� �
dV

¼
Z

VðeÞ

BxSl dV þ
Z

AðeÞ

tn
x Sl dA

ð23Þ

Z

VðeÞ

qSlNh dV

0

B@

1

CA€av
h þ

Z

VðeÞ

qSlUh dV

0

B@

1

CA€bv
h

þ
Z

VðeÞ

qSlWhm dV

0
B@

1
CA€cv

hm

þ
Z

VðeÞ

½lSl;xNh;y þ kSl;yNh;x�dV

0

B@

1

CAau
h

þ
Z

VðeÞ

½lSl;xUh;y þ kSl;yUh;x�dV

0
B@

1
CAbu

h

þ
Z

VðeÞ

½lSl;xWhm;y þ kSl;yWhm;x�dV

0
B@

1
CAcu

hm

þ
Z

VðeÞ

½lSl;xNh;x þ ðkþ 2lÞSl;yNh;y�dV

0

B@

1

CAav
h

þ
Z

VðeÞ

½lSl;xUh;x þ ðkþ 2lÞSl;yUh;y�dV

0
B@

1
CAbv

h

þ
Z

VðeÞ

½lSl;xWhm;x þ ðkþ 2lÞSl;yWhm;y�dV

0

B@

1

CAcv
hm

�
Z

VðeÞ

bSl;y NhaT
h þ UhbT

h þWhmcT
hm

� �
dV

¼
Z

VðeÞ

BySl dV þ
Z

AðeÞ

tn
y Sl dA ð24Þ

Z

VðeÞ

qctSlNh dV

0

B@

1

CA _aT
h þ

Z

VðeÞ

qctSlUh dV

0

B@

1

CA _b
T

h

þ
Z

VðeÞ

qctSlWhm dV

0
B@

1
CA _cT

hm

þ
Z

VðeÞ

kxSl;xNh;xþ kySl;yNh;y

� �
dV

0

B@

1

CAaT
h

þ
Z

VðeÞ

kxSl;xUh;xþ kySl;yUh;y

� �
dV

0

B@

1

CAbT
h

þ
Z

VðeÞ

kxSl;xWh1;xþ kySl;yWhm;y

� �
dV

0
B@

1
CAcT

hm

þ
Z

VðeÞ

T0bSlNh;x dV

0

B@

1

CA _au
hþ

Z

VðeÞ

T0bSlUh:x dV

0

B@

1

CA _b
u

h

þ
Z

VðeÞ

T0bSlWhm;x dV

0
B@

1
CA _cu

hmþ
Z

VðeÞ

T0bSlNh;y dV

0
B@

1
CA _av

h
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�quad þ
Z

VðeÞ

T0bSlUh;y dV

0
B@

1
CA _b

v

h þ
Z

VðeÞ

T0bSlWhm;y dV

0
B@

1
CA _cv

hm

¼
Z

VðeÞ

RSl dV �
Z

AðeÞ

ðqxnxÞSl dA�
Z

AðeÞ

ðqynyÞSl dA

l ¼ 1; 2; . . .; ns h ¼ 1; 2; . . .; ne m ¼ 1; 2; 3; 4

ð25Þ

where ne = 4 for a four node element. Equations (23)–(25)

are assembled into a matrix form resulting in the general

finite element coupled equation given by Eq. (26).

½M�f€Dg þ ½C�f€Dg þ ½K�fDg ¼ fFrg ð26Þ

where [M], [C] and [K] are mass, damping, and stiffness

matrices, respectively. Generally, for base element (e)

which is enriched with both Heaviside and crack tip

enrichment functions, these matrices can be written as

follows:

½M�ðeÞ ¼ ½M1� ½0�48�24

½0�24�48 ½0�24�24

� 	
ð27Þ

½C�ðeÞ ¼ ½0�48�48 ½0�48�24

½C1� ½C2�

� 	
ð28Þ

½K�ðeÞ ¼ ½K1� ½K2�
½0�24�48 ½K3�

� 	
ð29Þ

fFrg is the force vector defined by Eq. (30).

fFrgðeÞ ¼
R

VðeÞ ½S�
TfBfgdVþ

R
AðeÞ ½S�

TfTf gdA
R

VðeÞ R½St�TdV �
R

AðeÞ ðqxnx þ qynyÞ½St�TdA

( )

ð30Þ

And fDg is the nodal displacements and temperature

changes vector (Eq. (31)).

fDgðeÞ ¼ au
h; a

v
h; b

u
h; b

v
h; c

u
hm; c

v
hm; a

T
h ; b

T
h ; c

T
hm

� �T
;

h;m ¼ 1; . . .; 4
ð31Þ

Also f _Dg and f€Dg are the first and second

time derivative of fDg, respectively. Components of

mass, damping, and stiffness matrices are obtained as

follows:

½M1� ¼
Z

VðeÞ

q½S�T½S�dV ð32Þ

½C1� ¼
Z

VðeÞ

T0b½St�T½S1�dV ; ð33Þ

½C2� ¼
Z

VðeÞ

qct½St�T½St�dV ð34Þ

K1½ � ¼
Z

VðeÞ

S2½ �T½D� S2½ �dV ð35Þ

½K2� ¼ �
Z

VðeÞ

b½S1�T½St�dV ð36Þ

For isotropic materials kx = ky = k, therefore [K3] is

obtained as follows:

½K3� ¼
Z

VðeÞ

k½S3�T½S3�dV ð37Þ

Matrices [St], [S], [S1], [S2], [S3] and vectors {Bf} and

{Tf} are derived as follows:

½St� ¼ ½N1 � � � N4 U1 � � � U4 W11 � � � W41 �
ð38Þ

½S� ¼ N1 � � � N4 0 � � � 0 U1 � � � U4 0 � � � 0 W11 � � � W44 0 � � � 0

0 � � � 0 N1 � � � N4 0 � � � 0 U1 � � � U4 0 � � � 0 W11 � � � W44

� 	
ð39Þ

½S1� ¼ ½N1;x � � � N4;x N1;y � � � N4;y U1;x � � � U4;x � � � U4;y W11;x � � � W44;x W11;y � � � W44;y � ð40Þ

½S2� ¼
N1;x � � � N4;x 0 � � � 0 U1;x � � � 0

0 � � � 0 N1;y � � � N4;y 0 � � � U1;y

N1;y � � � N4;y N1;x � � � N4;x U1;y � � � U1;x

2

4
. . . 0 W11;x . . . W44;x 0 . . . 0

. . . U4;y 0 . . . 0 W11;y . . . W44;y

. . . U4;x W11;y . . . W44;y W11;x . . . W44;x

3

5 ð41Þ
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½S3�

¼
N1;x . . . N4;x U1;x . . . U4;x W11;x � � � W44;x

N1;y . . . N4;y U1;y . . . U4;y W11;y � � � W44;y

� 	

ð42Þ

fBfg ¼ Bx

By


 �
; fTf g ¼ tn

x

tn
y


 �
ð43Þ

For plane strain state matrix [D] is defined by Eq. (44).

½D� ¼ E

ð1þ mÞð1� 2mÞ

1� m m 0

m 1� m 0

0 0 ð1� 2mÞ=2

2
4

3
5:

ð44Þ

2.2 Time integration

Maybe the most widely used family of direct methods

for solving semi discrete equation of motion is the

Newmark family which consists of the following equa-

tions [16]:

M½ � €Dnþ1

n o
þ C½ � _Dnþ1

n o
þ K½ � Dnþ1f g ¼ Frnþ1f g ð45Þ

Dnþ1f g ¼ Dnf g þ Dt _Dnþ1

n o
þ Dt2 1=2� fð Þ €Dn

n o

þ Dt2f €Dnþ1

n o
ð46Þ

_Dnþ1

n o
¼ _Dn

n o
þ Dtð1� cÞ €Dn

n o
þ Dtc €Dnþ1

n o
ð47Þ

The Newmark family contains many well-known and

widely used methods. The average acceleration method is

one of them for structural dynamics applications which is

unconditionally stable. In this method, c and f are equal to

1/2 and 1/4, respectively. We will choose the mean

acceleration scheme, which is unconditionally stable,

since for the partition of unity method with an explicit

Newmark-type scheme, the stable time step of the enriched

problem is a small fraction of the stable time step of the

problem with no enriched shape function [11].

3 Interaction integral and SIF computations

In this section, the interaction integral is formulated by

superimposing the actual and auxiliary fields on the path

independent J-integral [30]. In this work, the non-equilib-

rium formulation [31] is used in conjunction with the

XFEM to determine the M-integral for arbitrarily oriented

cracks in FGMs under thermal and dynamic loading and

also computation of the SIFs is explained in conjunction

with the M-integral.

Now, we consider two independent admissible fields

which are the actual (u, e, r) and auxiliary (uaux, eaux, raux)

fields. The J-integral of the superimposed fields (actual and

auxiliary) can be written as follows:

Js ¼
Z

A�

rij þ raux
ij

� 
uj;1 þ uaux

j;1

� hn

� 1=2 rjk þ raux
jk

� 
em

jk þ eaux
jk

� 
d1i

�1=2q _uk þ _uaux
k

� �
_uk þ _uaux

k

� �
d1i

�
q;i

þ rij;i þ raux
ij;i

� 
uj;1 þ uaux

j;1

� h

þ rij þ raux
ij

� 
uj;1i þ uaux

j;1i

� 

� 1=2 rij þ raux
ij

� 
em

ij;1 þ eaux
ij;1

� 

� 1=2 rij;1 þ raux
ij;1

� 
em

ij þ eaux
ij

� 

� q _ui þ _uaux
i

� �
_ui;1 þ _uaux

i;1

� 

�1=2q;1 _ui þ _uaux
i

� �
_ui þ _uaux

i

� �i
q
o

dA ð48Þ

where q is a weight function varying from unity at the

crack tip to zero on boundary of domain A� [31]. Equation

(48) is decomposed into

Js ¼ J þ Jaux þMI ð49Þ

where J and Jaux are given, respectively, by Eqs. (50) and

(51).

J ¼
Z

A�

rijuj;1 � 1=2rjke
m
jkd1i � 1=2q _uk _ukd1i

h i
q;i

n

þ rij;iuj;1 þ rijuj;1i � 1=2rije
m
ij;1 � 1=2rij;1e

m
ij � q _ui _ui;1

h

� 1=2q;1 _ui _ui

i
q
o

dA ð50Þ

Jaux ¼
Z

A�

raux
ij uaux

j;1 � 1=2raux
jk eaux

jk d1i

hn

�1=2q _uaux
k _uaux

k d1i

�
q;i

þ raux
ij;i uaux

j;1 þ raux
ij uaux

j;1i � 1=2raux
ij eaux

ij;1 � 1=2raux
ij;1 eaux

ij

h

�q _uaux
i _uaux

i;1 � 1=2q;1 _uaux
i _uaux

i

i
q
o

dA ð51Þ

The resulting M-integral is given by

MI ¼
Z

A�

riju
aux
j;1 þ raux

ij uj;1 � 1=2rjke
aux
jk d1i

hn

�1=2raux
jk em

jkd1i � q _uk _uaux
k d1i

i
q;i

þ rij;iu
aux
j;1 þ raux

ij;i uj;1 þ riju
aux
j;1i

h
þ raux

ij uj;1i

� 1=2rije
aux
ij;1 � 1=2raux

ij em
ij;1 � 1=2rij;1e

aux
ij

� 1=2raux
ij;1 em

ij � q _ui _uaux
i;1 � q _uaux

i _ui;1�q;1 _ui _uaux
i

i
q
o

dA

ð52Þ
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Since the actual fields employ the quantities obtained

from numerical simulation, the equilibrium and

compatibility conditions are satisfied. For the auxiliary

fields, the equilibrium condition is not satisfied [31], i.e.,

raux
ij;i 6¼ 0. While the relation between strain and displace-

ment is compatible, i.e., eaux
ij ¼ 0:5 uaux

i;j þ uaux
j;i

� 
and

riju
aux
j;1i ¼ rijeaux

ij;1 . The auxiliary stress field is defined as

follows:

raux
ij ¼ CijklðxÞeaux

ij ð53Þ

Notice that the auxiliary fields are chosen as the

asymptotic fields for homogeneous materials. Auxiliary

fields, used in this paper, are based on Williams’ solution

[34] for stationary cracks and Swenson and Ingraffea [33]

for moving cracks. Therefore, the resulting interaction

integral (MI) becomes

MI ¼
Z

A�

riju
aux
j;1 þ raux

ij uj;1 � rjke
aux
jk d1i

hn

�q _uk _uaux
k d1i

�
q;i þ q€uju

aux
j;1 þ raux

ij;i uj;1

h

þ raux
ij a;1hþ ah;1
� �

dij � Cijkl;1e
m
kle

aux
ij

� 

�q _ui _uaux
i;1 � q _uaux

i _ui;1 � q;1 _ui _uaux
i

i
q
o

dA

ð54Þ

Since the numerical computation of displacements,

strains, stresses, etc., is based on the global coordinate

system, first the M-integral is evaluated in the global

ðMIglobalÞ and then transformed into the local coordinate

system ðMIlocalÞ. The global M-integral quantities are

evaluated by

ðMInÞg ¼
Z

A�

riju
aux
j;n þ raux

ij uj;n� rjke
aux
jk dni

hn

�q _uk _uaux
k dni

� oq

oXi
þ q€uju

aux
j;n þ raux

ij;i uj;n

h

þ raux
ij a;nhþ ah;n
� �

dij� Cijkl;ne
m
kle

aux
ij

� 

�q _ui _uaux
i;n � q _uaux

i _ui;n� q;n _ui _uaux
i

i
q
o

dA; n¼ 1;2

ð55Þ

where Xi denotes the global coordinate system (Fig. 2).

The local M-integral quantity is given as [31].

MIlocal ¼ ðMI1Þglobal cos xþ ðMI2Þglobal sin x ð56Þ

The relation between the M-integral and the SIFs for

stationary crack in plane strain state is as follows:

MIlocal ¼ 2 1� m2
tip

� 
KIK

aux
I þ KIIK

aux
II

� �.
Etip ð57Þ

Also, for moving crack MIlocal can be obtained from Eq.

(58) [25].

MIlocal ¼ 2 1� m2
tip

� 
b1ð _aÞKIK

aux
I þ b2ð _aÞKIIK

aux
II

� �.
Etip

ð58Þ

where Etip and mtip denote Young’s modulus and Poisson’s

ratio at crack tip, respectively, and _a is crack velocity. bi

are the universal functions (see Menouillard et al. [25]).

Consequently, KI and KII are calculated by choosing

Kaux
I ¼ 1, Kaux

II ¼ 0 and Kaux
I ¼ 0, Kaux

II ¼ 1, respectively.

The equivalent dynamic SIF Keq is defined by Eq. (59)

[25]:

Keq ¼ KI cos3ðxc=2Þ � 1:5KII cosðxc=2Þ sin xc ð59Þ

where xc is the direction in which the crack will propagate

from its current tip, and will be obtained using the

maximum hoop stress criteria [25].

xc¼ 2arctan 0:25 KI=KII� signðKIIÞ ðKI=KIIÞ2þ8
� 0:5

� 	� �
;

�p\xc\p ð60Þ

In dynamic fracture mechanics, the initiation of

growth and continued propagation of a crack depends

on the equivalent SIF Keq relative to the material critical

SIF, KIC. While Keq\KIC, the crack tip remains

stationary. If Keq�KIC, the crack tip will be moved. In

this paper, we use an algorithm similar to algorithm

presented in gerlach [11] to detect the crack propagation

phenomenon.

4 Modeling of functionally graded layer

The material properties of the functionally graded layer

must be described across the layer thickness. In the present

analysis, we assume that the material gradation is along the

X1

X2

ω

φ
x1

x2

r

Crack

Fig. 2 Local (x1, x2) and global (X1, X2) coordinate systems
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x direction and the volume fraction of inclusion follows a

simple power function,

ViðxÞ ¼ ðx=LÞp ð61Þ

where Vi is the volume fraction of inclusion and p is the

power exponent determining the volume fraction profiles.

We assume that the functionally graded layer is made of

metal-phase and ceramic-phase. In this study, we use mi-

cromechanical models for conventional composites given

by Hatta and Taya [12] and Mori and Tanaka [27] to cal-

culate the properties of functionally graded ceramics

(FGCs). Also, the fracture toughness of the two-phase FGC

composite needs to be determined. Here, we adopt Jin and

Batra’s [17] rule of mixtures formula for a two-phase FGC

composite.

KICðxÞ ¼ V1ðxÞ K1
IC

� �2þV2ðxÞ K2
IC

� �2
n o1=2

ð62Þ

To incorporate these relations into the XFE model, first

the value of each material property is calculated at each

individual node based on micromechanical models. Then,

material properties at each Gaussian integration point can

be interpolated from the nodal material properties of the

element using isoparametric shape functions which are the

same for spatial coordinates (x, y). Thus, material

properties such as elastic modulus ðEÞ, Poisson’s ratio

ðmÞ, and mass density ðqÞ at Gauss points can be

interpolated using shape functions from nodal points as

[20]

E ¼
Xh

i¼1

NiEi; m ¼
Xh

i¼1

Nimi; q ¼
Xh

i¼1

Niqi;

h ¼ 1; 2; . . .; ne:

ð63Þ

5 Numerical examples

In this section, first we present two numerical examples

which examine the accuracy and precision of presented

method in this paper. Then we consider the effect of vol-

ume fraction profile of FGMs and initial crack angle on

crack tip SIFs in next example. In the last example, we

study the crack propagation phenomenon in a FG layer

under thermal shock. The plane strain state is assumed in

all numerical examples.

5.1 First example

We consider an elastic two-dimensional isotropic and

homogeneous layer with an edge crack (Fig. 3). The initial

temperature T0 is chosen to be 400 K. The layer is rapidly

cooled by conduction at its left surface to T1, which is

equal to 350 K in this study. All other sides are assumed to

be thermally insulated.

The problem dimensions are L = 0.001 m, W =

0.002 m, a = 0.00005 m and x = 0 (Fig. 3). The material

properties are q = 5,600 kg/m3, E = 117 GPa, m = 0.333,

a = 7.118 9 10-6 K-1, ct = 615.6 J/(kg K) and k =

2.036 W/m K. A 51 9 101 four-node rectangular element

mesh is used and the selected time step is Dt = 10-4 s. The

analytical [21] and numerical dimensionless SIF ðKIDÞ is

plotted versus the logarithm of dimensionless time ðtDÞ in

Fig. 4, where good accordance is observed. In this exam-

ple, we define KID and tD which follow from Eqs. (64) and

(65).

KID ¼ KIð1� mÞ= EaðT0 � T1ÞL0:5
� �

ð64Þ

tD ¼ kt=qctL
2: ð65Þ

T1

L

W

T0

x

y

a
ω

Vi(x)

Fig. 3 Geometry and boundary condition of the layer

0

0.07

0.14

0.21

-4 -3 -2 -1

KID

log(tD)

analytical, [21]

Present

Fig. 4 Normalized SIF versus logarithm of normalized time for first

numerical example
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5.2 Second example

A FG two-dimensional layer with a horizontal edge crack

is considered, as shown in Fig. 3. The layer is initially at a

constant temperature. Without loss of generality, the initial

temperature can be assumed to be 200 K. The layer is

suddenly cooled down by conduction at its left surface to

temperature T1, which is equal to 190 K. The initial and

boundary conditions for the temperature field are:

T ¼ 200 K at t ¼ 0

T ¼ 190 K at x ¼ 0

T ¼ 200 K at x ¼ L

ð66Þ

We suppose that the heat transfer coefficient on the

surfaces of the FGM strip is infinite which is an

idealized thermal shock boundary condition. The problem

dimensions are L = 0.001 m and W = 0.002 m (Fig. 3).

Two crack lengths are considered in this example,

a = 0.0001 m and a = 0.0003 m. The mesh consists of

61 9 121 four-node rectangular element in this example

and the selected time step is Dt = 2 9 10-4 s.

Table 1 lists the properties of the constituent materials,

i.e., Al2O3 and Si3N4. This study assumes that the volume

fraction of Si3N4 (phase i) follows a simple power function

(Eq. (61)). The material gradation in the x direction is

considered.

The SIFs for this two-dimensional thermoelasticity

problem are compared with those obtained by Jin and

Paulino [18] in Fig. 5 which shows a good agreement

between both results.

Figure 5 illustrates that under thermal shock, increasing

the crack length will decrease the SIF. The dimensionless

thermal SIF at the crack tip and dimensionless time can be

computed as follows:

KID ¼ KIð1� mÞ= Ea0ðT0 � T1ÞðpLÞ0:5
n o

ð67Þ

tD ¼ k0t=q0ct0L2: ð68Þ

5.3 Third example

In this example, first we consider the effects of volume

fraction profile of FGMs and the initial crack angle on the

crack tip SIFs.

Dimensions and boundary conditions of considered

layer are identical to the first example. The initial tem-

perature T0 is chosen to be 500 K and a thermal shock

equal to -50� (h = -50) is applied to left surface of layer.

The initial length of crack is a = 0.0001 m. Identical to

previous example, in these numerical calculations, we

consider an alumina/silicon nitride (Al2O3/Si3N4) FGM

which is used in cutting tool applications (see Table 1).

The thermally shocked surface is pure Al2O3 as in cutting

tool applications. The material gradation in the x direction

is considered and the volume fraction of Si3N4 follows than

Eq. (61). A mesh with 61 9 121 four-node rectangular

element is used and the selected time step is Dt = 10-4 s.

To study the effect of the material gradation, the

coupled thermoelasticity problem with tree different val-

ues of p is analyzed (i.e., p = 0.5, p = 1 and p = 2). The

time variations of the normalized mode-I thermal

dynamic SIF (for the chosen gradient parameter p) are

shown in Fig. 6. Equations (67) and (68) are used for

normalization of the time and the SIFs. Figure 6 illus-

trates that increasing the material gradient parameter

(p) will increase the SIFs.

Table 1 Material properties of Al2O3 and Si3N4 [7]

Young’s modulus

(GPa)

Poisson’s

ratio

CTE

(10-6 K-1)

Thermal conductivity

(W/m K)

Mass density

(kg/m3)

Specific heat

(J/kg K)

Fracture toughness

(MPa m1/2)

Al2O3 320 0.25 8 20 3,800 900 4

Si3N4 320 0.25 3 35 3,200 700 5

0

0.03

0.06

0.09

0.12

0 0.02 0.04 0.06 0.08

K
ID

 

tD tD 

Jin and Paulino, p = 1
Present, p = 1
Jin and Paulino, p = 0.2
Present, p = 0.2

0

0.02

0.04

0.06

0.08

0.1

0 0.02 0.04 0.06 0.08 0.1

K
ID

 

Jin and Paulino, p = 1
Present, p = 1
Jin and Paulino, p = 0.2
Present, p = 0.2

(a) (b)0.15Fig. 5 Normalized SIF versus

normalized time for second

numerical example, a a/

L = 0.1, b a/L = 0.3

78 J Braz. Soc. Mech. Sci. Eng. (2013) 35:69–81

123

Author's personal copy



The influence of the initial crack angle on the values of

KI and KII are shown in Fig. 7a and b, respectively. These

figures demonstrate that regardless of the material grada-

tion, increasing the crack angle will decrease KI and will

increase KII.

5.4 Fourth example

In this example, we study the crack propagation phenom-

enon in a FG layer with a horizontal edge crack under

thermal shock. Dimensions, properties, mesh and boundary

conditions of considered layer are identical to the previous

example. The initial temperature T0 is chosen to be 800 K.

A thermal shock equal to -500� (h = -500) is applied to

left surface of layer which is higher than its critical value

for considered layer. The initial crack length is equal to

0.0001 m. Figure 8 illustrates von Mises stress contours for

a layer with p = 1 at threshold of crack growth (Fig. 8a)

and after t = 0.0024 s (Fig. 8b). Deformed shapes of this
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K
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K
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K
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Fig. 6 Normalized SIFs versus

normalized time for third

example, a horizontal crack,

b and c oblique crack
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0 0.02 0.04 0.06
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Fig. 7 Normalized SIFs versus

normalized time for third

example, a KI, b KII

Fig. 8 Von Mises stress contours for a layer with p = 1 at:

a threshold of crack growth, b after t = 0.0024 s
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layer at mentioned times, are presented in Fig. 9. For more

clarification, displacements are multiplied by 50 in plotting

this figure.

We find from numerical simulations that the mean crack

propagation velocities for FG layers with p = 0.5, 1 and 2

are about 0.115, 0.14 and 0.16 m/s, respectively. In fact,

increasing the material gradient parameter (p) will increase

the crack propagation velocity. Also, obtained results

show that the crack arrest occurs earlier in the layer with

smaller p.

6 Conclusions

In this study, classical coupled thermoelastic equations were

solved using the XFE and the Newmark methods in FGMs.

The most general form of interaction integral were devel-

oped to evaluate dynamical SIFs for both homogenous and

FG materials. Also, the crack propagation phenomenon is

considered in a FG layer under thermal shock. Finally, the

following results were obtained from this study:

1. If a thermal shock is imposed to the cracked face of a FG

layer, increasing the crack length will decrease the SIF.

2. Under thermal shock, increasing the material gradient

parameter (p) in a FG Layer will increase the SIFs.

3. For a FG layer under thermal shock, regardless of the

material gradation, increasing the crack angle will

decrease KI and will increase KII.

4. Under thermal shock, increasing the material gradient

parameter (p) in a FG Layer will increase the crack

propagation velocity.

5. Increasing material gradient parameter (p) will

increase crack propagation velocity. Also, the crack

arrest occurs earlier in layer with smaller p.
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