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Abstract

Purpose - The purpose of this paper is to develop new constilulive models to predict the
woil deformation moduli using multi expression programing (MEP). The soil deformation parameters
formulated are secant (Es} and reloading {EEr) moduli.

Design/methodology/approach — MIP is u new branch of classical genefic programming.
The madels obtained using this method are developed upon a series of plate load ests conducted on
differen: soil types. The best models are selected after develuping and controlling cevernl models
with different combinations of the influencing parameters. The validation of the models 15 venfied
using several statistical criteria. Vor more vertfication, sensitivily and parametric analvses are
carried out. :

Findings - The results indicate that the proposed models give precise estimations of the snil
deformation moduli. The Es prediction model provides considerably better results than the model
developed for Er. The s fornmlation outperforms several empirical models found in the literarure.
The validation phases confirm the clficiency of the models for thelr general application o the
soil moduli estimation. In general, the derived models are suitable for fine-grained soils.
Originality/value — These equations may be used by designers to check the general vahdity of the
taboratory and ficld rest results oz 1o corurol the solutions developed by more in depth deterministic
analvses.
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Figure 1.

Jefimvons of soil moduli

1. Introduction

It is known that both elastic and plastic deformations occur during the loading of soils,
Ihfferent moduli can be obiamed from the stress-strain curves because of the
elasto-plastic behavior of sotls (Briaud, 2001; Briaud et o, 2006; Mollahasani ef of . 2011).
Figure 1 shows a typical stress-strain curve. Referring to this igure, secant modulus (E)
is caleulated from the secant slope (T, corresponding to the slope from the origin (0)
to L. Tangent modulus (B} is derived from the tangent slope (T, [f the slope is drawn
from L; t0 Ls, the unloading slope (T} i derived and the unloading modulus (B is
obtained from it Reloading modulus {(K,) corresponds to the slope from Ty to T (T))
(Briaud, 2001; Mollahasani ¢/ /., 2011). The soil moduli have different applications in
geotechnical engineering tasks. As an example, E, can be used 1o predict the movement
due to the first application of a load as in the case of a spread footing. E,, is useful in
estimaling the rebound of a pavement after the loading by a truck tire (resilient
modulus). E. might be employed to calculate the movement of the paverent under
reloading by the same truck tire {(Briand, 2001).

Laboratory or field methods are widely used to estimate the soil deformation moduli
{Murthy, 2008). One way of determining moduli is to perform triaxial compression tests
on undisturbed samples. T( s not practically possible to obtain undisturbed sample of
cohesionless and even cohesive soils. Thus, the sotfl moduli values obtained from
triaxial tests do not represent the actual conditions and give very approximate values
Qvurthy, 2008 Marsiand, 1971). To overcome this limitation, field testing methods
have mcreasingly been used to determine the soil deformation paramelers. The field
test results have been found to be more reliable than those of the laboratory methods
{Ismael, 1985; Reznik, 1995; Mollahasani ef &/, 2011). The ficld tests commuonly used for
this purpuse mclude plate load test (PLT), static cone penetration test (CPT),
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pressuremeter test (PMT), flat dilatometer test and standard penetration test (SPT)  Formulation of
(I\flurﬂjy. 2008). However, detcrm_ining the s;.oi.l ‘mr_ndulus from t_l}e laboratory or field soil deformation
tests 15 not an easy task. Performing such tests is usually extensive, cumbersome and
costly. Furthermore, it s not always possible to conduct the tests. Hence, different
empirical and semi-empirical comrelations have been derived to predict the soil
modulus. The correlations developed based on s-value of SPT or the CIT results are
mainly applicable to cohesionless soils. The PMT results can be used for cohesive soils 175
Murthy, 2008). Table I presents some of the E prediction equations in terms of N and
plasticity index (PI}: In this context, Platonov ef @l (1971) and Reznik (1995, 2007)
formulated oedometer deformation moduli of loessial soils in terms of soil void ratios
and degrees of saluration.

PLT has been a traditional srsibe method for estimating the seil moduli
Mollahasani et af, 2011). The effect of the scale factor and soil sample disturbance is
mimimized by using the PL'T results (Reznik, 1993). This test is one of the best feasible
choives when dealing with an unusual soil formation without prior experience
{(Lin ¢! al, 1998; Canadian Geotechnical Society, 1985). Although this testing methad
provides reliable results, very limited research has been done to develop prediction models
for the soil deformation moduli using the PLT results. In this contex(, Reznik {1995)
proposed analytical expressions deseribing dependence of the plate load deformation
moduli of collapsible soils on soil void ratio and moisture content. Regression analysis is
the approach used for developing most of the existing empirical medels for the prediction
of the soil moduli (Reznik, 2007). The significant limitations the traditional statistical
techniques strongly affect the prediction capabilities of such models (Mollahasani ef af |
2011; Alaviet gl 2011). The issues ratsed above suggest the necessity of employing more
comprehensive methods to decrease errors for the soil deformation moduli estimations,

Several computer-aided data mining approaches have been developed for modeling
nonlincar systems, Genetic algérithm (GA) is a powerful stochastic cptimization
technique based on the principles of genetics and natural selection. GA has heen shown to
be robust for dealing with a wide variety of engineering problems (Simpson and Priest,
1953: Yeo and Agyel, 1998, Toropov and Mahfouz, 2001; Balamurugan ef o, 2006;
Kavch and Shahrouzi, 2006). Genetic progranmming (GP) (Koza, 1992, Banzhaf of ., 1998)
is a specialization of GA where the sohttions are computer programs rather than

moduli

Soil E,

Sand (normaliy conzolidated) 300 (N — 15, (35,000-50,000) logiN .0

Sand (saturated) 250 (N + 15

Saned (over consolidated) -

Gravelly sand gravel 1200 (N, +8)

Clayey sand 250 (N + 13}

Silty sand 0N, +6)

Sands, gravels and other cohesionless soils 30N

Low PT (=212 251

Medivm PL{12% « '] < 229} 15N

High PT (229, = PT = 32%) N N Table I.
Extremiely high PL(P 2 327.) OGN Empitical equations for

predicting K, hased o
Source: Logk (2007} and Murthy (2008) SPT values and PL
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binary strmgs. GP can be considered as an aliernative approach for hehavioral maodeling
of geotechnical engincering tasks. The miain advantage of G over the conventional
statistical methods and other soft compuling (ools s its ahility to generate prediction
equations without any need to assume prior form of the existing relationship (Alaviet &,
2011). In contrast with ANNs and GA, application of GPin the field of civi! engineering is
quite new. Classical GP and its variants have been utilized to derive greatly simphfied
formulations for civil engineering problems (Alvarez of af, 2000; Ashour ef af, 2003;
Tavadi ef af, 2006: Baykasoglu ef al, 2008, Cevik and Cabalar, 2009; Gandom ¢/ af, 2010,
2011). Recemly, Mollahasani ef ol (2011) employed a new branch of GP, called gene
expression programming, to develop new prediction models for the PLT soil modul, GP
and its variants possess some obvious superiority than ANNs in dealing with geotechnical
problems (Rezania and Javadi, 2007; Kavadelen et af. 2009; Alavi ¢! af, 2010b). Multi
expression programming (MEP) (Oltean and Dumitrescu, 2002) 15 a new vanant of GP,
The significant advantages of the MEP approach over similar technigues have been show
by Oltean and Grossan (2003a). Unlike classical GP and other soft computing tools like
neural networks, applications of MEP to solve problems in civil engineering are restricted
to fewer areas (Bavkasoglu ef al, 2008, Alavi ef af, 2010b; Alavi and Gandomi, 2011).

This paperaims at oblaining new empirical models for determining IS, and E, using the
MEDP methad. Various soil properties are used as the predictor vanables, The proposed
maodels are developed based on several PLTs performed in this study. The derived models
are statistically compared with some empirical cquations found in the literature,

2. Genetic programmiing
GP is a symbolic optimization method. It uses the principle of Darwinian naturat
selection to evolve computer programs. G emerged as a distinct discipline after
experiments of Koza (1992) on symbolic regression. Most of the genetic operators used in
(A can also be implemented in GP with minor changes. The main difference between GP
and GA 1s the representation of (he solution, The GP solutions are computer programs
that are represented as tree structures and expressed in a functional programming
language (such as LISP) (Koza, 1992). GA creates a string of numbers that represent the
solution. The traditional optimization techmiques, like GA, are generally used in
parameter optimization to evolve the best values for a given set ol model parameters, GP,
on the other hand, gives the basic structure of the approximation model together with the
values of its parameters (Javadi and Rezania, 2009; Alavi and Gandomi, 2011). GP
optimizes a population of programs according 1o a fithess landscape determined by a
program ability to perform a given computational task. The fitness of each programin
the population is evaluated using a fitness function. Hence, the fitness {function is the
objective function that GP aims to optimize {Torves e af | 2009; Alavi and Gandomi,
2(11). The classical GP approach is referred to as tree-based GI°. A population member
in tree-based P is a hierarchically structured tree comprising functions and terminals,
The functions and tenninals are selected from a set of functions and a set of terminals.
The functions and termunals are chosen at random and constructed together to forma
computer model in a tree-like structure with a root point with branches extending from
each function and ending in a terminal {(Alavi and Gandemi, 2011). Figure 2 shows a
typical representation of a GP model.

MEP is a linear variant of GP. The linear variants make a clear distinction between
the genotype and the phenotype of an individual. Thus, the individuals are represented
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ANNs do not give a transparent function relating the mpuls to the corresponding
outputs, Furthermore, determining an optimal ANN architecture (number of inputs,
transfer functions, number of hidden layers and their number of nodes, ete) is usually
done through a time-consuming trial and error procedure (Shahin ¢f @, 2009; Javadi and
Rezania, 2008; Alavi et f, 2010a). On the other hand, MEP provides a transparent and
structured representation of the system heing studied. In MEP and other GP techniques,
the number and combination of rerms are automatically evolved during model
calibration (Alavi et &, 2010a).

6. Sensitivity and parametric analyses

Senstlivity and parametric analyses of the factors affecting E, and E, are carmed out
in order to test the robustness of the developed models. For the mimy of sensitivity
analysis, frequency values of the mput variables are obtained. A frequency value
equal to 100 percent for an input indicates that this variable has been appeared in
100 percent of the best 30 programs evolved by MEP. This methodology 18 a common
approach in the GP-based analyses (Gandonu ef al, 2010; Alavi ¢t ¢f, 2010b). The
frequency values of the predictor variables are shown in Figure 11, According to
these results, 1t can be found that W, Dgy and vq exert dominant influence on the
variations of E, and I,
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Figure 10,
Experimental versus
predicred 1, values using
different models
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Figure 11.
Contributions of the
predictor variables
in the BMIZF models

For further venfication of the MEP-hased prediction equations, a parametric
analysis is performed in this study. The paramelric analysis investigates the response
of the predicted E, and E, from the MEDP models to a set of hypothetical input data.
The methodology is based on the change of only one predictor variable at a time while
the other seismic variables are kept constant at the average values of their entire
datasets. A set of synthetic data for the single varied parameter is generated by
mereasing the value of this in increments. These variables are presented to the
prediction equations and E; and E, are calculated. This procedure is repeated using
another variable until the model response 15 tested for the selected nput variables.
Figures 12 and 13, respectively, present the tendency of the E, and E. predictions to the
variations of FC, Dy, Dy, Dy, LL, W and y,. As can be scen in Figure 12, E, decreases
due to increasing FC, Dy, LL, and W. Also, it increases with Increasing Dy and vg. As
shown in Figure 13, E, increascs due to increasing Dy, Dgg. W, and ya. E; decreases with
increases in the percentages of LL. The reloading modulus does not exhibit notable
sensitivity to the changes of Dy, The results of the parametric analysis for FC, LL, W,
and yq are generally expected cases from a geotechnical engineering viewpoint. It is
well-known that fine-grained sotls with higher fine content are more compressible and
have lower soil modulus. Soils with high LL have loose structures due 1o high clay
content. The moisture content has a major influence on the soil modulus. As the
meisture content increases, the water occuples more room and pushes the particles
apart. Consequently, the compressibility increases and the moduius decreases. vy, is an
indicator of compressibility of a soil. If the soil particles are closely packed, the modulus
tends to be high (Briaud, 2001).

7. Summary and conclusion

In the present study, the MEP approach is used to develop new design equations for
predicling the soil deformation moduli (E, and E;). The proposed relationships are
developed based on several PLT results obtained through an extensive experimental
study. The best models are selected after developing and controlling several models
with different combinations of the predictor variables. The developed relationships
give rehable estimates of the E. and E. values. The E. prediction model provides
remarkably better results compared with the E, prediction model. The validity of the
MEP models was tested for a part of test results beyvond the training data domain.
Further, the models efficiently satisfy the conditions of different criteria considered
for their external validation. The E, prediction model produces considerably better
outcomes than several empirical equations found in the literature. The developed
models are mostly suitable for fine-grained soils with physical properties similar
the soil samples used in this study fie. ML, CL-ML, CL, SM, SW-SM, and GM).
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The models reflect the results which are obtained using a round plate with a diameter
of 305 mm. The proposed models simultanceusly take into account the role of several
important parameters (FC, Dy, Dag Do, LL, W, yab representing the soil moduli
hehavior. Based on the results, W and vy can be regarded as efficient representatives
of the imtial state and consolidation history of the soil for determining the soil
moduli. A distinctive feature of MEP-based constitutive models is {hat they are based
on the experimental data rather than on assumptions made for developing the
conventional models. The soil moduli can casily be estimated from the soil physical
properties using the derived models. Unlike the existing empirical equations, there is
no need to go through sophisticated and time-consuming field experiments before
implementing the models. An observation from the results of the sensitivity analysis
15 that the soil deformation moduli are more affected by W, Dy, and va than other sail
properties,
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Figure 12,
Parametric analysis of
15, i the MEP model
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Figure 13.
farametric analysis
wf I; in the MEP model
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Appendix, The MEP algorithm
MED uses the following steps to evolve the best expression until a termination condition is
reached (Oltean and Grosgan, 2003a; Alavi et al, 2010b);

(1) selecting two parents using a binary totnmament procedure and recombining them with
4 fixed crossaver probability:

{2) ubtaining two offspring by the recombination of two parents: and

(3 mulating the offspring and replacing the worst individual in the current population with the
best of (hem (if the offspring is better than the worst individual in the current population).
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