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In this article, we introduce a measure of discrepancy between two life-time
distributions based on cumulative residual entropy. The dynamic form of this
measure is considered and some of its properties are obtained. The relations between
dynamic form and some well-known concepts in reliability such as mean residual
life-time, hazard rate order, and new better (worse) than used are studied.
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1. Introduction

As is well known, Shannon (1948) established an important part of information
theory that today has many applications in various fields. He proposed a way of
achieving uncertainty associated with a probability distribution. For continuous and
non negative random variable X� Shannon’s differential entropy is defined by

H�X� = E�− log f�X�� = −
∫ �

0
f�x� log f�x�dx�

where f is the probability density function (pdf) of X� As can be seen, H�X� equals
to the expectation of − log f�X�.

Moreover, Kullback and Leibler (1951) proposed a non symmetric measure of
distance between two distributions. K-L divergence is defined by

I�X� Y� =
∫ �

0
f�x� log

f�x�

g�x�
dx�
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1042 Chamany and Baratpour

where f and g are pdfs of X and Y� respectively. Ebrahimi and Kirmani (1996)
defined a time-dependent (dynamic) form of Kullback-Leibler discrimination by
comparing residual life distributions at each age t ≥ 0� and they derived important
properties of it. This discrepancy measure is the K-L divergence of random variables
�X − t�X > t� and �Y − t�Y > t� and is defined as

I�X� Y� t� =
∫ �

t
ft�x� log

ft�x�

gt�x�
dx�

where ft�x� = f�x�

F�t�
�

However, the Shannon entropy has certain disadvantages. For example, it
requires the knowledge of density function for non-discrete random variables, the
discrete Shonnon entropy dose not converge to its continuous analogous, and in
order to estimate the Shannon entropy for a continuous density, one has to obtain
the density estimation, which is not a trivial task. Recently, Rao et al. (2004)
developed a new measure of information called cumulative residual entropy (CRE)
that is defined as

��X� = −
∫ �

0
F�x� log F�x�dx�

where F = 1− F is the survival function of X. The basic idea in their definition
was to replace the density function by the survival function in Shannon’s definition.
CRE is more general than the Shannon entropy and possesses more general
mathematical properties. It can easily be estimated from sample data and this
estimation asymptotically converges to the true value. An analougus definition can
be considered for discrete distributions as

��X� = −∑
x

P�X > x� logP�X > x��

CRE has applications in reliability engineering and computer vision, for more
details see Rao (2005). Baratpour (2010) studied conditions under which the CRE
of the first-order statistics can uniquely determine the parent distribution. Asadi and
Zohrevand (2007) considered the dynamic version of CRE and called it dynamic
cumulative residual entropy (DCRE). They studied the relations between DCRE
and well-known reliability measures. DCRE is defined by

��X� t� = −
∫ �

t

F�x�

F�t�
log

F�x�

F�t�
dx�

This measure is the CRE of random variable �X − t�X > t�.
The rest of this article is organized as follows. In Sec. 2, the aim is to present

the dynamic version of Kullback-Leibler divergence between two distributions based
on cumulative residual entropy and obtain some of its properties. In Sec. 3, the
relations between dynamic form and some well-known concepts in reliability such
as the mean residual life-time, hazard rate order and new better than used (NBU),
and new worth than used (NWU) classes, are studied.
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Discrimination Information — Cumulative Entropy 1043

2. A Dynamic Form of Divergence Between Two Distributions

Let X and Y be two non negative continuous random variables with cumulative
distribution functions F and G, and survival functions F = 1− F and G = 1−G�
respectively. We first introduce a new measure of distance between two distributions
that is similar to the Kullback-Leibler divergence, but using the survival function
rather than the density function and call it cumulative Kullback-Leibler (CKL)
divergence.

CKL between two distributions F and G is defined by

���X� Y� =
∫ �

0
F�x� log

F�x�

G�x�
dx − (

E�X�− E�Y���

where E�X� is the expectation of X� It can be shown that ���X� Y� ≥ 0, and equality
holds if and only if F = G� a�e� that is concluded easily by using the log-sum
inequality and the inequality a log a

b
≥ a− b� for all a� b > 0 (Baratpour and Habibi

Rad, 2012). Now, we consider the dynamic version of CKL and call it dynamic
cumulative Kullback-Leibler (DCKL) divergence that is defined by

���X� Y� t� =
∫ �

t

[
Ft�x� log

Ft�x�

Gt�x�
+Gt�x�− Ft�x�

]
dx�

where Ft�x� = F�x�

F�t�
� Moreover, let �F �x� = f�x�/F�x� and �G�x� = g�x�/G�x� be the

hazard rate functions of X and Y, respectively, whereas mF�t� = E�X − t�X > t� =∫ �
t

F�x�

F�t�
dx and similarly mG�t� denote their MRL functions. It can be shown that

���X� Y� t� =
∫ �

t

[
F�x�

F�t�
log

F�x�/F�t�

G�x�/G�t�
+ G�x�

G�t�
− F�x�

F�t�

]
dx

= mG�t�−mF�t�− ��X� t�−
∫ �

t

F�x�

F�t�
log

G�x�

G�t�
dx�

Also, we can show that limt→0+ ���X� Y� t� = ���X� Y��
CKL and DCKL can be used for goodness of fit testing. Baratpour and Habibi

Rad (2012) based on CKL, developed a consistent test statistic for testing the
hypothesis of exponentiality against some alternatives.

Note that ���X� Y� t� is not symmetric, i.e., ���X� Y� t� �= ���Y� X� t�� A
symmetrized version can easily be constructed as

�̂��X� Y� t� = 1
2
��E�X� Y� t�+�E�Y�X� t���

Therefore,

�̂��X� Y� t� = 1
2

∫ �

t
�F t�x�−Gt�x�� log

Ft�x�

Gt�x�
dx�

As can be seen, for the symmetrized version of DCKL, the difference between
MRLs is omitted.

In the following example, we obtain DCKL for some common distributions.
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1044 Chamany and Baratpour

Example 2.1.

(a) Let X and Y be distributed as exponentials with mean � and 	, respectively, It is
well known that mF�t� = ��X� = ��X� t� = �. Then, it can be easily shown that
���X� Y� t� = ���X� Y� = ��−	�2

	
. As can be seen, ���X� Y� t� does not depend

on t.
(b) If X and Y have Pareto distributions with survival functions F�x� = � 	

x+	
��

and G�x� = � 	

x+	
�
� 	 > 0� � > 1� 
 > 1� x ≥ 0� respectively. Then, we can easily

show that mF�t� = 1
�−1 �	 + t����X� t� = �

��−1�2 �	 + t� and ���X� Y� t� = �	 +
t�� ��−
�2

��−1�2�
−1� . As you see, mF�t����X� t�, and ���X� Y� t� are increasing linear
functions of t.

(c) Let survival functions of X and Y be F�x� = �1− x�� and G�x� = �1−
x�	� 0 < x < 1� � > 0� 	 > 0� respectively. It is not hard to see that mF�t� =
1−t
�+1 ���X� t� = �

�1+��2
�1− t� and ���X� Y� t� = �1−t��	−��2

�1+��2�	+1� . As you see again,
mF�t����X� t�, and ���X� Y� t� are decreasing linear functions of t.

Some identities of DCKL are:

• ���X� Y� t� ≥ 0 and equality holds, if and only if F�x� = G�x�. The proof is
similar to the proof for CKL;

• ���X� Y� t� is convex. The proof is analogous to the proof for convexity of
the relative entropy (see Cover and Thomas, 2006, p. 32, Theorem 2.7.2).

In the following theorem, the monotonicity of DCKL is studied.

Theorem 2.1. ���X� Y� t� is non decreasing (non increasing), if and only if

���X� Y� t� ≥ �≤�

(
1− �G�t�

�F �t�

)
�mG�t�−mF�t��� t ≥ 0� (1)

Proof. By differentiating ���X� Y� t� with respect to t, we have

�

�t
�E�X� Y� t� = �F �t���E�X� Y� t��+ ��G�t�− �F �t���mG�t�−mF�t��� t ≥ 0�

which implies the assertion of (1).
Nanda et al. (2006) showed that in the proportional mean residual life

(PMRL) models which is presented as mG�t� = cmF�t�� the relation between �G�t�

and �F �t� is

�G�t� = �F �t�+
1− c

cmF�t�
�

By using Theorem 2.1, we have the following corollary for the PMRL models.

Corollary 2.1. In PMRL model, ���X� Y� t� is increasing (decreasing), if and only if

���X� Y� t� ≤ �≥�
�1− c�2

c�F �t�
�
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Discrimination Information — Cumulative Entropy 1045

3. Some Results on ���X� Y� t�

Stochastic orders and inequalities have been used in many areas of probability and
statistics such as reliability theory, survival analysis, economics, management, etc.
One of this stochastic orders is hazard rate order, that is usually applied to random
life times. X is said to be smaller than Y in the hazard rate order (denoted as
X ≤hr Y ), if �X�t� ≥ �Y �t�� t ≥ 0� In the following theorem, by using the concept
of the hazard rate order, we show that under some conditions, triangle inequality is
satisfied .

Theorem 3.1. Let us consider three random lifetimes X� Y and Z� If (i) Y ≥hr X and
Y ≥hr Z� or (ii) Y ≤hr X and Y ≤hr Z� then the triangle inequality is satisfied:

���X� Y� t�+�E�Y� Z� t� ≥ �E�X�Z� t��

Proof.

���X� Y� t�+���Y� Z� t�

=
∫ �

t

[
Ft�x� log

Ft�x�

Gt�x�
+Gt�x�− Ft�x�

]
dx +

∫ �

t
�Gt�x� log

Gt�x�

Ht�x�

+Ht�x�−Gt�x��dx

=
∫ �

t

[
Ft�x� log

Ft�x�

Ht�x�
+Ht�x�− Ft�x�

]
dx +

∫ �

t
�F t�x�−Gt�x�� log

Ht�x�

Gt�x�
dx

= ���X� Z� t�+
∫ �

t
�F t�x�−Gt�x�� log

Ht�x�

Gt�x�
dx� (2)

where F�G and H� are survival functions of X, Y , and Z� respectively. By noting
that if X and Y be two arbitrary random variables with survival functions F̄ and
G� respectively, and X ≤hr Y� then

Ft�x�

Gt�x�
≤ 1� By using (i) or (ii) it follows that the

second term of (2) is non-negative which completes the assertion.

In the next theorem, it has been shown that ordering in hazard rate concludes
that DCKL is less than the difference between MRLs.

Theorem 3.2. If X ≤hr Y� then

���X� Y� t� ≤ mG�t�−mF�t�� (3)

Proof. From X ≤hr Y� we have Ft�x�

Gt�x�
≤ 1 for all t > 0� Therefore,

���X� Y� t� =
∫ �

t

[
Ft�x� log

Ft�x�

Gt�x�
+Gt�x�− Ft�x�

]
dx ≤

∫ �

t

[
Gt�x�− Ft�x�

]
dx�

which gives (3).
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1046 Chamany and Baratpour

The non negative random variable X is said to be new better (worse) than used
in expectation (denoted by NBUE (NWUE)), if

∫ �
t
F�x�dx

F�t�
≤ �≥�E�X��

for all t ≥ 0 (see Shaked and Shanthikumar, 2007). The following corollary is
obtained from Theorem 3.3.

Corollary 3.1. If X ≤hr Y� and X and Y be NWUE and NBUE, respectively, then

���X� Y� t� ≤ E�Y�− E�X��

In the literature, a good number of models have been introduced for modeling and
analyzing failure time data. proportional hazard rate model introduced by Lehmann
(1953) gained wide spread extensions after the rationale behind the model was
explained by Cox (1972).

Remark 3.1. For the proportional hazard rate model which is defined as

G�x� = �F�x���� x > 0� � > 0�

if � > 1� then

���X� Y� t� ≤ ��− 1���X� t��

The following theorem gives some conditions for �E�X� Y� t� to be more than
���Z� Y� t��

Theorem 3.3. Let us consider three random lifetimes X� Y , and Z with survival
functions F� G and H� respectively. If X ≤hr Z ≤hr Y , then

���Y� X� t� ≥ max���Y� Z� t�����Z�X� t���

Proof.

���Y� X� t�−���Y� Z� t� =
∫ �

t
�Gt�x� log

Ht�x�

F t�x�
dx +mF�t�−mH�t�

≥
∫ �

t
�Ht�x� log

Ht�x�

F t�x�
dx +mF�t�−mH�t�

= ���Z�X� t�� (4)

where inequality is obtained by Ht�x� ≤ Gt�x�� By (4) and non negativity of DCKl,
we conclude that ���Y� X� t� ≥ �E�Y� Z� t� and ���Y� X� t� ≥ ��Z�X� t�� Hence, the
proof is complete.

Mixture distributions play an important role in nearby every field of statistics.
Let X and Y be two random variables with distribution functions F and G�
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Discrimination Information — Cumulative Entropy 1047

respectively, and Z be a random variable with distribution function pF + �1−
p�G� for some p ∈ (0,1). Now, if X ≤hr Y� then X ≤hr Z ≤hr Y (see Shaked
and Shanthikumar, 2007, p. 27, Theorem 1.B.22), that consequently satisfies the
condition of Theorem 5. Thus, we have the following corollary.

Corollary 3.2. If X ≤hr Y and Z be a mixture of X and Y� then

���Y� X� t� ≥ max���Y� Z� t���E�Z�X� t���

The next theorem represents that the difference between ���X� Y� t� and ���X� Z� t�
is less than the MRLs of Y and Z.

Theorem 3.4. Let X� Y , and Z be three random lifetimes with survival functions F�G,
and H� and mean residual life-time functions mF�mG, and mH� respectively. If Z ≤hr Y ,
then

���X� Y� t�−���X� Z� t� ≤ mG�t�−mH�t��

Proof. The proof is analogous to that of Theorem 3.2 and hence omitted.

In the next theorem, we find an upper bound for the difference between
���X� Y� and ���X� Y� t�� We first recall that the non negative random variable X
is said to be new better (worse) than used (denoted by NBU (NWU)), if F�x + y� ≤
�≥�F�x�F�y� for all x� y > 0�

Theorem 3.5. If X and Y be NWU and NBU, respectively, then

���X� Y�−���X� Y� t� ≤ �E�Y�− E�X��− �mG�t�−mF�t���

Proof. By definitions of NWU and NBU, we have

F�x + t�

F�t�
≥ F�x�

and

G�x + t�

G�t�
≤ G�x��

Therefore,

∫ �

0

F�x + t�

F�t�
log

F�x + t�/F�t�

G�x + t�/G�t�
dx ≥

∫ �

0
F�x� log

F�x�

G�x�
dx�

Thus,

���X� Y� t�− �mG�t�−mF�t�� ≥ ���X� Y�− �E�Y�− E�X���

which completes the proof.
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1048 Chamany and Baratpour

Theorem 3.6.

(i) For an increasing function � on �0� ��, if a ≤ �′ ≤ b� a� b > 0� where �′ is the
derivative of �, then

a ���X� Y� �−1�t�� ≤ �����X�� ��Y�� t� ≤ b ���X� Y� �−1�t���

(ii) ���bX� bY� t� = b ��
(
X� Y� t

b

)
� b > 0�

Proof.

�����X�� ��Y�� t� =
∫ �

t

[
F��−1�x��

F��−1�t��
log

F��−1�x��/F��−1�t��

G��−1�x��/G��−1�t��

+ G��−1�x��

G��−1�t��
− F��−1�x��

F��−1�t��

]
dx

=
∫ �

�−1�t�
�

′
�y�

[
F�y�

F��−1�t��
log

F�y�/F��−1�t��

G�y�/G��−1�t��
(5)

+ G�y�

G��−1�t��
− F�y�

F��−1�t��

]
dy�

Therefore, if a ≤ �′�y� ≤ b� then (i) results. If ��x� = bx� b > 0� then by (5), we
have

���bX� bY� t� = b
∫ �

t
b

[
F�y�

F� t
b
�
log

F�y�/F� t
b
�

G�y�/G� t
b
�
+ G�y�

G� t
b
�
− F�y�

F� t
b
�

]
dy

= b ��
(
X� Y�

t

b

)
�

Thus, (ii) is concluded.
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