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This paper develops a structural mechanical model that analyzes the natural frequency of single-walled
carbon nanotubes (SWCNTs) subjected to fixed–fixed and free–fixed boundary conditions. A Morse
potential is employed for stretching and bending potentials, and a periodic type of bond torsion is used
for torsion interactions. The natural frequencies for various aspect ratios are predicted by this structural
model. The effect of different vacancy and Stone–Wales defects on the natural frequency of zigzag and
armchair nanotubes is also investigated. Finally, the results of the present structural model are compared
with those from other numerical methods.
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1. Introduction computed frequencies and mode shapes. By investigating the influ-
The extremely high stiffness and light weight of CNTs results in
high vibration frequencies. Due to these features, the vibrational
behavior of CNTs is a fundamental characteristic that should be
fully studied because it is essential for applications such as NEMS
devices. Gibson et al. [1] studied the vibrational behavior of CNTs
and their composites, including both theoretical and experimental
studies. Using a beam-bending model, Wu et al. [2] investigated
the resonant frequency and mode shapes of a SWCNT analytically
and through continuum mechanics-based finite element method
(FEM) simulations. By using a Timoshenko beam model, Hsu
et al. [3] developed a model that analyzed the resonant frequency
of chiral single-walled carbon nanotubes (SWCNTs) that were sub-
jected to thermal vibration, including the effect of rotary inertia
and shear deformation. They also showed that the frequency in-
creases when the nanotube aspect ratio of length to diameter de-
creases, and the frequency obtained by the Timoshenko beam
model is lower than that calculated by the Euler beam model.
Kwon [4] used eigenvalue analysis of mass and stiffness matrices
computed from atomistic simulations to predict the natural fre-
quencies and mode shapes of various carbon nanotubes. Xu et al.
[5] studied the free vibration of double-walled CNTs modeled as
two individual beams by considering van der Waals interactions
between the inner and outer tubes. Their methods mainly compute
the bending modes of the vibrational modes and natural frequen-
cies. Georgantzinos and Anifanties [6] reported a study of the
vibrational characteristics of multi-walled carbon nanotubes mod-
eled exclusively using springs and lumped masses. They examined
the effects of different constraints at the nanotube ends on the
ll rights reserved.

aneh).
ence of van der Waals interactions, they concluded that the pres-
ence of all corresponding elements is necessary to the vibration
analysis of MWCNTs. At the other work [7], they utilized a
spring-mass-based finite element formulation for predicting the
vibrational behavior of CNTs to investigate their sensing character-
istics when a nanoparticle is attached them. They found that the
combination of frequency shifts of the basic modes could provide
a basis for the ability to not only sense an added mass, but also
determine its weight and position on the CNT. Li and Chou [8] dis-
cerned the effects of tube diameter, length and end constraints on
the fundamental frequency using a molecular structural mechanics
model with beam elements. Chowdhury et al. [9] investigated the
vibrational properties of zigzag and armchair SWCNTs using the
molecular mechanics approach. Their results showed features of
decreasing frequencies (on the first five vibration modes) with in-
crease in aspect ratio. They also found that the frequency of
SWCNTs is primarily determined by the geometric sizes (diameter
and aspect ratio) but cannot be substantially changed due to vari-
ation of their atomic structures. Hashemnia et al. [10] investigated
the vibrational properties of two kinds of single-layered graphene
sheets and single-wall carbon nanotubes (SWCNT) using a molec-
ular structural mechanics approach. Their results indicated that
the fundamental frequency decreases as the aspect ratio increases,
and the fundamental frequency of nanotubes is larger than that of
graphene sheets. Mir et al. [11] and Sakhaee-Pour et al. [12] inves-
tigated the vibrational behavior of bridge and cantilever SWCNTs
with different lengths and diameters. Both of them used a finite
element method with beam elements in their simulations.

Most of the existing papers have obtained natural frequencies of
CNTs with high aspect ratios. For small aspect ratios, the values of
natural frequencies are higher and are often used in nano-electro-
mechanical systems (NEMS). Hence, the exact prediction of natural
frequencies at this range seems to be necessary. Furthermore,
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existing differences between the observations are at the shell
mode. At small aspect ratios with the fixed–fixed boundary condi-
tions, the shell mode usually occurs. Therefore, using of an exact
model to predict natural frequencies is of a great importance. In
the work of Li and Chou [8], values of natural frequency for aspect
ratios equal to 6 and higher were only presented. Thus, the results
were obtained exactly for the range of the Euler mode. Their results
for the Euler mode are in agreement with the present work.

The work of Mir et al. [11] and Sakhaee-Pour et al. [12] was also
extended to the high aspect ratios. The results of Hashemnia et al.
[10] were obtained for small aspect ratios. The small difference in
the results for the Euler mode is related to the different inter-atom-
ic interactions in the models that were assumed. However, notice-
able differences in the shell mode can be described as solely due to
the inter-atomic interactions. It is obvious that a beam model is
incapable of predicting the natural frequencies of the shell mode
due to differences in the actual nature of the bending interactions
of CNTs that cannot be satisfied in the beam model whenever the
shell mode occurs. In fact, the beam-bending means that C–C
bonds will be bent far from reality. This can be acceptable for pre-
diction of Young’s modulus but it does not yield logical results for
prediction of natural frequencies. In the present model, the angle
variation potential is modeled by an axial spring with values
nearer to the reality (C–C bonds will not be bent). As discussed
in predicting the buckling of CNTs in the work of Parvaneh et al.
[13], at the same time, a beam model cannot predict the critical
buckling load and the buckling mode for different aspect ratios.
This problem is obvious in the work of Hashemnia et al. [10],
where they obtained natural frequencies for aspect ratios lower
than 6. However, if Mir et al. [11], Sakhaee-Pour et al. [12], and
Li and Chou [8] had explored their results for small aspect ratios,
the same problem would have been created.

Here, we studied frequency analysis of fixed–fixed and free–
fixed SWCNTs with different aspect ratios (L/D) and compared their
frequencies with those of other methods. Therefore, in this work a
structural mechanics model (Parvaneh et al. [13]) was employed to
determine the natural frequencies and their corresponding modes
for two types of SWCNTs, i.e., zigzag and armchair.

2. Simulation method

2.1. Application of the structural model to SWCNTs

We have proposed a structural mechanics method to model the
carbon nanotubes. The detailed derivation procedure for the for-
mulation and other features of this model can be found in our pre-
vious work (Parvaneh et al. [13]).

The total steric potential energy due to interactions between
carbon atoms can be represented by Eq. (1) [14]:

utotal ¼ ur þ uh þ u/ þ ux ð1Þ

where ur, uh, uu, and ux are bond energies associated with bond
stretching, angle variation or bond bending, dihedral angle torsion,
and out-of-plane torsion, respectively.

In this model, Morse potentials are employed for stretching and
bending potentials, and a periodic type of bond torsion is applied
for torsion and out-of-plane torsion interactions (Eqs. (2)–(5)).

ur ¼ De 1� e�bðr�r0Þ
� �2 � 1
n o

ð2Þ

uh ¼
1
2

khðh� h0Þ2 1þ ksexticðh� h0Þ4
h i

ð3Þ

u/ ¼
1
2

k/ 1þ cosðn/� /0Þ½ � ð4Þ
ux ¼
1
2

kx 1þ cosðnx�x0Þ½ � ð5Þ

As indicated in Figs. 1a and 2, a nonlinear axial spring is used for
modeling of the angle variation interaction between atoms. The
relationship between changes in the bond and the corresponding
change in length of the spring for small displacements can be ex-
pressed simply by Eq (7) [15]

Dh � 2ðDRÞ
r0

; r0 ¼ 0:142 nm ð6Þ

Therefore, we can simplify Eq. (3)–Eq. (7).

uh ¼
2
r2

0

khðR� R0Þ2 1þ 16
r4

0

ksexticðR� R0Þ4
� �

ð7Þ

The stretch force, the angle variation moment, the dihedral angle
torque, and out-of-plane torque can be obtained from differentia-
tions of (Eqs. (2), (7), (4), (5)) as functions of bond stretch, bond
angle, dihedral angle, and out-of-plane angle variation,
respectively:

Fðr � r0Þ ¼ 2bDe 1� e�bðr�r0Þ
� �

e�bðr�r0Þ ð8Þ

FðR� R0Þ ¼
4
r2

0
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r4

0

ð1þ 4
r2

0

ÞksexticðR� R0Þ4� ð9Þ

Tð/� /0Þ ¼
1
2

k/n sinðn/� /0Þ ð10Þ

Tðx�x0Þ ¼
1
2

kxn sinðnx�x0Þ ð11Þ

A nonlinear connector is considered for modeling of the stretching
and torsional interactions and a nonlinear spring for modeling of
the angle variation interaction (see Fig. 2). Carbon atoms in ABAQUS
are modeled by a discrete rigid sphere so that connector elements
between toms are adjoined to reference points at the center of the
sphere and a local coordinate is set at the center of each atom (see
Figs. 1b and 2). This local coordinate is a combination of a Cartesian
coordinate for stretching and a rotational coordinate for torsion. The
X direction of these coordinates is in the connector direction, and the
Z direction is vertical to the central axis of the nanotube. Because we
can only use a linear spring in the CAE space of ABAQUS, by changing
the linear spring command to a nonlinear spring command in the in-
put file, and by applying the nonlinear data for F(DR) versus DR
using Eq. (9), we can apply the bond bending spring to the model.
For applying bond stretch and torsion forces to the connectors, we
can apply the nonlinear stiffnesses in three directions (X, Y, Z) di-
rectly. For stretching stiffness in the X direction, we can obtain the
nonlinear data for F(Dr) versus Dr by Eq. (8), and for torsional stiff-
ness in X direction, we can obtain the nonlinear data for T(D/) versus
D/ by Eq. (10). For torsional stiffness in the Y direction, we can
Fig. 1. (a) A hexagonal unit cell, (b) location of local coordinates of each connector.
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Fig. 2. Spring and connector elements corresponding to the interactions of carbon atoms. (a) The angle variation interactions, (b) the stretching and torsional interactions, (c)
total interactions.

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8

Aspect ratio (L/d)

N
at

ur
al

 f
re

qu
en

cy
 (

G
H

z)
   

 

(12,0)-present model

Hashemnia et al.(2009)

(a) 

Starting of Euler mode 

V. Parvaneh et al. / Computational Materials Science 50 (2011) 2051–2056 2053
obtain the nonlinear data for T(Dx) versus Dx by Eq. (11). Here, we
take E = 1170 GPa and m = 0.196 for the Young’s modulus and Pois-
son’s ratio of single-walled carbon nanotubes, respectively. As
shown in our previous work, we used kr = 800 nN/nm,
kh = 1.42 nN/nm Rad�2, ku = kx = 0.0418 nN nm, which are consis-
tent with the values reported in the literature. In order to include
the inertia effects, the mass of each carbon atom is assumed as a
mass point (1.9943 � 10�26 kg) at nodes coinciding with carbon
atoms. The masses of electrons, connectors and springs are
neglected and individual atoms acting as concentrated masses at
the joints in the structure.

This structural model was successfully used for predicting the
mechanical properties and axial buckling behavior of single-walled
carbon nanotubes. It is employed here for predicting the natural
frequency of single-walled carbon nanotubes.
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Fig. 3. Comparison the present results to previous results of the beam structural
method for (12, 0) SWCNTs with fixed–fixed (a) and fixed–free (b) boundary
conditions (influence of the aspect ratio of SWCNTs on the natural frequencies).
3. Results and discussion

In this section, the commercial finite element numerical pack-
age ABAQUS was used to study the natural frequency of a fixed–
fixed and free–fixed SWCNT. The natural frequencies were pre-
dicted with the present structural model. Zigzag and armchair
SWNTs with various aspect ratios (L/D) were employed for this
study. The effect of different types of defects (vacancies and
Stone–Wales) on the natural frequency was also studied for zigzag
and armchair nanotubes with various aspect ratios. Fig. 3a shows
the natural frequencies of perfect nanotubes with different aspect
ratios and fixed–fixed boundary conditions. The natural frequen-
cies were obtained with our model and are compared with results
from K. Hashemnia et al. [10]. It can be seen that when the Euler
mode occurs, results are in good agreement with each other. How-
ever, when the shell mode occurs, the predicted frequencies of
Hashemnia et al. are greater than our results. This difference was
not seen for results with fixed–free boundary conditions (see
Fig. 3b).

The results of the present model are identical to the work of
Duan et al. [16] using molecular dynamics; however, they did
not obtain results for small aspect ratios and defective nanotubes
(Table 1). As mentioned before, CNTs with a small aspect ratio
are often used for NEMS.

In Fig. 4, we compare the present results to those from the sim-
ple continuum model (with a wall thickness of 0.066 nm reported
by Yakobson et al. [17]) in ABAQUS software. The mass of nanotube
is assumed equal to the mass of all carbon atoms in the SWCNTs.
The natural frequencies were logarithmically plotted as function
of aspect ratios. The predicted FEM results by a continuum model
and fixed–fixed and fixed–free end conditions are much greater
than our results and those of Hashemnia et al. when the shell mode
occurs. The main reason for this difference is the different behavior
of the nanotubes in the shell and Euler modes. SWCNTs can most
likely be modeled as continuum tubular shells when the Euler
mode occurs, but it is impossible to model those by continuum
models when the shell mode occurs. A comparison between the
FEM results and the proposed model shows that the continuum
model cannot completely predict the exact natural frequencies of
CNTs. When the shell mode occurs, the natural frequencies pre-
dicted by FEM are higher, and when the Euler mode occurs, they
are lower than values obtained by the proposed model. However,
a cylindrical tube continuum with a wall thickness equal to
0.066 nm can generally predict the average of the results (within
2 nm < L/D < 12 nm).

The present model is a good model to investigate the effects of
various defects on natural frequencies. The types of vacancy de-
fects for the study of defects in carbon nanotubes are illustrated
in Fig. 5. Vacancies result from missing carbon atoms in the CNT
walls. The defects included are single vacancies (one atom miss-
ing), double vacancies (two adjacent atoms missing) and triple
vacancies (three adjacent atoms missing). Stone and Wales showed



Table 1
Natural frequencies (GHz) from the present model and MD model.

Aspect ratio Fixed–fixed Fixed–free

Present model W.H. Duan (2007) Present model W.H. Duan (2007)

5.26 983 975 216 212
6.35 747 741 154 150
7.07 634 628 126 123
8.16 505 500 97 94
9.25 411 406 76 74

10.34 341 336 63 60
11.43 286 282 51 49
12.52 244 240 42 41
13.6 209 206 34 35
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Fig. 4. Natural frequencies vs. aspect ratio of perfect and defective SWCNTs with (a)
fixed–free and (b) fixed–fixed boundary conditions.
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that a dipole consisting of a pair of 5–7 rings can be created by
rotating the C–C bond in a hexagonal network by 90o. As shown
in Fig. 6, in this rotation, four hexagons are changed into two
Armchair

Single 
vacancy 

Double 
vacancy 

Triple 
vacancy 

1 1 
2 

1 

3 
2 

Fig. 5. Different vacancy defects used in analysis (r
heptagons and two pentagons. Here, we suppose that an initial
Stone–Wales defect exists on the nanotube before the tension test
(see Fig. 6). All of the defects are situated in the middle of the
nanotube.

As indicated in Fig. 4, the defects have a very weak effect on the
natural frequencies when the Euler mode occurs. Of course, it
should be noted that for defective nanotubes, the Euler mode will
occur later; it occurs at an aspect ratio of approximately 4.5 for va-
cancy and Stone–Wales defects while for double and triple vacan-
cies, it occurs at an aspect ratio of 5.5 and 6, respectively. However,
based on the present results, the effect of defects on these carbon
nanotubes will be critical when the shell mode occurs. Therefore,
to use carbon nanotubes with the small aspect ratios, we should
use perfect ones.

When the shell mode occurs, the vibrational mode shapes of
defective CNTs are completely affected by defects. Contrary to
what is assumed, the effect increases slightly with increasing de-
fects. Furthermore, the Stone–Waals defects, which are due to
retaining the inter-atomic bonds, are assumed to have less effect
compared to vacancy defects on the natural frequencies, but it is
not true. It seems that in the vibrational frequency domain the
smallest change in the material structure at local modes can cause
great changes in the natural frequencies. Furthermore, tube chiral-
ity does not have a significant effect on the natural frequency of
SWCNTs.

The mode shapes according to the displacement contours are
represented for two lengths of perfect and defective nanotubes
with fixed–fixed boundary conditions in Fig. 7. With increasing
length of nanotubes, the shell mode shapes convert to the Euler
mode shape. The difference between the shell mode shapes of per-
fect and defective nanotubes confirm the difference between the
natural frequencies for CNTs with small aspect ratios.

The rate of natural frequency reduction is greater for lower as-
pect ratios due to the increase of the aspect ratio and diameter,
which indicates that the effect of the diameter on the natural
frequencies is greater for lower aspect ratios. This issue causes
Zigzag
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emoved carbon atoms indicated by numbers).



Rotated bond 

(a) (b) 

Rotated bond 

Fig. 6. Configuration of Stone–Wales defects in zigzag (a) and armchair (b)
nanotubes (indicated in red colour). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

(a)            (b)             (a)              (b) 

L=1.988nm 
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L=6.248nm 
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Fig. 7. The mode shapes of (12, 0) SWCNTs under frequency analysis: (a) perfect
and (b) defective.
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Fig. 8. Fundamental frequency shift of (12, 0) SWCNT with different lengths versus
position of vacancy defect (a) free–fixed end and (b) fixed–fixed end.
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access to a variety of frequencies, which is useful for NEMS.It
should be noted that the natural frequencies are affected by their
mode shape and the position of the defect on nanotube length.
The frequency shift (Df), is then represented by Eq (1):

Df ¼ fper � fdef ð12Þ

where fper denotes the fundamental frequency of the perfect nano-
tube and fdef indicates the fundamental frequency of the defected
nanotube.

Fig. 8 shows curves of the shift of fundamental frequencies ver-
sus the displacement of defect along the nanotube for fixed–fixed
and free–fixed boundary conditions. The locations of the single va-
cancy defect are situated at L0 = 0.1L, 0.25L, 0.5L, 0.75L and 0.9L,
where L0 is the distance of the defect from the fixed end and L is
the length of the nanotube. Results indicate that with displacement
of the defect toward the free end of the nanotube, the reduction of
the shift of fundamental frequencies will become minor (see
Fig. 8a); hence, the critical points for the existence of the defect
are near the fixed end of the carbon nanotube. As shown in
Fig. 8b, It is noticed that the critical points for the existence of
the defect are near the fixed ends when shell mode occurs (L/
D < 5); however this critical point is at the middle of nanotube
when Euler mode occurs.
Fig. 9 shows the shift of fundamental frequency of (12, 0)
SWCNT with vacancies and Stone–Wales defect versus the aspect
ratios of nanotube. It is easy to understand that single vacancy is
superior to double vacancies for (12, 0) tube, because defective
area induced by the single vacancy is obviously smaller. But the
frequency of defective nanotube including Stone–Wales defect is
larger than that of perfect one when Euler mode occurs. The shift
of frequency of SWCNT decreases with increase in aspect ratio.

4. Conclusion

The effects of the type of vacancy and Stone–Wales defects on
the vibrational behavior of SWCNTs under frequency analysis were
studied based on a structural mechanics approach using ABAQUS
software. Our results show that the structural models with beam
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elements cannot most likely predict the natural frequency for
small aspect ratios of nanotubes exactly. For all of the structural
models that were used for the prediction of the natural frequen-
cies, we needed to select a sufficiently long nanotube. This option
is more sensitive for fixed–fixed boundary conditions.

Defects do not have a significant effect on the natural frequen-
cies of sufficiently long SWCNTs. However, for nanotubes with
shorter lengths, this effect is much greater (aspect ratio of approx-
imately 4.5 and up). CNTs with the small aspect ratios are often
used for NEMS due to their high frequencies. Therefore, it is neces-
sary to use an exact prediction because of the occurrence of the
shell modes at this range. With displacement of the defect toward
the free end of the fixed–free nanotube, the reduction of the shift of
fundamental frequencies will become minor; however maximum
shift of fundamental frequency is at the middle of fixed–fixed
nanotube when Euler mode occurs. Furthermore, the frequency
of defective nanotube including Stone–Wales defect is larger than
that of perfect one when Euler mode occurs.
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