
830
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Stress–force–fabric relationship for planar granular materials

E. SEYEDI HOSSEININIA�

This paper presents the theoretical development of a relationship between the average stress compo-
nents and the micromechanical fabric anisotropy characteristics within assemblies of planar particles.
The main feature of the modified formulation is the ability to consider both inherent and induced
anisotropy conditions within the assembly. This was achieved by amending the definition of the
contact vector between particles in the stress–force–fabric relationship. By using numerical discrete-
element method (DEM), a series of inherently anisotropic granular materials were simulated in order
to verify the accuracy of the proposed formulation. In the simulations, the geometry of the particles
was chosen to be irregular polygons. The shear capacity of the assemblies during the loading process
was calculated from direct measurement of macroscopic stress components, and from anisotropy fabric
parameters. By comparing the results, it is shown that reasonable agreement exists between the
calculated and measured values.
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INTRODUCTION
It is clear that an understanding of the mechanical behaviour
of granular media is highly dependent upon comprehension
of the micromechanical response of these systems. To inter-
pret the mechanical behaviour of granular materials, the
fabric should be studied: that is, the spatial arrangement of
soil particles, contact points and associated voids. Finding a
relationship between applied forces or stresses exerted on
boundaries and fabric evolution within the assembly is an
interesting subject in this regard.

Experimental investigations on the behaviour of a granular
material go back to Schneebeli (1956), who worked on an
assembly of metal rods. Further attempts to model granular
materials were made using optically sensitive materials
(Dantu, 1957; Wakabayashi, 1957; Drescher & de Josselin
de Jong, 1972; Oda & Konishi, 1974, Oda et al., 1982). In
this method, an assembly of photoelastic cylindrical rods
was loaded through platens, and the interparticle contact
forces were calculated from the pattern of isochromatics
viewed in polarised light. Based on the experimental results,
granular media were studied from analytical points of view.

Biarez & Wiendieck (1963) presented the distribution of
contacts in graphical form as rosettes (i.e. histograms) for
two-dimensional assemblies of irregularly shaped particles.
Then, based on statistical functions, the distribution of
contacts was introduced for assemblies including uniform
spheres (Horne, 1965) and non-spherical particles (Oda,
1972a, 1972b, 1972c, 1977; Rothenburg, 1980). Satake
(1982) described the distribution of contact normals for
planar systems of particles by a second-order anisotropy
tensor, and Oda et al. (1982) and Mehrabadi et al. (1982)
proposed a three-dimensional tensorial quantity called the
fabric tensor.

Regarding the estimation of stress state for a granular
assembly, Hill (1963) defined the average stress tensor in
terms of applied forces over a homogeneous granular system
(see also Drescher & de Josselin de Jong, 1972; Strack &

Cundall, 1978; Rothenburg, 1980; Mehrabadi et al., 1982).
Weber (1966) introduced a macroscopic stress tensor, which
can be calculated from assembly contact forces and the
geometrical arrangement of contacting particles. This rela-
tionship became the origin of most micromechanical investi-
gations of granular assemblies.

Based on Weber’s equation, Rothenburg (1980) showed
that the average stress tensor for an assembly comprising
circular particles or spheres has the properties of the stress
tensor as used in continuum mechanics, but is derived from
consideration of discrete contact forces, contact geometry
and principles of static equilibrium. He assumed that contact
forces and contact vectors are homogeneously distributed
among a very large number of particles, and thus he
approximated the distribution of discrete contact force com-
ponents and contact normals of particles by statistical con-
tinuous functions. He developed useful relationships for
assemblies with planar particles (discs), which equate the
micromechanical parameters to the macro-scale shear cap-
acity of the system. By assuming that the distributions of
average contact force components and contact normals have
the same directions of anisotropy, the so-called stress–
force–fabric relationship is introduced as (Rothenburg &
Selvadurai, 1981)

� t

� n

¼ ac þ an þ at

2þ acan

(1)

where �t and �n are the deviatoric and normal stress-
invariant quantities respectively. The ratio �t/�n is frequently
interpreted as the mobilised angle of friction for cohesion-
less materials (i.e. sin�mob). This equation directly relates
the shear capacity of the assembly to the anisotropy develop-
ment in terms of coefficients of anisotropy for normal
contacts (ac), average normal contact force (an), and tangen-
tial contact force (at).

In order to verify the stress–force–fabric equation quanti-
tatively, detailed information is needed for the distribution of
contact normals and contact force components among a
large number of particles. Since experimental tests cannot
easily give the required information, numerical simulations
of granular media by the discrete-element method (DEM)
were used for verification. The accuracy of the stress–
force–fabric relationship was verified for assemblies includ-
ing circular discs (Rothenburg & Bathurst, 1989) and planar
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elliptical particles (Rothenburg & Bathurst, 1992). The
elongated elliptical particles were homogeneously distributed
within the assembly. Later, it was shown that the aforemen-
tioned macro–micro relationship was also applicable to
convex polygon-shaped particles (Mirghasemi et al., 2002).
Note that the particles used in these simulations were
randomly distributed within the assembly, or the shapes of
particles were equilateral polygons – that is, having isotropic
shapes (Mirghasemi et al., 2002). Later, Seyedi Hosseininia
& Mirghasemi (2006) verified the so-called stress–force–
fabric relationship for assemblies comprising breakable,
polygon-shaped particles. Since the geometry of both intact
and broken particles was chosen to be isotropic rather than
elongated, equivalence between the macro and micro parts
of equation (1) was still satisfied. All the studies mentioned
above with non-circular particles imply that the stress–
force–fabric relationship is applicable if the fabric of assem-
blies (particle orientation) has an isotropic condition, rather
than being directionally anisotropic.

When elongated particles are used, it is evident that the
fabric anisotropy is highly dependent upon the alignment
and spatial arrangement of particles. Practically all soil
structures, whether natural or man made, are influenced by a
gravitational field that induces an anisotropic condition in
the soil fabric. During the deposition process of soil par-
ticles – similar to what happens in river, beach or coastal
dune sands, or in artificially deposited sand layers – par-
ticles tend to be aligned in a preferred direction, and hence
an initial inherent anisotropy is generated in the soil fabric.

There have been many experimental attempts (Arthur &
Menzies, 1972; Oda et al., 1978, 1985; Ishibashi et al.,
1991; Lade et al., 2008) as well as analytical and numerical
studies (Ting & Meachum, 1995; Azami et al., 2010; Chang
& Yin, 2010; Mahmood & Iwashita, 2010; Sazzad &
Suzuki, 2010; Fu & Dafalias, 2011) to investigate the effect
of inherent anisotropy on the macroscopic mechanical prop-
erties of inherently anisotropic materials. As mentioned
above, the DEM is a powerful tool that makes it possible to
investigate micromechanical features of granular materials.

Using the DEM, several studies have focused on the
evolution of microstructure – that is, the magnitude and
direction of fabric anisotropy of inherently anisotropic as-
semblies. For instance, Nouguier-Lehon et al. (2003) studied
the influence of grain shape and angularity on the behaviour
of granular materials. By following the value of local
variables related to fabric and particle orientation, they
found in particular that the coincidence of the principal axes
of the fabric tensor with those of the stress tensor exists for
discs and isotropic particles from the very beginning of the
loading. By contrast, this process initiates very gradually for
elongated particles that are inclined horizontally or verti-
cally.

Peña et al. (2009) reported the results of numerical biaxial
compression tests on isotropic and elongated angular par-
ticles (with vertical and horizontal arrangements) from a
micromechanical point of view. They showed that the major
direction of the stress tensor is the same for both particle
shapes, irrespective of the initial orientation. This comes
from the direction of force chains carrying the largest
stresses along the loading axis. Furthermore, based on the
results of their simulations, they concluded that for isotropic
particles the contact orientation is governed by the direction
of the major component of the stress tensor, and for
elongated particles mainly by the major principal direction
of the inertia tensor, which is related to the particle orienta-
tion.

Fu & Dafalias (2011) investigated the fabric evolution
within shear bands of granular materials using elliptical
particles in the DEM. They concluded that the angle

between the mean particle orientation and the mean contact-
normal orientation should be dependent on a number of
internal variables of the assembly, such as the interparticle
friction angle, particle shape and particle size.

Mahmood & Iwashita (2010) simulated a series of biaxial
compression tests using the DEM with different bedding
planes of elliptical particles. They again confirmed that the
bedding angle (initial anisotropy) influences the evolution of
contact anisotropy; the principal mean direction of contact
normals is not coincident with the direction of the loading
axis. Rather, the initial value is equal to the bedding direc-
tion, and it varies depending on the bedding plane during
the loading process. It was also found that the mean direc-
tion of fabric anisotropy inside shear bands tends to be
rotated towards the loading axis at large shear deformation.

More recently, Seyedi Hosseininia (2012b) examined fab-
ric evolution within inherently anisotropic granular assem-
blies containing angular particles by DEM simulations. He
observed the same qualitative trends as found in the refer-
ences mentioned above. He showed that variation of the
direction of fabric anisotropy depends on the initial direction
of the particle bedding plane, whereas the major mean
direction of normal and tangential contact forces rotates
suddenly towards the loading axis, irrespective of the initial
bedding plane condition.

Based on the discussion above, it is clear that the pro-
posed stress–force–fabric relationship (equation (1)) does
not hold true for inherently anisotropic assemblies, since the
anisotropy directions of the force components are not coin-
cident with that of the fabric – that is, particle orientation.
The present paper investigates the accuracy of the stress–
force–fabric relationship for inherently anisotropic granular
materials, and proposes a new form of the expression. First,
the theoretical background is briefly reviewed, and then
required modifications to the equation are explained. The
proposed relationship will be verified by performing numer-
ical simulations of several biaxial compression tests using
the DEM with different bedding planes of elongated angular
particles.

THEORETICAL BACKGROUND
Interparticle load transfer between particles can be de-

scribed by a contact force vector f applied to the contact
point. The study of the microstructure (fabric) can be
performed by introducing a contact normal n, denoting the
unit vector orthogonal to the contact tangent plane, and a
contact vector l describing the line pointing from the mass
centre of the contacting particle to the contact point
(Rothenburg, 1980). Fig. 1 shows the definitions of the
contact normal, contact vector and force vector for two
contacting particles. Conditions of static equilibrium in a
granular assembly lead to the expression for the Cauchy
stress tensor related to using microscopic averages, which
describes the geometry and force distributions in a granular
assembly as (Rothenburg & Selvadurai, 1981)

� ij ¼ mv

ð2�

0

�ff i Łð Þ�llj Łð ÞE Łð ÞdŁ i, j ¼ 1, 2 (2)

where the term mv is the density of contacts (the number of
contacts per unit area), and E(Ł) is the normalised contact
orientation distribution defining the relative frequency of
contacts with orientation Ł. Assuming that Ł is the inclina-
tion with respect to the horizontal direction (1–1 axis), the
contact orientation can be defined by the contact-normal
components as n ¼ (cos Ł, sin Ł): �ff i(Ł) and �llj(Ł) represent
the polar distributions of the average components of the
force vector and contact vector respectively.
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The average contact force acting on contacts with orienta-
tion Ł can be decomposed into an average normal force
component �ff n(Ł) and an average tangential force component
�ff t(Ł): Therefore

�ff i Łð Þ ¼ �ff n Łð Þni þ �ff t Łð Þti (3)

For a granular assembly comprising circular particles, the
contact vector is coaxial with the contact normal: that is,
l ¼ �ll0n: Here �ll0 is the average length of the contact vector,
and is approximately equal to the average radius. In equation
(3), t ¼ (� sinŁ, cosŁ) represents the direction orthogonal to
n, according to Fig. 1. Hence, by substituting equation (3) in
equation (2), it can be simplified to

� ij ¼ mv
�ll0

ð2�

0

�ff n Łð Þni Łð Þ þ �ff t Łð Þti Łð Þ
� �

E Łð ÞdŁ

i, j ¼ 1, 2

(4)

If the distribution of fabric quantities (i.e. the frequency
of contacts, E, the average normal contact force, �ff n, and

the average tangential contact force, �ff t) is sketched in a
polar system, the polar distribution forms a peanut-like
histogram, such as that shown in Fig. 2(a). Based on the
measured histogram data, the polar distribution can be
estimated by introducing functions in terms of the coeffi-
cient of anisotropy, ai, and the major principal direction of
anisotropy, Łi: According to Fig. 2(b), the parameter Łi

indicates the angle between the long axis of the histogram
with respect to the horizontal direction, and ai describes
the circularity degree of the histogram. The parameter ai is
defined as (A1 � A2)=(A1 þ A2), in which A1 is the length
of the axis of the histogram along the major principal
direction, and A2 is the length along the perpendicular
direction. Thus the value of ai varies from 0 to 1. If the
histogram has the form of a circle, the value of ai is 0,
which corresponds to an isotropic distribution. However,
the value of ai increases and closes to 1 if the circle
deforms as a peanut, which indicates a high degree of
anisotropy. The procedure to obtain the anisotropy param-
eters based on the histogram data is explained in Seyedi
Hosseininia (2012b).
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Fig. 1. Schematic diagrams of two contacting particles and associated contact vector (l), force vector (f ), normal contact
vector (n) and tangential contact vector (t)
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Fig. 2. Polar distribution of a fabric quantity: (a) based on measured data; (b) estimated by a Fourier series
expression
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Polar distributions of average contact force components
and contact-normal distribution can be approximated by
second-order Fourier series expressions as follows (Rothen-
burg, 1980).

E Łð Þ ¼ 1

2�
1þ ac cos 2 Ł� Łcð Þ½ � (5a)

�ff n Łð Þ ¼ �ff 0 1þ an cos 2 Ł� Łnð Þ½ � (5b)

�ff t Łð Þ ¼ �ff 0 aw � at sin 2 Ł� Łtð Þ½ � (5c)

where ac describes the anisotropy in contact orientations,
and Łc is the major principal direction of anisotropy. �ff 0 is a
constant representing the average normal force over all
contacts in the assembly. The terms an, at and aw are non-
dimensional coefficients of contact force anisotropy. Similar
to Łc, the terms Łn and Łt represent preferred directions of
contact force distributions for normal and tangential compo-
nents respectively. For a general loading path, Łn is not
equal to Łt, but they have almost the same value under
monotonic loading. In contrast to ac and an, the term aw is
not independent, and can be defined in terms of ac and at

from moment equilibrium of all contacts. Generally, the
value of aw is small, and close to zero. Physically, a non-
zero value corresponds to a situation in which a non-
symmetrical distribution of shear contact forces is required
to compensate for the lack of contact normals in the direc-
tion of loading axis. Such a condition may occur in inher-
ently anisotropic granular assemblies. In the Appendix, the
derivation of a general expression for the parameter aw in
terms of the other anisotropy parameters is explained, and
the formulation is verified, based on the measured data.

The anisotropy parameters mentioned above can be also
determined by introducing second-order symmetric fabric
tensors (including contact frequency and contact forces). The
coefficients of anisotropy are related to the second invariant
of the deviatoric part of the corresponding fabric tensor, and
the corresponding direction of anisotropy represents the
major principal direction (or eigenvector) of these tensors
(Bathurst & Rothenburg, 1992).

According to the Mohr stress circle, the invariants of the
average stress tensor have the forms

� n ¼
� 11 þ � 22

2
(6a)

� t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 11 � � 22

2

� �2

þ � 2
12

s
(6b)

The ratio of the above two invariants is generally known as
the mobilised friction angle for cohesionless granular mater-
ials. By putting the Fourier series expressions in equation
(5) into the integral of equation (4), the stress tensor compo-
nents can be obtained. Finally, after some mathematical
manipulation, and ignoring the product of anisotropy coeffi-
cients for the third and higher orders, the stress invariants
can be calculated, and their ratio takes the form

� t

� n

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

c þ a2
n þ a2

t þ 2acan cos 2 Łc � Łnð Þ þ 2acat cos 2 Łc � Łtð Þ þ 2anat cos 2 Łn � Łtð Þ
p

2þ acan cos 2 Łc � Łnð Þ (7)

The above equation is the origin of the so-called stress–
force–fabric relationship, which links the macroscopic mo-
bilised stress to the microscopic anisotropy parameters
within the assembly. If the directions of anisotropy for
contact normals and contact forces are coaxial – that is,
Łc ¼ Łn ¼ Łt – then the simplified expression indicated as
equation (1) is obtained. As explained in the Introduction
section, the coaxiality between fabric anisotropy and force
anisotropy exists only for assemblies containing circular
particles or isotropic (near-circular) particles. This situation

holds true for elongated particles only if the particles are
homogeneously distributed within the assembly. Hence it is
clear that the relationship should be modified for inherently
anisotropic assemblies, where the distribution of contacts is
no longer isotropic.

DEVELOPMENTS
A relationship between the average stress tensor and the

fabric characteristics was obtained for granular assemblies
containing circular particles (equation (7)). The main reason
for success in formulating such a relationship is that, owing
to the geometry of the particles, it is possible to define the
contact vector in terms of the contact normal. This implies
that the fabric anisotropy takes effect only from the aniso-
tropy of contact-normal distribution. However, this does not
hold true for elongated particles. In the simplest form, con-
sider three pairs of contacting particles with circular and
elliptical shapes, as shown in Fig. 3(a). The contact normals
in all groups of contacting particles have the same direction.
It is clear that, for circular particles, no difference exists if
the particles are inclined towards the other direction. For
elliptical particles, however, it can be seen that although the
directions of contact normals in the two groups are identical,
the particle inclinations are different from each other. This
indicates that fabric anisotropy is also related to the distribu-
tion of particle orientations. This matter has been already
given attention in the literature (e.g. Oda, 1993; Nüebel &
Rothenburg, 1996; Peña et al., 2009). However, it is not
appropriate to consider solely the orientation of particles as
a parameter in describing the fabric anisotropy. As shown in
Fig. 3(b), consider three pairs of contacting particles.
Although the relative inclination (�) of particles is identical
in all groups, the directions of the contact normal in each
group are different from each other.

The explanations above imply that the relationship l ¼ �ll0n
is not satisfied for elongated particles because of non-
coincidence of the contact vector with the contact normal,
and also the variability of the contact length (�ll0) due to the
particle geometry. The latter reason becomes more pro-
nounced for an assemblage of elongated particles with the
same bedding planes.

In order to address this deficiency, it is suggested that the
contact vector be introduced with respect to the contact
plane rather than only the contact normal. In other words,
the contact vector is decomposed into normal and orthogonal
components with respect to the corresponding contact plane.
In such conditions, the normal and tangential components of
the contact vector can implicitly reflect the effect of particle
orientation. As a consequence, the average contact vector
acting on contacts with orientation Ł can be decomposed
into an average normal contact component �lln(Ł) and an
average tangential contact component �llt(Ł): Therefore

�lli Łð Þ ¼ �lln Łð Þni þ�llt Łð Þti (8)

Applying this decomposition to equation (2), obtains

� ij ¼ mv

ð2�

0

�ff n Łð Þ�lln Łð Þninj þ �ff n Łð Þ�llt Łð Þnitj

þ �ff t Łð Þ�lln Łð Þtinj þ �ff t Łð Þ�llt Łð Þtitj

" #
E Łð ÞdŁ

(9)
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Similar to what Rothenburg suggested for the distribution
of average contact force components, the following Fourier
series expressions are suggested for the average normal and
tangential contact components.

�lln Łð Þ ¼ �ll0 1þ aln cos 2 Ł� Łlnð Þ½ � (10a)

�llt Łð Þ ¼ ��ll0alt sin 2 Ł� Łltð Þ (10b)

The term �ll0 in the above equations represents the average
normal component of contact vectors from all particles in
the assembly. The terms aln and alt are non-dimensional
coefficients of contact anisotropy. The coefficient aln ex-
plains the anisotropic distribution of the normal component
of the contact vectors within the assembly. Therefore a non-
zero value can be obtained even for a packing of circular
particles. A non-zero value for the coefficient alt represents
the deviation of the direction of the contact vector from the
contact normal. Hence, for a packing of circular particles,
alt becomes zero. Nevertheless, the reverse conclusion may
not be correct. It means that in an assembly of elongated
particles it is possible to have alt � 0, which means that the
elongated particles are homogeneously distributed within the
assembly. The terms Łln and Łlt represent certain preferred
directions of particles contact. For a general case, where the
assembly contains a broad range of sizes of irregularly
shaped particles with a random distribution, Łln 6¼ Łlt, but for
assemblies containing similar particles, these directions are
nearly coincident. For instance, the value of these terms for
inherently anisotropic assemblies with the same particle
shape is nearly equal to the bedding angle of the particles.

An approach similar to that introduced by Rothenburg
(1980) for the determination of anisotropic parameters is
taken into consideration in order to define the quantities aln,
alt, Łln and Łlt: The coefficient terms and directions of
anisotropy are related to the invariant quantities and the
principal directions (eigenvectors) of new fabric tensors
respectively. Two symmetric second-order fabric tensors LNij

and LTij can be defined from discrete numerical simulation
data using the approximations

LNij ¼
1

2�

ð2�

0

�lln Łð ÞninjdŁ �
1

N g

X
Łg

�ll
c

nnc
i nc

j

LT ij ¼
1

2�

ð2�

0

�llt Łð ÞtinjdŁ �
1

Ng

X
Łg

�ll
c

t tc
i nc

j

(11)

where Ng is the number of orientation intervals used in the
approximation, and Łg is the average orientation of the
particle group. The tensor LNij indicates the anisotropy in

the distribution of average normal contact components, and
similarly the tensor LTij corresponds to the distribution of
average tangential contact components. Hence the above-
mentioned anisotropy parameters are defined by

aln ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LN11 � LN 22ð Þ2 þ 4LN 2

12

q
LN11 þ LN 22

, tan 2Łln ¼
2LN 12

LN11 � LN 22

(12a)

alt ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LT 11 � LT 22ð Þ2 þ 4LT2

12

q
LT11 þ LT 22

, tan 2Łlt ¼
2LT 12

LT11 � LT22

(12b)

Returning to equation (9), the components of the average
stress tensor can now be obtained explicitly in terms of
anisotropic parameters. By performing mathematical manip-
ulations, the calculation of the stress invariants based on the
stress tensor components leads to the expressions

� n ¼
mv

�ll0
�ff 0

2
3

1þ 1
2
acan cos 2 Łc � Łnð Þ þ 1

2
acaln cos 2 Łc � Łlnð Þ

þ 1
2
analn cos 2 Łn � Łlnð Þ þ 1

2
atalt cos 2 Łt � Łltð Þ

2
4

3
5

(13a)

� t ¼
mv

�ll0
�ff 0

4
3

a2
c þ a2

n þ a2
t þ a2

ln þ a2
lt þ 2acan cos 2 Łc � Łnð Þ

þ 2acat cos 2 Łc � Łtð Þ þ 2acaln cos 2 Łc � Łlnð Þ

þ 2acalt cos 2 Łc � Łltð Þ þ 2anat cos 2 Łn � Łtð Þ

þ 2analn cos 2(Łn � Łln)þ 2analt cos 2(Łn � Łlt)

þ 2ataln cos 2 Łt � Łlnð Þ þ 2atalt cos 2 Łt � Łltð Þ

þ 2alnalt cos 2 Łln � Łltð Þ

2
6666666666666664

3
7777777777777775

1=2

(13b)

As a consequence, the shear capacity of an assembly with
arbitrary particle shapes and inherent anisotropy can be
obtained from microscopic anisotropy coefficients from the
stress-invariant ratio mentioned in equation (6). If an assem-
bly of circular particles is considered under monotonic
loading, the geometry of particles implies that alt ¼ 0.
Owing to the monotonic nature of the loading,
Łc ¼ Łn ¼ Łt ¼ Łln: Moreover, if the particles have a narrow
range of diameters, aln would have a small value close to
zero. Hence the same relationship as expressed in equation
(1) can be obtained by simplifying the fabric conditions of
granular materials.

The same approach mentioned above can be also applied
to three-dimensional systems. The stress–force–fabric rela-
tionship for two-dimensional systems is expressed by Fourier
series expansions (equation (13)) in terms of trigonometric
functions. For three-dimensional systems, however, the equa-
tions would be extremely cumbersome, and a tensorial Four-
ier series expansion should be used (e.g. Thornton &
Barnes, 1986).

(a)

(b)

�

� �

Fig. 3. (a) Contacting particles with the same contact normal but
different orientations; (b) contacting particles with the same
orientation but different contact normals
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VERIFICATION OF THE PROPOSED FORMULATION
Numerical simulations

In order to examine the stress–force–fabric relationship
developed here (equations (13a) and (13b)), a series of
biaxial compression tests were simulated, using the DEM.
The key point in the simulations is that the particles are
not circular or elliptical in shape, but have a geometry of a
convex, irregular polygon. Schematic diagrams of the parti-
cle geometry and dimensions used in the simulations are
depicted in Fig. 4. The particles were intentionally consid-
ered to be elongated along the horizontal direction (long
axis of particles). In the process of sample generation, three
sizes of these particles were used with scale ratios of 0.75,
1.0 and 1.25 with respect to those presented in Fig. 4. The
gradation of such an aggregate is characterised by a
uniformity coefficient (D60/D10) of 1.35 and a curvature
coefficient (D2

30=D10D60) 1.2. Here Dx indicates the long
axis length (diameter of an equivalent circumscribed circle)
of soil particles for which x% of the particles are finer. In
total, five series of samples were generated. The samples
have the form of a circle with diameter 160 mm. About
2000 particles exist in each sample. Having the same
frequency distribution of particles, these samples were dis-
tinguished by the initial inclination of the particles before
shearing. In one assembly, the particles were inclined
randomly, which constitutes an isotropic-like fabric. How-
ever, the other four assemblies contained particles whose
elongation was inclined along a predefined direction, that
is, Æ ¼ 08, 308, 608 and 908, where Æ is the bedding angle,
which is defined by the angle between the long axis of the
particle and the horizontal direction (1–1 axis). As a
consequence, the latter four samples were inherently aniso-
tropic.

After generation of the samples, each assembly
was compressed to a confining pressure of 300 kPa
(¼ �11 ¼ �22). The compression process was continued until
there was almost no volume change in the assembly. Fig.
5(a) represents a quarter of the compacted assemblies for
all inherently anisotropic samples under the confining pres-
sure of 300 kPa. As shown, the average inclination of all
particles in each sample was oriented towards the defined
bedding angle (Æ). The compacted assembly was then
sheared biaxially. This loading was performed by keeping
the lateral stress (�11) equal to 300 kPa while the boundary
was simultaneously forced to move along the 2–2 axis by a
constant vertical displacement rate. Thus the sample was
deformed to be an ellipse, elongated horizontally. The
biaxially sheared samples with different bedding angles are
depicted in Fig. 5(b). The numerical procedure and the
dataset used in this work are the same as those mentioned
by Seyedi Hosseininia (2012a, 2012b), and detailed descrip-
tions of the various stages of the simulations can be found
in those papers.

Evolution of anisotropy parameters in fabric
The general idea of how the microstructure in granular

assemblies evolves during the shearing process may be
usefully studied by following the change in the number of
contacts. Fig. 6 shows the variation of the normal contact
anisotropy coefficient (ac) and the corresponding principal
direction of anisotropy (Łc) against the axial strain for
isotropic and all inherently anisotropic assemblies. Accord-
ing to Fig. 6(a), the initial value of the parameter ac, which
corresponds to the end of the compaction process, is the
same for all inherently anisotropic samples. Such equality in
ac originates from the identical state of isotropic compaction
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of all assemblies, regardless of the bedding angle. However,
the subsequent variation of the contact anisotropy depends
on the arrangement and bedding angle of particles. The
assemblies with Æ ¼ 08 and 308 show a growth in ac such
that it reaches the limiting value of 1 with Æ ¼ 0, whereas it
remains at around its initial value in the sample with
Æ ¼ 608. In the assembly with Æ ¼ 908, contacts tend to be
distributed isotropically, as the loading continues after ac

starts to decrease from the onset of loading, and it reaches
close to zero at large axial strains (�22 ¼ 20%). Considering
the isotropic sample, as expected, ac starts from a small
value close to zero. As the loading process continues, it
reaches a limiting value (¼ 0.5), similar to what happened
for Æ ¼ 60o: It then remains constant until the end of
loading. The growth in ac indicates that new contacts are
generated among particles along the principal direction of
anisotropy, and simultaneously contacts are lost along the
perpendicular direction. The reverse phenomenon causes a
reduction in ac:

The variation of the major principal direction of contact
anisotropy (Łc) is depicted in Fig. 6(b) as a function of axial
strain. As a global trend, one can observe that, in inherently
anisotropic assemblies, the direction of anisotropy initially
coincides with the perpendicular direction of the bedding
angle – that is, Łc � 908 + Æ. However, Łc gradually tends to
rotate towards the loading axis (Łc ¼ 908). In the isotropic
assembly, however, the trend is different, and there is a rapid
rotation of the anisotropy direction towards the loading axis at
small axial strain level. For a small value of ac, such as exists
at the beginning of loading for an isotropic assembly, and at
large deformation for Æ ¼ 908, the direction of anisotropy
does not make sense, since it has an isotropic distribution.

The variation of the normal contact force anisotropy coef-
ficient (an) as a function of axial strain is plotted in Fig.
7(a) for all assemblies. The influence of inherent anisotropy
on the increase of an can be easily found in the graphs.
First, the mobilised value of an increases with decrease of
the bedding angle. Second, the peak value of an occurs at
larger axial strains as the bedding angle decreases. For the
isotropic sample, after reaching the peak value at a small
strain level, the parameter an gains a value similar to that of
the sample with Æ ¼ 608. Fig. 7(b) depicts the principal
direction of normal contact force anisotropy. Before loading
starts, the anisotropy direction is inclined approximately
perpendicular to the bedding angle, but it rotates rapidly
towards the loading axis (Łn � 908) in all assemblies. Such a
rotation of anisotropy axis originates from the generation of
new force chains along the loading axis, irrespective of the
arrangement of particles, and in turn, the magnitude of the
force chains along the tensile (horizontal) direction is disin-
tegrated. A graphical evolution of force chains during the
loading process is presented by Seyedi Hosseininia (2012b).

According to Fig. 8(a), the coefficient of tangential con-
tact force anisotropy, at, shows a rapid rise to a maximum
value, which is followed by a very slow reduction in
magnitude at large axial strain. The variation of at for
isotropic and anisotropic samples is almost the same. The
initial increase in at corresponds to the development of
frictional resistance as a result of the relative movement of
particles. The magnitude of at is much less than that of ac

and an because of the limiting interparticle resistance, which
leads to particle slippage. The variation in the principal
orientation of the tangential contact forces, Łt, is depicted in
Fig. 8(b). Analogous to what happens for the normal contact
force, Łt rotates abruptly at the initial stage of loading
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towards the loading axis; there is a small diversion of about
108 for the samples with Æ ¼ 308 and 608:

The same strategy can be applied to tracking the variation
of anisotropy of contact-length components. Figs 9 and 10
present the variation of anisotropy parameters against the
shear deformation for normal contact (aln, Łln) and tangential
contact (alt, Łlt) components respectively. It can be seen that
since the particles are randomly distributed in the isotropic
sample, both aln and alt are almost zero during the whole of
the loading process. However, the inherently anisotropic
samples contain contact-length anisotropy from the begin-
ning, and after a small rise in magnitude, they both tend to

decrease slowly as the shear deformation continues. It is
important to note that the anisotropy coefficient of the
tangential contact length component is not zero and its
magnitude is greater than that of the normal component.
This proves that the assumption of coaxiality between the
contact vector and the contact normal, which can exist
among circular particles or in isotropic samples, is not in
general correct. Although the variation trend in aln and alt is
almost the same for all anisotropic samples, it is interesting
to note that the rate of decrease in contact-length anisotropy
for the samples with Æ ¼ 608 and 908 is much higher than
that of the others. Such a reduction in aln, alt indicates that
the particles tend to rotate, and that the particles are inclined
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in such a way that they can carry applied loads. A detailed
comparison of the degree of particle rotation among aniso-
tropic assemblies is given by Seyedi Hosseininia (2012a).
Particle rotation occurs because of local instability of col-
umn-like structures, as explained elsewhere (Seyedi Hossei-
ninia, 2012b). According to Figs 9(b) and 10(b), the
principal direction of contact-length anisotropy of both
normal and tangential components remains almost constant
in each sample, and is equal to the bedding angle. This is
due to the elongation of particles, which is oriented towards
their bedding angle. Since the anisotropy coefficient of the
isotropic sample is close to zero, the rotation of anisotropy
direction shown in Figs 9(b) and 10(b) is not meaningful.

Measured and microscopically predicted values of shear
resistance

As well as tracing the anisotropy parameters during the
biaxial compression test, the stress components (i.e. �11, �22,
�12) of the assemblies were measured during the loading
process. As a consequence, it is possible to calculate the
variation of the stress-invariant ratio �t/�n directly from
equation (6). On the other hand, the stress-invariant ratio can
be calculated from a micromechanical point of view by

substituting the values of the parameters ac, an, at, aln, alt,
Łc, Łn, Łt, Łln and Łlt into equation (13), which is developed
for a general condition. The results are sketched in Fig. 11
in terms of stress-invariant ratio against axial strain for both
isotropic and anisotropic samples (Æ ¼ 08, 308, 608 and 908).
As can be seen, the stress–force–fabric expression is in
good agreement with the measured data.

In order to investigate the accuracy of the previous
versions of the stress–force–fabric expression, they are also
calculated, based on the required anisotropy parameters, and
the results are presented in the corresponding figures. A
comparison between the isotropic (and hence coaxial) form
of the stress–force–fabric relationship (equation (1)) and
that based on measurement shows that the accuracy of the
equation depends on the bedding angle as well as on the
axial strain level. It overestimates the shear resistance of the
granular assembly for the whole range of axial strain level
with bedding angles of Æ ¼ 08, 308 and 608, whereas for the
assembly with Æ ¼ 908, the obtained stress ratio is higher for
a small range of deformation and lower than the measured
value after the peak point. However, this relationship can
predict the measured stress ratio for the isotropic sample, as
expected. The other form of the stress–force–fabric equa-
tion, which considers the non-coaxiality of anisotropy
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parameters (equation (7)), is also calculated, as shown in
Fig. 11. A comparison between the results indicates that this
form of the relationship does not predict the stress ratio with
any accuracy, and the prediction becomes worse as the
bedding angle increases. Obviously it gives a good predic-
tion of the stress ratio for the isotropic sample. It is
important to note that in both the latter forms of the
expressions, it is assumed that the contact vector is coaxial
with the contact normal. Such a comparison between the
results clearly expresses the importance of consideration of
non-coaxiality between the contact vector and the contact
normal.

CONCLUSIONS
In this paper, a stress–force–fabric expression is devel-

oped for a general condition of planar, granular materials.
This equation presents a relationship between fabric aniso-
tropy parameters and the macroscopic stress state of the
assembly. The proposed expression is based on consideration
of the normal and tangential components of the contact
vector with respect to the contact plane of two adjacent
contacting particles. The proposed equation can predict the
stress state of inherently anisotropic assemblies in which the
particles are irregularly shaped, and are directionally oriented
with respect to the loading axis. The numerical results have
shown that the contact vector is not coaxial with the contact
normal, in general. As a consequence, the so-called stress–
force–fabric relationship already used for circular particles
or homogeneous samples is not able to predict a correct
value of the stress state for a general condition.
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APPENDIX: DERIVATION OF THE PARAMETER aw

Referring to equation (5c), the term aw can be assessed as follows.

aw ¼
�ff t Łð Þ

�ff 0

þ at sin 2 Ł� Łtð Þ (14)

By integrating the above equation over the range 0–2�, the
following is obtained

aw ¼
1

2��ff 0

ð2�

0

�ff t Łð ÞdŁ (15)

On the other hand, with the same integration of equation (5b), the
average normal contact force (�ff 0) can be calculated as

�ff 0 ¼
1

2�

ð2�

0

�ff n Łð ÞdŁ (16)

By combining equations (15) and (16), and applying the summation
rules for the integrals, aw can be approximated as

aw ¼
Ð 2�

0
�ff t Łð ÞdŁÐ 2�

0
�ff n Łð ÞdŁ

�
P N c

i¼1 f i
sP N c

i¼1 f i
n

(17)

where Nc indicates the total number of contacts within the assembly.
As a result, aw can be measured directly from the summation of the
tangential and normal contact forces.

From a micromechanical point of view, as already mentioned, aw

can be defined in terms of other anisotropy parameters. A stationary

particulate material is in static equilibrium. Moment equilibrium of
interparticle forces for the whole of such a particulate system
requires thatð2�

0

�ff n Łð Þ�llt Łð Þ � �ff t Łð Þ�lln Łð Þ
� �

E Łð ÞdŁ ¼ 0 (18)

The above equality can be also deduced from the definition of the
Cauchy stress tensor, in which it is necessary to have �ij ¼ � ji, i 6¼ j.
By substituting the corresponding Fourier series expressions into
equation (18), a general expression for aw can be assessed, after
some mathematical manipulations, to give

aw ¼ �

acat sin 2 Łc � Łtð Þ þ acalt sin 2 Łc � Łltð Þ
þ analt sin 2 Łn � Łltð Þ þ ataln sin 2 Łt � Łlnð Þ

2þ acaln½1þ cos 2(Łc � Łln)� (19)

In order to verify the above equation, the measured values of the
anisotropy parameters ac, an, at, alt, Łc, Łn, Łt, Łln and Łlt are
substituted, and the results are compared with the directly measured
values of aw: Fig. 12 shows the variation of measured and predicted
values of aw for the isotropic and all inherently anisotropic
assemblies. As shown, there is a good agreement between the
results, which validates the obtained formulation. The term aw has a
small value, which fluctuates around zero for the samples with
Æ ¼ 08 and 908, as well as the isotropic one, whereas it reaches about
0.25 for the other two anisotropic samples (Æ ¼ 308, 608). As
explained earlier, a non-zero value of aw corresponds to a non-
symmetrical distribution of shear contact forces, which originates
from the non-coincidence of contact force anisotropy and contact
anisotropy.

NOTATION
ac coefficient of contact-normal anisotropy
aln coefficient of contact-normal vector anisotropy
alt coefficient of contact-tangential vector anisotropy
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Fig. 12. Comparison of anisotropy coefficient aw during shear
deformation: (a) measured; (b) predicted
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an coefficient of contact-normal force anisotropy
at, aw coefficients of contact-tangential force anisotropy

E(Ł) contact-normal distribution function
f force vector

�ff 0 average normal contact force
�ff n(Ł), �ff t(Ł) distribution of average normal and tangential contact

forces
LNij symmetric second-order tensor for normal contact

vector
LTij symmetric second-order tensor for tangential contact

vector
�lln(Ł), �llt(Ł) distribution of average normal and tangential contact

vectors
�ll0 average length of contact vector

mv number of contacts per volume (contact density)
n normal contact vector
t tangential contact vector
Æ bedding angle of particles
Ł inclination with respect to the horizontal direction

(1–1 axis)
Łc major principal direction of contact anisotropy
Łln major principal direction of contact-normal vector

anisotropy
Łlt major principal direction of contact-tangential vector

anisotropy
Łn major principal direction of contact-normal force

anisotropy
Łt major principal direction of contact-tangential force

anisotropy
�ij stress tensor

�n, �t normal and deviatoric stress invariants of stress tensor
�mob mobilised friction angle
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