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a b s t r a c t

In this paper, the buckling and post-buckling of steel thin-walled semi-spherical shells are investigated

under different loadings, both experimentally and numerically. Various vertical compression loadings

are applied to specimens using the following methods: a rigid flat plate and some rigid bars with

circular, square and spherical cross sections, a rigid tube, a plate with a hole, and an indented tube. The

effects of geometrical parameters of specimens on the buckling load, such as the diameter and

thickness, are studied. The numerical analysis is carried out by ABAQUS software and the experimental

tests are performed using an Instron 8802 servo-hydraulic machine. The numerical and experimental

results are similar to one another. Therefore, the numerical results are valid.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled semi-spherical shells are often used in structures
due to their energy-absorbing capacity. The buckling behavior of
these shells gives rise to their critical design applications,
including the automobile bodies, aircraft fuselages, and ship hulls.

The large deformation of a thin-walled sphere or a spherical
shell, known as a typical post-buckling problem, has received
attention since the 1960s. Leckie and Penny [1] performed a series
of tests on carefully manufactured hemispherical shells that were
loaded centrally by a rigid bar. These experiments were followed
by a theoretical study of Morris and Calladine [2]. The authors
reached a new milestone in understanding the crushing behavior
of revolving shells. Their studies shows that plastic deformation is
indeed confined to a relatively narrow ring or section of a toroidal
surface, and that the ring is moving outward as the deformation
processes.

Updike [3] first studied the major deformation of rigid plastic
semi-spherical shells compressed between two rigid plates. From
his research, he proposed an analytical model. The computation
was restricted to compressions that were less than or equal to
approximately 1

10th of the shells radius. Kitching et al. [4] studied
deformation patterns on semi-spherical shells with R/t ratios
between 36 and 420 experimentally and analytically. De’Oliveria
ll rights reserved.
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and Wierzbicki [5] conducted the same study. They completed a
crushing analysis of rotationally symmetric plastic shells. Kinkead
et al. [6] completed a quasi-static study on semi-spherical shells
with R/t ratios between 36 and 420. This study produced similar
results as previous studies. Gupta et al. [7] performed experi-
ments on metallic semi-spherical shells with R/t ratios ranging
between 15 and 240. Gupta et al. [7] examined three levels of
deformation: local flattening, inward dimpling, and multiple
lobes. Gupta and Venkatesh [8] presented a two-dimensional
numerical analysis for semi-spherical shells under axial impact. In
this study, a strong correlation was observed between the
numerical simulation and the experimental results in buckling
behavior that are related to the first mode jumping from local
flattening to inward dimpling. In another study presented by
Gupta and Gupta [9], the semi-spherical shells of R/t ratios
between 26 and 45 had similar results when they were analyzed
experimentally and computationally. In these experiments, all of
the spherical shells were found to collapse in an axisymmetric
mode. Ruan et al. [10] performed a series of tests on a ping-pong
ball loaded by a rigid plate, rigid bar, and a rigid tube. He
conducted these tests to explore the various post-bucking
behaviors of a spherical shell and to compare the results with
existing theoretical models proposed by Morris and Calladine [2],
Updike [3] and De’Olivier and Wierzbicki [5].

The main purpose for the majority of investigations is to study
the high-energy absorption of shells. The amount of energy
absorbed is a function of the method of application of loads,
transmission rates, deformation or displacement patterns, and
material properties [11]. With the exception of loading by rigid
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plate, a literature search revealed minimal documentation of the
response of the buckling and energy absorption of semi-spherical
to various loading. It is noteworthy, that the mean collapse load
can occur in higher and controllable levels with change of the
method of application of loads. In this paper, a linear and a
nonlinear analysis were conducted to study the effect of the
method of application of loads on the buckling and post-buckling
behavior on semi-spherical shells. Various vertical compression
loadings are applied to specimens and the mean collapse load are
obtained for each other. The ABAQUS finite element software was
used. Semi-spherical shells with R/t ratios between 22 and 72
were analyzed. Several buckling tests were performed using an
INSTRON 8802 servo-hydraulic machine. The results were
compared with the results of the finite element method. A strong
correlation between experiments and numerical simulations was
observed.
2. Numerical analysis using the finite element method

The numerical simulations were carried out using the finite
element software ABAQUS 6.7-1.
800 Linear data:
2.1. Geometry and mechanical properties of the shells

In this study, thin-walled semi-spherical shells with three
different diameters (L¼102, 77, 53 mm) and four different
thicknesses (t¼0.7, 0.8, 1.0, 1.2 mm) were analyzed. Fig. 1
shows the geometry of the specimens. According to Fig. 1,
parameters (D, d, t, h) show the upper diameter, lower diameter,
thickness, and height of the semi-spherical shells, respectively.

Specimens were nominated as follows: D102–d25–t0.8–h38.
The numbers following D, d, t, and h quantify these dimensions for
the specimen.

The semi-spherical shells used for this study were made of a
mild steel alloy. The mechanical properties of the steel alloy were
determined according to the ASTM E8 standard [12], using the
INSTRON 8802 servo-hydraulic machine. Fig. 2 shows the stress–
strain curve. Based on the linear portion of the stress–strain curve,
the value of the elasticity module was computed as E¼150 GPa
and the value of yield stress was obtained as s¼404 MPa.
Fig. 1. Cut view of specimens.
Furthermore, the value of Poisson’s ratio was assumed to be
n¼0.33.

2.2. Boundary conditions

To apply boundary conditions to the bottom edges of the semi-
spherical shells, a rigid plate was attached to the bottom edges of
the semi-spherical shells. To analyze their buckling numerically,
the specimens were subjected to an axial load similar to the load
in the experimental tests. In this process, a displacement was
applied to the center of the upper plate, bar, or tube.

With the exception of the longitudinal axis direction, all
degrees of freedom in the lower plate and in the upper plate, bar,
or tube were constrained.

2.3. Element formulation of the specimens

For this analysis, the nonlinear element, S8R5, was an eight-
node element with six degrees of freedom per node and was
suitable for the analysis of thin shells. The linear element, S4R,
was a four-node element. Both linear and nonlinear elements
were used for the analysis of the shells. These results were
compared with each other. For the rigid plate, bar, or tube, the
element R3D4 was used. A friction coefficient of 0.1 was recorded.
The effect of the friction coefficient ranged from 0.08 to 0.12 and
affected results by less than 1% [8].

2.4. Numerical process

In this study, an eigenvalue analysis overestimates the value of
the buckling load because the plastic properties of the material do
not have any role in the analyses procedure [13]. An initial
eigenvalue analysis should be conducted for all specimens of a
buckling analysis in order to find the mode shapes and
corresponding eigenvalues. The first modes have smaller eigen-
values and buckling usually occurs in these mode shapes. For an
eigenvalues analysis, the ‘‘buckle’’ step was completed by
ABAQUS. For all specimens, three first-mode shapes and their
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Fig. 2. Stress–strain curves.

Fig. 3. Buckling mode shapes for specimen D102–d25–t01–h48: (a) first mode, (b)

second mode, and (c) third mode.
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corresponding displacements were obtained. The effects of these
mode shapes must be considered in a nonlinear buckling analysis
(Static Riks step). Otherwise, the software may choose the
buckling mode in an arbitrary manner and produce unrealistic
results in nonlinear analyses. For the ‘‘buckle’’ step, the subspace
solver method of the software was used. Due to the presence of
contact constraints between the rigid plates and the shell, the
Lanczos solver method cannot be used on these specimens [14]. In
Fig. 3, three primary mode shapes are shown for the specimen
D102–d25–t01.0–h48. After completion of the buckle analysis, a
nonlinear analysis was performed to plot the load–displacement
curve. This step is called ‘‘Static Riks’’ and uses the arc length
method for post-buckling analysis. The nonlinearity of both
material properties and geometry is taken into consideration in
this analysis.
3. Loading by a rigid plate

In this section, the numerical results for D77–d25–h38, D53–
d18–h28, and D102–d25–h48 specimens with thicknesses of 1.2,
1, 0.8, and 0.7 mm are analyzed. For comparison, the energy
absorption capacity of specimens is a criterion that defines the
mean collapse load. Mean collapse load is calculated by dividing
the area under the load–displacement curve by the displacement
of the upper rigid plate. The collapse is initiated by the formation
of an axisymmetric ring at the smaller end during loading by a
rigid plate. With further compression, the mechanism of collapse
changes. At this stage, its propagation is due to the formation of
an axisymmetric inward dimpling and a rolling plastic hinge
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Fig. 5. Variation of mean collapse load vs. R/t values, (a) depth of d
circle that is in contact with the top plate. Fig. 4 shows that the
slope of the load–deformation curve changes appreciably.

As Fig. 5a and b show, the mean collapse load varies with the
radius to thickness ratio for semi-spherical shells. This
relationship exists after the shells are compressed 10 mm. It
lasts until the absorber (semi-spherical) is entirely consumed and
the apex of the semi-spherical shell makes contact with the rigid
base plate. Fig. 5a shows that the mean collapse load decreases
with an increase in the radius to thickness ratio (R/t ratio) of the
spherical shell for the specimens of equal radii but of different
thicknesses. The ratio decreases with an increase in the R/t ratio
for specimens of equal thicknesses but of different radii. Fig. 5b
shows that the mean collapse load decreases with an increase in
the radius to thickness ratio (R/t ratio) of the spherical shell for
the specimens of equal radius but of different thicknesses.
However, the mean collapse load increases with an increase in
the R/t ratio for the specimens of equal thicknesses but of
different radii.

In a comparison of Fig. 5a and b, the best semi-spherical shell
(the greatest mean collapse load) to be used in various height
compression is a spherical shell with the maximum thickness and
the minimum diameter.
4. Loading by different bars

In this section, the effect of loading conditions is considered.
Therefore, some semi-spherical shells with a diameter equal to
the small diameter of the spherical shells (d¼25 mm) are loaded
by a circular bar. Semi-spherical shells are also loaded by a square
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Table 1
Numerical analysis result for semi-spherical shells in loading by rigid bar with

different cross sections.
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bar with a side length equal to 22 mm. The cross-sectional area is
equivalent to the two methods. Fig. 6 shows that a column with a
semi-spherical end loads shells.

Fig. 7 illustrates the load-deformation curves that were
obtained for the specimen D102–d25–t1–h48 with various
loadings. During loading with a circular cross-section, only the
first mode is observed from the formation of an axisymmetric ring
towards inward dimpling. The formation of stationary plastic
hinges and an integral number of 4 lobes were observed after
loading with a square cross-section. This event occurred after the
formation of an axisymmetric ring. However, formation of inward
dimpling is not observed.

The primary part of the curve in loading by circular and square
cross section bar is linear shown during a comparison of loading
with a semi-spherical end shells with three other ones (rigid
plate, circular column, and square column). Linear behavior is not
observed in this type of loading. While loading with a semi-
spherical column, the formation of an axisymmetric ring is not
observed. A mode jump is observed with inward dimpling that
leads to the formation of stationary plastic hinges and an integral
number of 3 lobes.

Fig. 7 shows loading by a circular bar. The slope of the load
deformation curve after the linear portion is comparable to the
square bar. The absorption energy in the mode jump from the
formation of an axisymmetric ring to inward dimpling is greater
than the absorption energy in the mode jump from formation of
an axisymmetric ring to lobe formation. In addition, the load–
deformation curve for loading by a rigid bar with a semi-spherical
cross section shows that the absorption energy decreases when
the formation of an axisymmetric ring is eliminated.
Fig. 6. Loading with various bars, (a) circular cross section (CC), (b) square cross

section (SC), and (c) spherical cross section (SPC).
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Fig. 7. Load-deformation curve for specimen D102–d25–t0.8–h48 and shell thickness in

(c) spherical cross section bar (SPC).
Table 1 presents the results from a numerical analysis with the
three different bars.
5. Loading by a rigid tube

In this section, the loading is carried out by a rigid 5 mm tube
and a rigid plate with a hole. Fig. 8 shows the load–deformation
curve and wall thickness of the specimen D102–d25–t0.8–h48,
which has been loaded by the tube and a rigid plate with a hole
and multiple y values. A decrease in the value of y corresponds to
an increase in the mean collapse load. Fig. 9 shows the mean
collapse load for the specimen D102–d25–t0.8–h48, which has
been loaded by a rigid plate with a hole and a rigid tube. In
comparison to loading with a rigid tube, Fig. 9 shows that the
mean collapse load increases in loading by the rigid plate with a
hole.
6. Loading by a rigid indentationed tube

In this section, the spherical shells are loaded with an indented
tube. Four tubes with a 50 mm diameter and a thickness of 5 mm
are chosen and indented (Fig. 10).
0 15 20
tion (mm)
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c

loading by, (a) circular cross section bar (CC), (b) square cross section bar (SC), and

Specimens specification Deformation height (mm) Mean collapse load (kN)

SPC SC CC

D55–d18–t0.7–h28 25 3.6 4.2 4.2

D55–d18–t0.8–h28 25 4.3 5.1 5.2

D55–d18–t1.0–h28 25 6.0 7.1 7.3

D55–d18–t1.2–h28 25 7.8 9.4 9.8

D77–d25–t0.7–h38 35 4.0 4.7 5.0

D77–d25–t0.8–h38 35 4.9 5.8 6.1

D77–d25–t1.1–h38 35 6.7 8.1 8.5

D77–d25–t1.2–h38 35 8.6 10.4 11.1

D102–d25–t0.7–h48 40 3.8 4.4 4.7

D102–d25–t0.8–h48 40 4.9 5.4 5.7

D102–d25–t1.0–h48 40 6.8 7.8 8.1

D102–d25–t1.2–h48 40 9.1 10.4 10.6
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Fig. 10. Loading with indented tubes. (a) 2 indentation (2IN), (b) 3 indentation

(3IN), (c) 4 indentation (4IN), and (d) perfect tube.
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Fig. 11 shows the load–deformation curve and the wall
thickness of D77–d25–t0.8–h38 in loading with different levels
of indentation.

In Fig. 12, the mean collapse load curves are plotted against the
number of indentations in the rigid tube. The mean collapse load
increased with an increase in the number of indentations from 2
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Fig. 13. A serve hydraulic INSTRON 8802 machine in loading on semi-spherical

shell by circular bar.
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to 4. The mean collapse load decreased with an increase in the
number of indentations from 4 to 5. The collapse is constant with
an increase in the number of indentations from 5 to 8. These
observations indicate that with an increased number of
indentations, the indented tube acted like a rigid tube.
7. Verification of numerical results with experimental results

Experimental tests were conducted on a large number of
specimens in order to confirm the numerical results. For these
tests, a servo-hydraulic INSTRON 8802 machine was used
(Fig. 13).

The load deformation curves produced by numerical and
experimental analyses are shown in Figs. 14–17. The mean
collapse loads obtained from experimental and numerical
studies are shown in Tables 2–5. Results indicate a minimal
difference between the experimental and numerical results. For
example, the average discrepancy between the two sets of results
in Table 4 is 5% for the linear element and 3.6% for the S8R5
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Table 2
Comparison of the experimental and numerical results for semi-spherical shells in loading with various bars.

Specimens specification Deformation (mm) Mean collapse load (kN) Numerical Mean collapse load (kN) Experimental

SPC CC SC SPC CC SC

D102–d25–t0.8–h48 35 4.6 5.5 5.2 4.3 5.2 5.0

D77–d25–t0.8–h38 30 4.9 6.1 5.8 4.6 5.7 5.3

D55–d18–t0.8–h38 20 4.0 5.0 4.8 3.9 4.7 4.6

The mean error is 5.5%.

Table 3
Comparison of the experimental and numerical results for specimen D102–d25–t0.8–h48 in loading with rigid tube and rigid plate with a hole.

Specimens specification Vertical deformation (mm) Mean collapse load (kN) jFNUM�FEXP j=FNUM � 100%

Experimental Numerical

Rigid plate with a hole 15 16.5 17.4 5.4

Rigid tube 15 8.8 9.3 5.3

Table 4
Comparison of the experimental and numerical results for semi-spherical shells in loading with rigid plate.

Specimens specification Vertical deformation (mm) Mean collapse load (kN) jFNUM�FEXP j=FNUM � 100%

S4R element S8R5 element Experimental S4R element S8R5 element

D53–d18–t0.7–h28 8 7.3 7.2 6.8 5.8 4.4

D53–d18–t0.8–h28 8 9.2 9 8.7 5.3 3

D53–d18–t1.0–h28 8 12.2 12.3 11.7 4.2 4.6

D53–d18–t1.2–h28 8 16.3 16.1 15.4 5.7 4.7

D77–d25–t0.7–h38 12 8.8 8.6 8.4 4.6 1.9

D77–d25–t0.8–h38 12 10.9 10.8 10.5 3.9 2.7

D77–d25–t1.0–h38 12 14.1 14 13.2 6.4 5.6

D77–d25–t1.2–h38 12 19.9 19.6 19 4.1 3

D102–d25–t0.7–h48 20 10.3 10.1 9.7 5.6 3.6

D102–d25–t0.8–h48 20 12.6 12.5 11.8 5.9 5.3

D102–d25–t1.0–h48 20 18.7 18.4 17.6 5.9 4.4

D102–d25–t1.2–h48 20 24 23.4 23.3 3.1 0.6

The mean error is 5% for S4R element and 3.6% for S8R5 element.

Table 5
Comparison of the experimental and numerical results for semi-spherical shells in loading with indented tube.

Specimens specification Number of indentation Deformation height (mm) Mean collapse load (kN) jFNUM�FEXPj=FNUM � 100%

Experimental Numerical

D77–d25–t1–h38 3 10 8.0 9.0 11

D77–d25–t0.8–h38 4 10 9.6 10 4

M. Shariati, H.R. Allahbakhsh / Thin-Walled Structures 48 (2010) 620–628626
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nonlinear element. The results for nonlinear elements have fewer
errors. The slope of the load vs. end-shortening curves is higher in
the numerical results than in the experimental results before the
buckling. This discrepancy is due to the presence of internal
defects in the material. These defects reduce the stiffness of the
specimens in the experimental method, whereas the numerical
analyses assume the materials perform ideally.
8. Conclusion and discussion

In this paper, the behavior of buckling in thin-walled semi-
spherical shells subjected to various loadings was studied. The
buckling phenomenon plays an essential role in the load carrying
capacity of the specimens. Fig. 18 shows that the energy–
compression curves of the steel spherical shells that were
subjected to loading by a rigid bar with a spherical cross section.

In conclusion, Fig. 18 indicates that absorbed energies follow a
quadratic function. The difference between the absorbed energy
for thicknesses of 0.7 and 0.8 mm with height compressions of 10,
20, 30, and 40 mm are 18.5%, 18.1%, 17.7%, and 18.4%, respec-
tively. This result shows that the rate of increase remains
approximately constant.

Fig. 7 shows a plot of the shell thicknesses in loading by a rigid
bar. Loading with different bars shows that a maximum increase
in thickness is obtained in stationary hinges; a minimum
thickness is reached if it is in the contact zone of semi-spherical
rigid bars.

Fig. 8 shows a contour plot of the shell thickness in loading by
a rigid tube and a rigid plate with a hole. The maximum increase
in thickness occurred in inner rolling plastic hinges.

The load–deformation and energy–compression curves ob-
tained from tests conducted on spherical shells are presented in
Figs. 14–17. The shape of the load–deformation curve is an
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important characteristic of an energy absorber. An ideal energy
absorber has a square wave load–deformation profile [15,16], i.e.,
once the buckling mode starts (at peak loads) the collapse
continues under the same load until the absorber is entirely
consumed. The load–deformation curves obtained from the
loading by a rigid plate with a hole resemble that of an ideal
energy absorber.

In Fig. 19, the experimental and numerical profiles of a semi-
spherical tube have been shown after loading by a rigid plate. The
experimental profiles were measured by filling the semi-spherical
shell with paraffin at different stages of compression and by
interrupting the axial compression of specimens in the INSTRON
machine. As shown in Fig. 19, increases in the compression height
leads to increases in the circumferential strain and a tending out
of the semi-spherical shell.

In Table 6, rolling plastic hinges of semi-spherical with
thicknesses of 1 and 0.8 mm have listed for specimens D77–
d25–d38 and D102–d25–h48. Table 6 shows that a rolling plastic
hinge increases with an increasing shell thickness and diameter.
The difference between rolling plastic hinges in various
thicknesses increases with an increase in the compression height.

The thickness of the shell changed due to the circumferential
and meridional strain. Fig. 20 presented the wall thickness of the
shell with a 15 mm compression. According to Fig. 20, the initial
(nearly unstrained) flat region of the curve corresponds to the
unreformed portion of the semi-spherical shell, which was
minimally reduced. The reduction reached its maximum at the
outer rolling plastic hinge due to stretching. The subsequent slope
of the curve increased and reached its maximum at the inner
rolling plastic hinge. A peak value, eth¼ .077, was predicted by a
finite element analysis. After the peak value, the thickness strain
decays because of progressive circumferential and meridional
stretching.
AB= rp1

CD= rp2

rp1 > rp2

ed shapes at various stages.

Table 6
Comparison of rolling plastic hinge radius.

Compression

height (mm)

Rolling plastic hinge radius (mm)

D102–d25–h48 D77–d25–h38

t¼0.8 mm t¼1 mm t¼0.8 mm t¼1 mm

3 55.5 55.5 46.5 46.5

6 45 45 35 34.5

9 35.5 36 26 23.5

12 31 32 20 17

15 26.5 27.5 16 12

18 24 25 – –

21 21 23 – –

24 20 22 – –
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Fig. 21 shows a synthesis of the mean collapse load and various
loading. The mean collapse load is a good indicator of the energy
absorption capability. The rigid plate with a hole is the more
efficient solution for energy absorption.
9. Concluding remarks

Semi-spherical shells of different loading were investigated
experimentally and numerically. The load–deformation projec-
tions at different stages of compressions match well with results
obtained from experiments. The predicted deformed shapes at
different stages of compressions and various loadings correspond
well with the actual deformed profiles. The following results were
found in this study:
1.
 The mean collapse load is greater with loading by circular bar
compared to loading with a square bar or a rigid bar with a
spherical cross section. When compared to the two other types
of bars, the mean collapse load is less for loading by a rigid bar
with a spherical cross section.
2.
 The mean collapse load is greater for loading by a rigid plate
with a hole than for a loading by a rigid tube. The mean
collapse load increases with an increase in the whole diameter
of the rigid tube and plate.
3.
 In loading with an indented tube, the tube with 4 indentations
has the highest mean collapse load value.
4.
 The thickness of a shell changes during compression. The
thickness strain is greater for stationery plastic hinges when
compared to rolling plastic hinges.
5.
 Rolling plastic hinges increase with an increase in shell
thickness and diameter.
6.
 The best semi-spherical shell (with a maximum mean collapse
load) for various height compressions is one with the
maximum thickness and the minimum diameter.
7.
 The shell can tolerate a greater mean collapse load when it is
loaded by a rigid plate with a hole than it can when it is loaded
with a rigid plate, bar, or tube.
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