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Abstract Two different sets of collective-coordinate
equations for solitary solutions of nonlinear Klein–
Gordon (NKG) model are introduced. The collective-
coordinate equations are derived using different
approaches for adding the inhomogeneities as ex-
ternal potentials to the soliton equation of motion.
The interaction of the NKG field with a local inho-
mogeneity like a delta function potential wall or a
delta-function potential well is investigated using the
presented collective-coordinate equations, and the re-
sults of the two different models are compared. Most
of the characters of the interaction are derived analyt-
ically. The analytical results are also compared to the
results of numerical simulations.

Keywords Topological solitons · Nonlinear
Klein–Gordon · Collective coordinate

1 Introduction

Solitons are localized waves that have a nonzero energy
density in a finite region of space which exponentially
goes to zero as one moves away from this region. They
appear in nonlinear classical field theories as stable and
particle-like objects with finite mass and explicit struc-
tures. Therefore, finding suitable methods for study-
ing the soliton as a point particle provides a better
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perspective of the soliton behavior. On the other hand,
comparing the results of such kinds of models with
the results of direct numerical simulations determines
the differences between solitons as point-like particles
and real solitons. This topic is an interesting subject in
nonlinear field theories [1]. Solitons appear in a nonlin-
ear medium with a fine-tuning between nonlinear and
dispersive effects. This means that they may disappear
in the absence of this precise balance in the medium.
It is clear that a real medium contains disorders and
impurities. Therefore, stability and propagation of soli-
tons in such media are of great interest because of
their applications and theoretical interests. In order to
understand the behavior of nonlinear excitations in a
disordered system, it is important to investigate the
interaction of solitons with impurities.

Recently, some nonclassical behaviors have been
reported for solitons during the scattering from ex-
ternal potentials [2]. These potentials are generally
due to medium defects or impurities. The scattering
of solitons of integrable systems from the potentials
has been studied before [3], but such an investigation
for nonintegrable systems has not been reported yet.
Therefore, it is interesting to examine the methods of
adding the potential to the nonlinear Klein–Gordon
(NKG) model as a nonintegrable model and compare
the results to those of integrable systems. These are
strong motivations for investigating the scattering of
the NKG solitons from defects.

External potentials can be added to the equation of
motion using different methods. One way to do so is
to add an external potential to the equation of motion
as perturbative terms [2, 3]. These effects can also be
taken into account by letting some parameters of the
equation of motion become a function of position or
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time [4, 5]. Another way to add an external potential to
the field through the metric of background space-time
[6–8]. This method can be used for models in which the
Lagrangians are Lorentz invariant, such as the sine–
Gordon model, φ4 theory, CPN model, NKG models,
etc. In this paper, we will focus on the behavior of
solitons of the NKG and try to investigate the interac-
tion of the NKG solitons with defects by means of two
different analytical models.

Different types of the NKG models, which appear
in certain branches of science, are important nonin-
tegrable models. These equations can be used to de-
scribe the particle dynamics in quantum field theory.
Some of the other examples of the NKG applications
include discrete gap breathers in a diatomic chain [9],
dichotomous collective proton dynamics in ice [10],
propagation and stability of relaxation modes in the
Landau–Ginzburg model with dissipation [11], and
pion form factor [12]. Recently, Wazwaz has proposed
several localized solutions for the NKG equations us-
ing the “Tanh” method [13]. Solitons present different
trajectories during the interaction with potentials. They
can either pass through or become trapped inside
the potential after the interaction. This behavior is
very sensitive to the values of potential parameters
in the model as well as to the initial conditions of
a scattered soliton. Since such systems are generally
nonintegrable, most of the researches are still based
on numerical studies in nonlinear field theories. The
collective-coordinate approach helps us to find an-
alytical equations for the evolution of localized so-
lutions, if one can construct such suitable variables.
We will present two sets of collective-coordinate vari-
ables which are extracted from different hypotheses
[14]. These help us discuss the validity of their results
and predictions.

Therefore, two models for the NKG field in a space-
dependent potential are presented in Section 2. The
two analytical models are introduced and will be dis-
cussed in Section 3. The results of the two analyt-
ical models are compared for potential-barrier and
potential-well systems in Section 4. In Section 5, we will
compare our analytical results with direct numerical so-
lutions of the equations. Some conclusions and remarks
will be presented in Section 6.

2 Two Analytical Models for the NKG
Soliton–Potential System

Model 1 The Lagrangian of the NKG model in (1+1)
dimensions is defined as

L = 1

2
∂μφ∂μφ − U (φ) , (2.1)

where U (φ) is the potential of the field which is
defined by

U (φ) = λ(x)

(
1

2
φ2 − 1

2
φ4 + 1

8
φ6

)
, (2.2)

where λ(x) = 1 + V(x). V(x) is a potential parameter
and carries the effects of the external potential. The
potential V(x) is a localized function which is nonzero
only in a certain region of space. The equation of
motion for the Lagrangian (2.1) is

∂μ∂μφ + λ(x)

(
φ − 2φ3 + 3

4
φ5

)
= 0. (2.3)

This equation cannot be solved analytically because the
potential has spatial dependence. If we take V(x) = 0,
we have the nonlinear Klein–Gordon equation with the
following one-soliton solution [13]:

φ(x, t) =
[

1 + tanh

(
x − X(t)√

1 − Ẋ2

)]1/2

, (2.4)

where X(t) = x0 − Ẋt. Here, x0 and Ẋ are the soli-
ton’s initial position and (constant) velocity, respec-
tively. It is a kink-like solution as Fig. 1 shows.
We intend to investigate the behavior of the kink
solution (2.4) during the interaction with an external
potential using the collective-coordinate technique.

The derivation of the collective action for the motion
of the vortex centers starts with the elegant idea of
Manton [15]. A collective action can be constructed
by substituting the collective-vortex ansatz for the field
configuration with vortices at Xi(t), i = 1, ..., N, into
the effective field-theory action and reducing the action

Fig. 1 Kink-like solution of the NKG described by (2.3) for x0 =
0 and Ẋ = 0.5 at t = 0
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to a function of the collective coordinates, L[Xi(t)] =∫
L (ψ (x, t, Xi(t))) [16]. It is clear that (2.4) is not the

exact solution for (2.3). But it is the approximate solu-
tion if V(x) is a local weak perturbation [17].

By inserting the solution (2.4) in the Lagrangian (2.1)
and using adiabatic approximation [2], we have

L =
(
Ẋ2 − 1

)
sech4 (x − X)

8 (1 + tanh (x − X))

−λ(x)

8
sech2 (x − X) (1 − tanh (x − X)) . (2.5)

In the adiabatic approximation, one would suppose that
the soliton velocity changes in an adiabatic process.
Therefore, the soliton speed changes very slowly.
Moreover, we have considered solitons with a small
velocity, which changes very slowly.

Model 2 The general form of the action in an arbitrary
metric is

S =
∫

L(φ, ∂μφ)
√−gdnxdt, (2.6)

where g is the determinant of the metric gμν(x). There-
fore, we have an effective Lagrangian Leff = L√−g.
The energy density of the system can be calculated
by varying both the field and the metric [6]. For the
Lagrangian of the form (2.1), the equation of motion
becomes [8, 14]

1√−g

(√−g∂μ∂μφ + ∂μφ∂μ
√−g

) + ∂U(φ)

∂φ
= 0. (2.7)

A space-dependent potential can be added to the La-
grangian of the system by introducing a suitable non-
trivial metric for the background space-time [6, 14]. In
other words, the metric carries the information about
the potential. In the presence of a weak potential V(x),
the suitable metric is [6, 8, 14]

gμν(x) ∼=
(

1 + V(x) 0
0 −1

)
. (2.8)

By inserting the solution (2.4) in the effective
Lagrangian (Leff) with the potential (2.2) of the NKG
and using the metric (2.8), with adiabatic approxima-
tion [2, 3], we have

Leff = √
1 + V(x)

(
(1 − V(x)) Ẋ2 − 1

)

× sech4 ((x − X))

8 (1 + tanh (x − X))

−
√

1 + V(x)

8
sech2 (x − X) (1 − tanh (x − X)) .

(2.9)

For the weak potential V(x), (2.9) becomes

Leff
∼=

((
1 − V(x)

2

)
Ẋ2 −

(
1 + V(x)

2

))

× sech4 ((x − X))

8 (1 + tanh (x − X))

−1 + V(x)

2

8
sech2 (x − X) (1 − tanh (x − X)) .

(2.10)

3 Collective Coordinate for the Two Models

The Lagrangian density of the soliton is described
by (2.5) in model 1 and (2.10) in model 2. These
two equations are different in kinetic and also poten-
tial terms. We will compare them later. The soliton
internal structure can be omitted by integrating the
Lagrangian density (or Hamiltonian density) with re-
spect to the variable x. The integrated Lagrangian is
called the collective Lagrangian. After the integration,
the soliton appears as a point-like particle; however, the
effect of its extended nature still reflects in the kinetic
and also potential parts of the collective Lagrangian.
The dynamics of the point-like particle can be de-
scribed by equations which are derived from collective
Lagrangian. It is interesting to compare the results of
the collective equations with those of direct numer-
ical simulation of the main Lagrangian density. Let
us derive the collective Lagrangian and the point-like
particle equation of motion in the two models.

Model 1 By integrating the Lagrangian (2.5) over the
variable x , X(t) remains as a collective coordinate.
If we take the potential V(x) = εδ(x), the collective
Lagrangian is derived from (2.5) as

L = 1

4
Ẋ2 − ε

8
sech2 (X) (1 + tanh (X)) − 1

2
, (3.11)

where M0 = 1
2 is the rest mass of the soliton in this

model. The effective potential comes from (3.11), which
is given by

U (φ) = ε

8
sech2 (X) (1 + tanh (X)) + 1

2
. (3.12)

The NKG solitons have a special and interesting prop-
erty, which has not been observed in other fields. If we
plot the effective potential as a function of collective
position (X), we will find that it has a spatial shift
with respect to the origin. Figure 2a shows the effective
potential as a function of position (X) for ε = 2. Sim-
ulations also confirm this finding for the NKG model.
Figure 2b presents the shape of the potential barrier as
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Fig. 2 a Effective potential as a function of position with ε = 2. b Potential barrier as seen by the soliton in model 1 using numerical
simulations

seen by the soliton which has been plotted using nu-
merical calculation. It is a special characteristic for the
NKG field theory. The source of this distinction with
respect to other fields calls for additional consideration.

The equation of motion for the variable X(t) is
derived from (3.11) as

1

2
Ẍ − ε

2
sech2 (X)

[
3

4
tanh2 (X) + 1

2
tanh (X) − 1

4

]
= 0.

(3.13)

We can define a collective force on the soliton if we
look at the above equation as F = MẌ, where M is the
rest mass of the soliton. Therefore, we have

F = ε

2
sech2 (X)

[
3

4
tanh2 (X) + 1

2
tanh (X) − 1

4

]
.

(3.14)

This equation shows that the peak of the soliton moves
under the influence of a complicated force which is
a function of an external potential and soliton posi-
tion. Suppose that a soliton moves toward a potential
barrier. Its velocity will reduce due to the effect of a
repulsive force. While the soliton is moving away, its
velocity increases. Figure 3a, b shows the force exerted
by the potential well and barrier on the soliton for ε =
−4 and ε = 4, respectively. This is in agreement with
the observed behavior for the NKG model as shown in
Fig. 2. These figures also show that the center of the
force is not located at the origin.

Interestingly, (3.13) has an exact solution for Ẋ
as follows:

Ẋ2 − Ẋ0
2 = ε

2
[tanh3 (X) + tanh2 (X) − tanh (X)

− tanh3 (X0) − tanh2 (X0) + tanh (X0)],
(3.15)

where X0 and Ẋ0 are the soliton’s initial position
and initial velocity, respectively. Some of the physical
features of a soliton–potential system can be discov-
ered using (3.15). Collective energy is obtainable from
Lagrangian (3.11) as follows:

E = 1

4
Ẋ2 + ε

8
sech2 (X) (1 + tanh (X)) + 1

2
. (3.16)

This is the energy of a particle with the mass of M0 = 1
2

and the velocity of Ẋ, where the particle moves under
the influence of an external effective potential. By
substituting Ẋ from (3.15) in (3.16), we show that the
energy of the system is a function of the soliton’s initial
conditions X0 and Ẋ0, and therefore, it is conserved.

Model 2 The above results can be obtained using
model 2. For the Lagrangian (2.10), X(t) remains a
collective coordinate if we integrate (2.10) over the
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Fig. 3 a The force on the soliton by a potential well with ε = −4. b The force on the soliton by a barrier with ε = 4

variable x. If we take the potential V(x) = εδ(x), the
collective Lagrangian becomes

L =
(

1

4
− εsech4 (X)

16 (1 − tanh (X))

)
Ẋ2

−ε

8

(
sech4(X)

1 − tanh (X)

)
− 1

2
. (3.17)

The equation of motion for the variable X(t) is derived
from (3.17):

(
1

2
− εsech4 (X)

8 (1 − tanh (X))

)
Ẍ − ε

16
sech2 (X)

× (−3 tanh2 (X) − 2 tanh (X) + 1
) (

Ẋ2 − 2
) = 0.

(3.18)

The above equation describes the soliton trajectory
which moves under the influence of a collective force.
The collective force is a function of the soliton’s posi-
tion and velocity. Ẋ(t) can be calculated as a function
of X(t) by integrating (3.18) as follows:

Ẋ2 − 2

Ẋ0
2 − 2

= 1 − εsech4(X0)

4(1−tanh(X0))

1 − εsech4(X)

4(1−tanh(X))

, (3.19)

where X0 and Ẋ0 are the soliton’s initial position and
initial velocity, respectively. The energy of the soliton in

the presence of the potential V(x) = εδ(x) using model
2 becomes

E =
(

1

4
− εsech4 (X)

16 (1 − tanh (X))

)
Ẋ2

+ε

8

(
sech4(X)

1 − tanh (X)

)
+ 1

2
. (3.20)

Equation (3.20) shows that the rest mass is a function
of the soliton’s position in model 2. This is the source
of some differences between the two models which will
be discussed in the next section. In Section 4, some
features of the soliton–potential dynamics are studied
analytically using (3.19) and (3.20).

4 Comparing the Models

Potential barrier There are two different trajectories
for a soliton during the interaction with an effective
potential barrier, which depend on the soliton’s initial
conditions. A soliton with a low velocity reflects back
from the barrier and a high-velocity soliton climbs up
the barrier and passes over it. So these two situations
can be distinguished by a critical velocity. The total
energy of the soliton–potential is conserved in both
models as mentioned before. Therefore, we can find
the critical velocity with a simple analysis of the energy
of the soliton without any numerical simulations. Both
(3.16) and (3.20) are reduced to E(X = ∞) = 1

4 Ẋ0
2 + 1

2
when the soliton is far from the center of the delta-like
potential which is located at the origin. It is the energy
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of a particle with the mass of M0 = 1
2 and velocity

of Ẋ0. The energy of a soliton in the origin (X =
0) comes from (3.16) and (3.20) for the two models:
E1(X = 0) = 1

4 Ẋ0
2 + ε

8 + 1
2 for model 1 and E2(X =

0) = (
1
4 − ε

16

)
Ẋ0

2 + ε
8 + 1

2 for model 2. The minimum
energy of soliton in this position is E = ε

8 + 1
2 for the

two models. On the other hand, a soliton which comes
from the infinity with initial velocity vc has the energy
of E = 1

4vc
2 + 1

2 . So it is easy to calculate the critical
velocity of soliton by comparing the energy of the
soliton at the origin to its energy at infinity. The critical
velocity is calculated as vc = √

ε
2 using both models.

The same result is derived by substituting Ẋ = 0 , Ẋ0 =
vc , X0 = ∞, and X = 0 in (3.15) and (3.19).

Note that the critical velocity of a soliton depends
on its initial position as well as its initial velocity. For a
soliton which is located at some position like X0 (which
is not necessarily infinity), the critical velocity will not
be vc = √

ε
2 . So a soliton in the initial position X0 with

initial velocity of Ẋ0 has the critical initial velocity if its
velocity becomes zero at the top of the barrier X = 0.
Consider a soliton with initial conditions of X0 and Ẋ0.
If we set X = 0 and Ẋ = 0 in (3.15) and (3.19), then
vc = Ẋ0. Thus, for model 1, we have

vc =
√

−ε

2

(
tanh (X0) − tanh2 (X0) − tanh3 (X0)

)
. (4.21)

But the critical velocity in model 2 becomes

vc =
√

2ε
(
1 − tanh(X0) − sech4(X0)

)
4 − 4 tanh(X0) − εsech4(X0)

. (4.22)

Figure 4 shows the critical velocity as a function of
the potential strength for X0 = −1 in the two models.
This figure shows that model 1 predicts smaller critical
velocity compared to model 2 due to the differences
between rest masses of these models. It is clear that
a soliton with a great rest mass needs smaller velocity
to reach the potential peak. The difference between
the rest mass of the soliton in model 1 and that of the
soliton in model 2 can be calculated using (3.16) and
(3.20) as

�Ekinetic = εsech4(X)

16 (1 − tanh(X))
Ẋ2. (4.23)

The above equation shows that the two models pre-
dict equal rest mass at infinity. But the difference

Fig. 4 Critical velocity as a function of barrier height in both
models for initial position X0 = −1

between the calculated rest mass in the two models
increases as the strength of the potential increases.
Figure 4 shows this phenomenon explicitly. It is in-
teresting to depict the critical velocity as a function
of initial position. The critical velocity is shown as a
function of the initial position in Fig. 5 for the two
models with ε = 0.5. This figure shows a considerable
agreement between the two models. For a soliton at
infinity, the two models demonstrate confirming results
as shown in Fig. 5. This figure also demonstrates that

Fig. 5 Critical velocity as a function of initial position in both
models for ε = 0.5
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a soliton needs lower initial velocity to pass over the
barrier if it is closer to the center of the potential.

Soliton–well system Let us consider a soliton which
moves toward a frictionless potential well. This situa-
tion is worth investigating because of some differences
between a point particle and a soliton in the potential
well. A point particle falls in the well with increasing
velocity and reaches the bottom of the well with its
maximum speed. After that, it will climb the well with
a decreasing velocity and finally passes through the
well. Its final velocity, after the interaction, equals its
initial velocity.

We will have a potential well by replacing ε with −ε

in (3.15). The solution for the system in model 1 is

Ẋ2 − Ẋ0
2 = −ε

2

[
tanh3 (X) + tanh2 (X) − tanh (X)

− tanh3 (X0)− tanh2 (X0)+ tanh (X0)
]
.

(4.24)

Similarly, for model 2, we have

Ẋ2 − 2

Ẋ0
2 − 2

= 1 + εsech4(X0)

4(1−tanh(X0))

1 + εsech4(X)

4(1−tanh(X))

. (4.25)

We can define an escape velocity instead of a critical
velocity for a soliton–well system. The escape velocity
is the minimum velocity for a soliton which can pass
through a well. A soliton in an initial position X0

reaches the infinity with a zero final velocity if its initial
velocity is

Ẋescape1 =
√

ε

2

(
sech2 (X0) − tanh3 (X0) + tanh (X0)

)
,

(4.26)

and

Ẋescape2 =
√

2εsech4 (X0)

4 − 4 tanh(X0) + εsech4(X0)
, (4.27)

which are calculated using models 1 and 2, respectively.
In other words, a soliton which is located in the initial
position X0 can escape to infinity if its initial velocity
Ẋ0 is greater than the escape velocity Ẋescape. Figures 6
and 7 show the escape velocities from a potential well

Fig. 6 Escape velocity as a function of the well depth in both
models for initial position X0 = −1

as a function of the well depth (Fig. 6) and soliton’s
initial position (Fig. 7) using the two models. Due to
its bigger rest mass, the soliton in model 2 needs lower
escape velocity in comparison with the soliton in model
1. This is obvious from (4.23).

Consider a soliton which moves toward the poten-
tial well with an initial velocity Ẋ0 smaller than the
escape velocity Ẋescape. The soliton reaches a maximum
distance Xmax from the center of the potential with
zero velocity and then comes back toward the center

Fig. 7 Escape velocity as a function of initial position in both
models for ε = 0.5
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of the potential well. Therefore, the soliton oscillates
in the well with the amplitude of Xmax. The required

initial velocity to reach Xmax is found from (4.25) for
model 2 as

Ẋ0 =
√√√√2ε

(
sech4 X0 (1 − tanh Xmax) − sech4 Xmax (1 − tanh X0)

)
(1 − tanh Xmax)

(
4 − 4 tanh X0 + εsech4 X0

) . (4.28)

It is clear that the soliton oscillates around the well if
its initial velocity is lower than the escape velocity. The
period of the oscillation can be calculated numerically
using (4.25).

5 Analytical Results vs. Numerical Simulation

We have shown that the general behavior of a soliton–
potential system is almost the same in models 1 and 2.
However, we can find some small differences between
the dynamics of a soliton in the two models. It is
important to compare the results of analytical models
to direct numerical solutions. Here, we will compare the
analytical results of model 1 to its numerical solution. It
is clear that the same comparison can be done for model
2. The soliton equation of motion for a small potential
in model 1 is [16]

φtt − φxx + (1 + σδ(x))
∂U
∂φ

= 0. (5.29)

Both models (for a delta-like potential) have a para-
meter in their equation of motion that controls the
strength of the external potential. It is possible to com-
pare the strength parameters in a specific situation by

Fig. 8 Critical velocity as a function of ε with results of simula-
tion using (5.29) and the analytical model

simulating and adjusting parameters in order to have
the same results in different models for that specific
situation. We expect to find approximately the same
relation between the parameters in other situations. We
found that the critical velocity for a soliton–barrier sys-
tem is vc = √

ε
2 . It is possible to adjust the strength para-

meter ε in an analytical model with the same parameter
in (5.29) by means of vc. Numerical simulations using
(5.29) show the same behavior for the critical velocity.
An effective potential can be found by interpolation

of simulation results on the vc =
√

εeff
2 =

√
α+εβ

2 . εeff is

the potential strength (as an effective parameter) in
numerical simulation while ε is a similar parameter
in model 1. εeff can be found by fitting the numerical
results on a theoretical diagram as

εeffective = (0.0434 ± 0.01061) + (0.76462 ± 0.02479) ε.

(5.30)

Figure 8 shows the result of simulations of (5.29) for
the NKG model. Our simulations show a very good
agreement between numerical results and theoreti-
cal predictions for other features of soliton–potential
interaction.

6 Conclusions and Remarks

Two analytical models for the interaction of the NKG
solitons with delta function potential have been pre-
sented. The two models predict a critical velocity for
the soliton–barrier interaction which is a function of
the initial conditions and the potential identities. For
a soliton–well system an escape velocity has been in-
troduced instead of the critical velocity. These models
are able to explain most of the features of the system
analytically. We have observed that the center of the
potential, as seen by the NKG solitons, is quite different
from the real position of the potential center. Nu-
merical simulations are in agreement with theoretical
predictions of the models. Our models fail to predict the
narrow windows of soliton reflection from the potential
well. Additional research is needed to find a better
model with a suitable collective-coordinate method to
explain this behavior. These models can be used to
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predict the soliton behavior in the other field theories
beside the NKG model.
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