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The history of the study of fluid solidification in stagnation flow is limited to a few cases.
Among these few studies, only some articles have considered the fluid viscosity and yet
pressure variations along the thickness of the viscous layer have not been taken into
account and the energy equation has been assumed to be one-dimensional. In this study
the solidification of stagnation flows is modeled as an accelerated flat plate moving
toward an impinging fluid. The unsteady momentum equations, taking the pressure varia-
tions along viscous layer thickness into account, are reduced to ordinary differential
equations by the use of proper similarity variables and are solved by using a fourth-order
Runge-Kutta integrating method at each prescribed interval of time. In addition, the
energy equation is numerically solved at any step for the known velocity and the problem
is presented in a two-dimensional Cartesian coordinate. Comparisons of these solutions
are made with existing special ranges of past solutions. The fluid temperature distribu-
tion, transient velocity component distribution, and, most important of all the rate of sol-
idification or the solidification front are presented for different values of nondimensional
Prandtl and Stefan numbers. The results show that an increase of the Prandtl numbers
(up to ten times) or an increase of the heat diffusivity ratios (up to two times) causes a
decrease of the ultimate frozen thickness by almost half, while the Stefan number has no
effect on this thickness and its effect is only on the freezing time.
[DOI: 10.1115/1.4023936]
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1 Introduction

The solidification that comprises the heat transfer accompani-
ment phase change is one of the most interesting phenomena in
natural processes and industrial applications. The glass, metal,
plastic, oil industries, food-providing, and other corresponding
industries need a good understanding of solidification behavior
and the nature of solid growth.

In addition, studies of the phase change in stagnant media and
better understanding of the convection effect upon the interface
behavior and solidification properties are needed to meet indus-
trial demands, such as the desire for more homogenous semicon-
ductor crystals in the nuclear industry, along with the better
understanding of natural ice formation.

The classic problem of stagnant fluid solidifying on a cold
plate has been solved by Stefan [1]. A one dimensional heat flux
method for the phase change problem has been presented by
Goodrich [2]. This method is accompanied by simplifications
such as the assumption of one dimensionality of the solid-liquid
interface. Experiments were performed in order to study the tran-
sition between freezing controlled by natural convection in the
liquid adjacent to a freezing interface and freezing controlled by
heat conduction in the solidified material by Sparrow [3]. Addi-
tionally, a numerical method for solidifying in natural convection
is used by Lacroix [4] and the three-dimensional problem for nat-
ural convection with the accompaniment of the phase change in a
rectangular channel is solved by Yeoh et al. [5], in which the fluid
properties vary with temperature. The solidification of a fluid
layer confined between two isolated plates is investigated by Hadji
et al. [6]. Another method for calculating the heat flux, depending

on time in natural convection, is presented by Hanumanth [7]. A
combined model for the phase change upon various states of pure
substances and the melting fluid problem due to spreading and
solidifying on the flat plate and a numerical modeling of the form-
ing and solidifying of a droplet on a cold plate is investigated in
Refs. [8–10]. The evolution due to impact on the substrate plate
and the solidifying of a droplet is presented by San Marchi et al.
[11]. Concentrating upon the stagnation flow, the solidification of
an inviscid fluid at an interface and the effect of its phenomena on
morphological instability is investigated by Brattkus et al. [12].
The Stefan problem for inviscid stagnation flow by two methods
and the solidifying of super-cooled liquid stagnation inviscid flow
are considered by Rangel and Lambert [13,14], respectively, in
which a numerical solution to the problem using an interface
tracking method is compared to analytical solutions for the instan-
taneous similarity and quasi-steady state. Additionally, the solidi-
fication of a viscous stagnation flowwas investigated by Rangel
and Bian [15] with the pressure consideration only along the flow
and not along the boundary layer and by applying the method of
instantaneous similarity, the temperature field, the solid-liquid
interface location, and its growth rate that is valid for the initial
stages of solidification were obtained. Furthermore, with the use
of the quasi-state approximation a solution of the problem that is
valid for the final stages of solidification is obtained. A power
series solution of viscous stagnation has been presented by Yoo
[16] in which the solution at the initial stage of freezing is
obtained by expanding it in powers of time and the final
equilibrium state is determined from the steady-state governing
equations. Recently Shokrgazr Abbasi and Rahimi [17] have
studied the stagnation-point flow and heat transfer impinging on
an accelerated flat plate which can be used in the modeling of sol-
idification in a general and unified manner. New research in the
area of stagnation flow obtaining exact solutions can be found in
the papers by Hong et al. [18], Alassar et al. [19], and Norouzi
et al. [20].

1Corresponding author.
Contributed by the Heat Transfer Division of ASME for publication in the

JOURNAL OF HEAT TRANSFER. Manuscript received July 2, 2012; final manuscript
received March 1, 2013; published online June 17, 2013. Assoc. Editor: Ali Ebadian.

Journal of Heat Transfer JULY 2013, Vol. 135 / 072301-1Copyright VC 2013 by ASME

Downloaded From: http://heattransfer.asmedigitalcollection.asme.org/ on 07/14/2013 Terms of Use: http://asme.org/terms



In this study the solidification of stagnation flows is modeled as
an accelerated flat plate moving toward an impinging fluid, as in
Ref. [17]. The unsteady momentum equations, taking into account
the pressure variations along the viscous layer thickness, are
reduced to ordinary differential equations bythe use of proper
similarity variables and are solved by using a fourth-order Runge-
Kutta integrating method at any prescribed interval of time. In
addition, the energy equation upon the liquid phase, solid-liquid
interface, and solid phase is solved by the finite difference method
at any step for a known velocity and the problem is presented in
two-dimensional Cartesian coordinates. Comparisons of these
solutions are made with existing special ranges of past solutions.
The fluid temperature distribution, transient velocity components
distribution, and, most important of all, the rate of solidification or
the solidification front are presented for different values of nondi-
mensional Prandtl and Stefan numbers.

2 Problem Formulation

Figures 1 and 2 represent a two-dimensional Cartesian coordi-
nate system ðx; zÞ with corresponding ðu;wÞ components of veloc-
ity. The viscous laminar unsteady incompressible stagnation flow
with a strain rate a(t) in the z-direction approaches to z¼ 0 per-
pendicular to the plate at t¼ 0. The fluid is solidified with variable
solidification velocity and acceleration _SðtÞ and €SðtÞ, respectively,
such as an imaginary plate at the solid-liquid interface with a
moving distance of S(t) towards the fluid in each time step. In

later sections we will see why this plate is considered as a flat one.
Variation of the strain of the impinging fluid due to the moving
solidification front is shown in Figure (3), as was shown in
Ref. [17]. Note that a0 is the strain at far field. The Navier–Stokes
and energy equations in the unsteady state are
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(b) in the solid phase
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in which p, q, �, k, and a are the pressure, density,
kinetic viscosity, conduction heat transfer coefficient,
and thermal diffusivity, respectively, and dissipation is
ignored because of the small velocities. The subscripts s
and l denote the solid and liquid phases, respectively.

3 Solution

3.1 Fluid Flow Similarity Solution. According to Ref. [17],
the velocity components in the viscous region are

u ¼ aðtÞx f 0ðgÞ wðtÞ ¼ �
ffiffiffiffiffi
�

a�

r
aðtÞ f ðgÞ

gðtÞ ¼
ffiffiffiffiffi
a�
�

r
z� SðtÞð Þ and fðtÞ ¼ z� SðtÞ (7)

Fig. 1 Coordinate system

Fig. 2 Explanation of strain and stream lines

Fig. 3 Ultimate solidification thickness after stability of the
thermal boundary layer for various Pr numbers and ar 5 1
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In which the terms involving f(g) comprise the Cartesian similar-
ity form for unsteady stagnation-point flow and the prime denotes
differentiation with respect to g. Transformations (7) automati-
cally satisfy Eq. (1) and their insertion into Eqs. (2) and (3) yields
the following ordinary differential equation in terms of f(g):
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� �

� ~aðtÞf 02 � f 0

~aðtÞ
d~aðtÞ

ds
þ 1

~aðtÞn
@ ~P

@n
¼ � (8)

in which

1

~aðtÞn
@~p

@n
¼ �~aðtÞ � 1

~aðtÞ
d~aðtÞ

ds
� 2g~_S

n2 þ g2
þ

~_S

g

 !
1� g2

n2

� �
(9)

d~aðtÞ
ds
¼ �~a�

~_S

g2
�
þ

~€S

g�
þ

~_S
2

g2
�

(10)

and an expression for the pressure
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where

~Pðx; z; tÞ ¼ pðx; z; tÞ
qa��

; ~SðtÞ ¼
ffiffiffiffiffi
a�
�

r
SðtÞ; ~aðtÞ ¼ aðtÞ

a�
;

~_SðtÞ ¼ _SðtÞ= ffiffiffiffiffiffiffi
a��
p

; n ¼
ffiffiffiffiffi
a�
�

r
x; s ¼ t

1=a�
;

~x ¼ x
ffiffiffiffiffiffiffiffiffiffi
a�=�

p
; ~z ¼ z

ffiffiffiffiffiffiffiffiffiffi
a�=�

p
(12)

in which ~P, ~S, ~_S, and ~x are corresponding nondimensional quanti-
ties and the dot denotes differentiation with respect to t. Relation
(11), which represents pressure, is obtained by integrating Eq. (3)
in the z-direction and by use of the potential flow solution as the
boundary conditions. The boundary conditions for the differential
Eq. (8) are

g ¼ 0: f ¼ 0; f 0 ¼ 0

g!1: f 0 ¼ 1
(13)

3.2 Heat Transfer. Using the nondimensional temperature
as in Ref. [17]

h ¼ TðgÞ � T1
Tw � T1

(14)

and using nondimensional quantities for the time as s, distance
from the x axis as ~x, and distance from the z axis as ~z, Eqs. (4)–(6)
become
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for the solid phase
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and for the interface of the liquid and solid
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Equations (8)–(11) and (15)–(17), along with their boundary con-
ditions, are solved in the next section.

4 Solution Method

First, the energy equation of the liquid-solid interface, Eq. (17),

is numerically solved to find the freezing velocity ðd ~S=ds ¼ ~_SðtÞÞ,
which is as unsteady term in Eq. (8). Thus, this equation is con-
verted to an ordinary differential equation and is numerically
solved using a shooting method trial and error based on the
Runge-Kutta algorithm. The results for the velocity components
are used in the energy Eq. (15) upon the liquid region to convert
this nonlinear equation to a linear one. Then, this linear equation
is discretized by using the power law scheme. For small Pe
(Pe< 1) and large Pe (Pe> 10), this scheme is central and
upwind, respectively, and for 1<Pe< 10, the scheme is a combi-
nation of these two. To solve the produced algebraic system of
equations, the TDMA1 within the ADI2 method is used.

5 Validation of the Results

In this section, our results are compared to previous studies. For
the comparisons, Ref. [15] is the most complete and the best
selection, since in this study fluid is viscous and a parametric
study has been considered. The results of these two studies are
presented together in Fig. 4 for Pr ¼ 1; St ¼ 1; hi ¼ 1; ar ¼ 1;ð
and kr ¼ 1Þ. As can be seen in this figure, due to the evolution of
the frozen front, the average relative difference of the points is
around 20%. This difference is expected, as in our study all effec-
tive parameters, such as the pressure variation along the boundary
layer, are being taken into account.

6 Presentation of Results and Parametric Study

In this section, a parametric study is done for different values of
Pr;St; hi; kr; and ar as the solidification is advancing. The

Fig. 4 Comparison of the present study and the Ref. [15]
results for (Pr 5 1, St 5 1, kr 5 1, ar 5 1 and hi 5 1)

1Three diagonal matrix algorithm.
2Alternating direction implicit.
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solidification front for Pr¼ 10 in our study has been compared
with this quantity for Pr¼ 100 of Ref. [15] in Fig. 5. The reason
for the selection of Pr¼ 10 is because the curve corresponding to
Pr¼ 100 in our study would lie on the horizontal coordinate,
although the following issues do not change. As can be seen from
this figure, the direction of the variation of the solidification front
with the Pr number in Ref. [15] is opposite from ours with the
Pr¼ 1 base. This paradox leads us to look for a reliable method
for finding the correct results, as discussed in the following text.
One approach to find the correct answer is the use of an approxi-
mate analytical solution. The assumptions to obtain this analytical
solution are as follows:

(1) The convection terms in the liquid-solid interface are negli-
gible since the velocity is very low in this region.

(2) Conduction is one dimensional in the liquid-solid interface
because of the previous assumptions. Here, the second
assumption is, in fact, the result of the first one.

Note that the dimensionless temperature difference at the
interface is zero, thus the energy equation in this region could be
presented as

Ds ¼ Pr � D~z2

St

1

hl þ hs=ar
(18)

where the upper and lower nodes in the fluid and solid regions are
introduced by hl and hs, respectively. In this equation, the dimen-
sionless time (Ds) tends to infinity as ðhl þ hs=arÞ ! 0 and solidi-
fication is consequently stopped. Additionally, ar¼ 1 is assumed
for simplification. Figure 3 determines the ultimate solid thick-
ness, which is equal to tan (A). It is determined from these figures
that as the thickness of the temperature boundary layer increases,
the ultimate solidification thickness increases and this increase is
due to the decrease of the Pr number and vice versa. From this an-
alytical approach, the ultimate solidification thickness for Pr¼ 10
must be smaller than the case of Pr¼ 1 and, therefore, the correct
direction of variation of the solidification front in Fig. 5 would be
the direction in our study. In adition, by taking just the effect of
the Pr number into account, we see that an increase of this
quantity increases the solidification time, as shown in Eq. (18).
Therefore, the results of our study are validated, yet there is
another simple approach to find the correct answer, which is
shown in the following text.

The heat transfer rate upon the frozen region with constant k
reads

q ¼ �k
DT

Dz
(19)

where DT is the temperature difference between the liquid-solid
interface and the substrate and, therefore, is a constant. The only
way to increase the heat transfer rate is to decrease Dz, where Dz
is the ultimate frozen thickness, which is same as in the steady-
state case. Increasing the Pr number in the fluid region increases
the Nusselt number and, consequently, increases the convection
heat transfer coefficient (h) (see Ref. [21], pp. 134–135). By
increasing this coefficient, heat transfer increases in the fluid
region but the same heat rate must be taken out of the frozen
region. Therefore, the ultimate solidification thickness decreases
by increasing the Pr number. In fact, physically, increasing the Pr
number increases heat transfer in the fluid region and this rapid
heat transfer through the lower layers causes the fluid temperature
to reach the freezing point at the interface and, consequently, the
ultimate frozen thickness must decrease. Using the preceding dis-
cussion, we conclude that the results of Ref. [15] for Pr 6¼ 1 are
incorrect. The source of this incorrectness in Ref. [15] is the use
of the wrong result from Eq. (22) in Eq. (23) of this reference.
Equation (23) in Ref. [15] can produce curves with arbitrary
trends for any particular Prandtl number since the choice of the
upper limit of the integral in this equation is infinity and, there-
fore, in the numerical integration, different choices for this upper
limit produce different curves. Therefore, the curve from Ref. [15]
shown in Fig. 5 of our study can have an arbitrary trend, which is
wrong.

In this section, the parametric study is continued without com-
parison with other studies. Variations of the solidification front
are shown in Fig. 6 for kr ¼ ar ¼ 0:5 (Pr¼ 1, St¼ 1, and hi¼ 1).
Since the kr and ar variations can also be special cases of the Pr
variations, here the results of these two parameters are considered
for a constant Pr number. Equation (18) shows that decreasing kr

and/or ar by half increases the final solid thickness two times
because the tan (a) increases two times; see Fig. 4. Additionally,
since decreasing kr and ar causes a decrease of the rate of heat
transfer in the liquid and solid, then at any particular location in
the liquid the temperature is lower for the case of (kr and ar)< 1,
compared to the case of (kr and ar)¼ 1 and, therefore, the former
choice will increase the final thickness of the solid.

Fig. 5 Solidification front for Pr 5 10 and (St 5 1, kr 5 1, ar 5 1,
and hi 5 1)

Fig. 6 Solidification front for kr 5 ar 5 0.5 and (Pr 5 1, St 5 1,
and hi 5 1)
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Figure (7) represents the frozen front results of this study for
hi¼ 0.5 (Pr¼ 1; St ¼ 1; kr ¼ 1; and ar ¼ 1). The variation of hi

has interesting results. That is, at any particular location in the liq-
uid the temperature is lower for the case of hi < 1, compared to
the case of hi¼ 1. When hi tends to zero, the ultimate frozen thick-
ness tends to infinity and this case requires a separate analysis.

Figure 8 represents the effect of the St number on the solidifica-
tion front. By the use of Fig. 3 and Eq. (15) it is determined that
the St number affects only the solidification time and has no effect
on the final solid thickness. Figure 9 represents the effect of Pr
number variations on the solidification front more completely. As
previously mentioned, this figure shows that the increasing Pr
number decreases the final solid thickness and vice versa.
Additionally, Fig. 10 represents the increasing and decreasing kr

and/or ar effects. As expected, Fig. 11 shows that increasing the

initial liquid temperature difference decreases the thickness of the
ultimate frozen thickness and vice versa.

Other interesting considerations are discussed in this section.
At first, eliminating the effect of the temperature variation on the
solidification time is considered. Figure 12 represents the results
of this consideration for Pr¼ 10. More temperature differences
between inlet and substrate temperatures leads to these two curves
getting closer together and causes more error due to elimination.
Table 1 gives the required time for the inlet liquid temperature
reaching the freezing temperature versus the total time of the
temperature variations and freezing (hi¼ 1 and Pr¼ 1; St ¼ 1;
kr ¼ 1; and ar ¼ 1). This is 0.14 times the total time and, thus, it
is not negligible.

Another interesting consideration is in the comparisons of the
effect of the convection and conduction terms separately, as
shown in Fig. 13. In fact, as previously mentioned, the effect of

Fig. 7 Solidification front for hi 5 0.5 and (Pr 5 1, St 5 1, kr 5 1,
and ar 5 1)

Fig. 8 Effect of the St number upon the solidification front for
(Pr 5 1, St 5 1, kr 5 1, and ar 5 1)

Fig. 9 Effect of the Pr number upon the solidification front for
(St 5 1, kr 5 1, ar 5 1, and hi 5 1)

Fig. 10 Effect of the kr and ar variations upon the solidification
front for (Pr 5 1, St 5 1, and hi 5 1)
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the convection terms in the liquid-solid interface is negligible and
the assumption of the solidification front being flat is proved by
this fact; however, these convection terms will be much larger as
they approach the edge of the temperature boundary layer and
will affect the conduction heat transfer of the fluid, which has an
important role on the termination of solidification.

At last, and to complete the discussion, water solidification
modeling in two-dimensional stagnation flow is considered as
an example. The conditions are: Ti ¼ 1 �C; Tsubstrate ¼ �1 �C;
and a0 ¼ 1 s�1, along with the water properties. Figure 14 repre-
sents the results. Conversion factors are given in the legend of this
figure. It is interesting to note that solidification is stopped after
almost 20 min but 90% of this ultimate solidification front is
formed in the first 5 min.

Here, some supplementary results are presented. Figure 15
represents the temperature profile for different times due to the
solidification process and Table 2 shows the corresponding start-
ing point of the temperature profile slope on both sides of the
solid-liquid interface. This table shows that solidification is
stopped just as these two slopes are equal (note that ar¼ 1). The
table is presented here to show the exact numerical values of these
quantities. Figure 16 provides the velocity profiles in the x direc-
tion for different times and distances from the z coordinate
ðn ¼ 0:3; n ¼ 1:6; and n ¼ 3:2Þ. As is shown, when the solidifica-
tion velocity is very high, that is, just for the initial moments, the

Fig. 11 Effect of the hi variations upon the solidification front
for (Pr 5 1, St 5 1, kr 5 1, and ar 5 1)

Fig. 12 Effect of the inlet temperature variations to the freeze
point versus freeze time for (Pr 5 10, St 5 1, kr 5 1, ar 5 1, and
hi 5 1)

Table 1 Comparison between temperature variations and
freezing time versus inlet to freeze temperature variations; time
only

Total time for variation
and freezing

Time for inlet to freeze
temperature variations

log10 (s)¼ 1.823 or s¼ 66.53 log10 (s)¼ 0.968 or s¼ 9.29

Fig. 13 Comparison of the conduction and convection terms
contribution for (Pr 5 10, St 5 1, kr 5 1, ar 5 1, and hi 5 1)

Fig. 14 Evolution of the solidification front for water with
a�5 1
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slope of the velocity profile in the boundary layer is very
steep and the velocity approaches the potential flow very fast, so
the thickness of the viscous boundary layer is very thin. By a grad-
ual decrease of the solidification velocity, the unsteady case
approaches the steady case of Hiemenz flow. In addition, Fig. 17
provides the velocity profile in the z-direction for different times.
More complete parametric studies over the momentum equation
parameters, such as pressure variation along the viscous boundary
layer and shear stress have been investigated in Ref. [17] and are
not repeated here.

7 Conclusions

In this study, solidification has been modeled as a two-
dimensional viscous stagnation-point flow on an accelerated flat
plate in which pressure variations are considered along both the
boundary layer and direction of flow. The solution approach has
been divided into two parts: First, the exact solution for the
momentum equations and, second, the numerical solution for the
energy equation in the liquid phase and solid-liquid interface has
been employed with which these equations have been solved at
any step, simultaneously.

The results show a steady temperature boundary layer or, in
more exact words, the start of the steady temperature profile slope
and the ratio of the liquid to solid temperature diffusivity deter-
mine the ultimate solidification thickness, while the solidification
does not stop, in theory, upon stagnant flow. It has been shown in
this study that an increase of the Pr number decreases the ultimate
solidification thickness and increasing kr and/or ar by half
increases this thickness two times and vice versa. Additionally,
decreasing hi increases this thickness while the St number varia-
tions have no effect on the ultimate solidification thickness and
increasing this dimensionless number decreases the time of
approach this thickness. In addition, the elimination of the temper-
ature variations time, from the initial value to the freezing point,
can produce high value of errors, such as 14% for Pr ¼ 10;
St ¼ kr ¼ ar ¼ hi ¼ 1 conditions, and the value of this error
varies when conditions vary.

The very small effect of convection terms at the interface leads
to an almost flat solidification front but these terms are very
important as they are approaching the edge of the boundary layer.
In fact, the solidification in stagnation flow will stop just by the
existence of these terms.

Finally, a typical example of water solidification has been pre-
sented. The results provide good insight into the effect of the fluid
motion on the solidification.

Nomenclature

a(t) ¼ time-dependent potential flow strain rate
a� ¼ potential flow strain rate at time¼ 0

f ¼ similarity function
hls ¼ solidification latent heat
kr ¼ ratio of k(kl/ks)

Pe ¼ Peclet number Pr � Re ¼ u � Dz=alð Þ
Pr ¼ Prandtl number �=alð Þ

S(t) ¼ solid phase thickness
~S ¼ nondimensional solid thickness S=

ffiffiffiffiffiffiffiffiffiffiffi
as=a�

p

Fig. 15 Thermal profile for (Pr 5 1, St 5 1, kr 5 1, ar 5 1, and
hi 5 1)

Table 2 The temperature of the first node of the interface:
lower and upper

Type of line in Fig. 4 hS hl

Continuous line �0.199984 0.079534
Dashed line �0.024450 0.012544
Dotted line �0.001599 0.000936
Long dashed line �0.000602 0.000601

Fig. 16 Velocity profile in the x direction for (Pr 5 1, St 5 1,
kr 5 1, ar 5 1, and hi 5 1)

Fig. 17 Velocity profile in the z direction for (Pr 5 1, St 5 1,
kr 5 1, ar 5 1, and hi 5 1)

Journal of Heat Transfer JULY 2013, Vol. 135 / 072301-7

Downloaded From: http://heattransfer.asmedigitalcollection.asme.org/ on 07/14/2013 Terms of Use: http://asme.org/terms



St ¼ Stefan number ðcðTm � T�Þ=hsf Þ
t ¼ time

T ¼ temperature
~x ¼ nondimensional x
~z ¼ nondimensional z

Greeks

a ¼ coefficient of thermal diffusivity
al ¼ coefficient of diffusivity of liquid
ar ¼ ratio of a (al/as) as¼ coefficient of thermal diffusivity of

solid
f ¼ variable (z� S(t))
g ¼ similarity variable, nondimensional z axis, g ¼

ffiffiffiffiffiffiffiffiffiffi
a�=�

p
f

h ¼ nondimensional temperature, ðT � TmÞ=ðTm � T�Þ
l ¼ viscosity
� ¼ kinetic viscosity
n ¼ nondimensional x axis, n ¼

ffiffiffiffiffiffiffiffiffiffi
a�=�

p
x

q ¼ density
s ¼ nondimensional time

Subscripts

i ¼ initial temperature of fluid at potential flow
l ¼ liquid
s ¼ solid

m ¼ melting point
o ¼ at time¼ 0
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