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A B S T R A C T

It is a common and useful task in a web of trust to evaluate the trust value
between two nodes using intermediate nodes. This is widely used when the
source node has no experience of direct interaction with the target node or
the direct trust is not reliable enough by itself. If trust is used to support
decision-making, it is important to have not only an accurate estimate of trust,
but also a measure of confidence in the intermediate nodes as well as the final
estimated value of trust. The present paper thus aims to introduce a novel
framework for integrated representation of trust and confidence using intervals
which provides two operations of trust interval multiplication and summation.
The former is used for computing propagated trust and confidence, whereas the
latter provides a formula for aggregating different trust opinions. The properties
of the two operations are investigated in details. This study also proposes a
time-variant method that considers freshness, expertise level and two similarity
measures in confidence estimation. The results indicate that this method is of
more accuracy compared to the existing methods. In this regard, the results
of experiments carried out on two well-known trust datasets are reported and
analyzed, showing that the proposed method increases the accuracy of trust
inference in comparison with the existing methods.

c© 2013 ISC. All rights reserved.

1 Introduction

Recently the concept of trust has been playing an
increasingly important role in various fields of com-
puting science including soft security, multi-agent sys-
tems, semantic web, computer networks, e-commerce,
game theory, social networks, etc.

There exist a few definitions for trust in the liter-
ature, one of the most popular of which is the one
proposed by Olmedilla et al. [3]: “Trust of a party A
to a party B for a service X is the measurable belief of
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A in that B behaves dependably for a specified period
within a specified context (in relation to service X).”

One may consider a web of trust in a society (of
people or systems), i.e. a directed graph in which the
vertexes denote the entities and the edge labels reflect
the trust each entity maintains in every other entity.

If there is no link between a pair of entities in the
web of trust, then no trust decision has yet been made.
This is the case in which trust transitivity can be
applied: if A trusts B and B trusts C, then A can trust
C. This property is also known as trust propagation or
indirect trust estimation. However there is an ongoing
debate on how much transitivity to consider as valid
and which formula or algorithm to use for evaluating
propagated trust value in each field.
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2 A Confidence-Aware Interval-based Trust Model — H. Shakeri and A. Ghaemi Bafghi

In this regard, multiple researchers are exploring
ways to transfer trust within a web of trust. Examples
of such efforts can be found in [4–6].

One of the major problems in indirect trust estima-
tion based on the intermediate nodes is to ensure how
reliable the result is when an intermediate node re-
ports the value of trust it has in the target node. It is
also difficult to determine how the level of confidence
is to be applied in final trust estimation. Yet another
relevant problem is to compute the resultant values of
the trust in the target node, as reported independently
by two or more intermediate nodes with known confi-
dence levels, and also to estimate the confidence level
of the reults. In other words, the following problems
are to be dealt with:

• Representation of confidence
• Evaluation of each appraiser’s confidence
• Confidence-aware trust propagation
• Confidence-aware trust aggregation

As an example, consider the web of trust in Figure 1
in which the source node, S, has two trust chains
towards the destination (target) node, D. The label
on the edge SA, for instance, shows that S’s trust in A
is 0.7; however there is only a confidence of 0.5 in this
trust estimation. The other edge labels in the graph
can be interpreted in a similar way. Now, in order to
estimate the trustworthiness level of D, it is important
to know how S is to apply the confidence labels in trust
propagation in each chain, and consequently, how it
should consider the confidence values to compute the
resultant of trust values obtained from the two chains,
and finally, how confident S’s final judgment is.

Many of research studies, however, have not taken
into account the role of confidence in trust manage-
ment; and some of them including [7–9] have used the
weighted-averaging method to consider the effect of
the confidence in computing trust resultant. In this
respecty, the present paper aims to introduce a novel
idea to use the concept of interval for integrated repre-
sentation of trust and confidence. Based on this repre-
sentation, we propose a method, called trust interval
multiplication, for propagating trust and confidence.
We also present a method for aggregating two or more
trust opinions, named as summation of trust intervals.
The properties of the two operators are investigated.
It is also shown that, in comparison with the exist-
ing methods, these operators are more accurate for
evaluation of trust. In fact, the ideas of trust inter-
vals and aggregating trust were driven by the ones
proposed in [1] while the trust propagation method
was proposed using trust intervals in [2]. Integrating
these ideas, the present paper attempts to serve the
following purposes: (a) proposing a new algorithm for
confidence estimation based on the four measures of

Figure 1. A sample web of trust including confidence values.

freshness, expertise level and two similarity measures,
(b) conducting more formal analyses comparing to
[1] and [2], (c) drawing comparisons between the pro-
posed method and some existing well-known methods,
and (d) addressing the problem of dependent paths
in trust network.

To this end, the rest of this paper is organized as
follows: Section 2 reveiws the related literature. In
Section 3, a description of the interval representation
of trust and confidence is put forth followed with the
representation of operators on trust intervals. The
properties of these operators are also investigated
in this section. The proposed algorithm for inferring
confidence-aware trust and the related formulas for
confidence estimation are described in section Sec-
tion 4. Section Section 5 deals with reporting and
analysis of the results of the experiments carried out
on two trust datasets using both the proposed algo-
rithm and previous ones. Finally conclusions will be
drawn in Section 6.

2 Related Work

Various research studies have been carried out in the
area of trust transition and inferring.

Ding et al. in [10], for example, identified five types
of trust, one of which, called STT, is used in the
proposed algorithm. STT stands for Similar Trusting
Trust and is an associative trust that evaluates the
similarity of two agents’ trust knowledge:STTijd refers
to the similarity of agent ai and agent aj ’s referral
trust to the other agents within domain d.

Elsewhere, Golbeck in [6] proposed the well-known
TidalTrust trust inference algorithm which is intended
to be used for inferring trust in networks with con-
tinuous rating system. REGRET [11] first introduced
by Sabater, is a decentralized trust model that uses
witness agent recommendations as well as direct expe-
riences of the source in trust estimation. Yet another
well-known trust model is Travos [12] that takes into
consideration the dynamicity of the agent behavior.
Similarly, SUNNY [7] is a trust inference algorithm
which uses a probabilistic sampling technique to es-
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timate the confidence and computes the trust only
based on information sources with high confidence
estimates.

It is noteworthy that in some access control mod-
els, the propagated trust is evaluated using Iterative
Multiplication Strategy, i.e. multiplying the labels of
edges in the path from source to target in the web of
trust [13, 14].

Yet there exist several studies dealing with confi-
dence in trust management. Most of such projects,
including [15–17], have considered the confidence as
certainty which is described in [15] through the follow-
ing example: Consider N white and black balls in a bin,
knowing that at least m balls are white and n balls are
black. Suppose p is the probability that a ball picked
randomly from this bin, is white and c is the confi-
dence in this probability. Since we have partial knowl-
edge, we can estimate p=m/N with c=(m+n)/N.

Some researches in the field have focused their at-
tention to the parameters of confidence. In this regard,
FIRE [9] is one of the most important trust models in
this area as it takes into account several parameters,
e.g. reliability of source and recency and relevance of
ratings. In fact, this model incorporates interaction
trust, role-based trust, witness reputation, and certi-
fied reputation to provide trust metrics. SecuredTrust
[18] uses almost the same factors for estimating the
confidence. FCTrust [19] is a distributed trust model
based on feedback credibility (FC) which considers
transaction density factor and similarity of ratings as
the main parameters of confidence and then uses this
confidence as the weight of ratings in aggregated trust
estimation. CRM [20] is a trust framework which ap-
plies a number of measurements to evaluate the confi-
dence, e.g. credibility of the contributing agents, the
number of interactions, and timely relevance. In [21]
a multi-attribute reputation management (MARM)
support tool is proposed to assist users in choosing
sellers in auction sites. This model estimates the con-
fidence by combining four featured factors, i.e. simi-
larity of the commodity category, value of each trade,
time decay, and credibility of the feedback. In [7, 8]
also, the value of confidence is estimated using simi-
larity measures.

Some other studies have focused on a representation
of confidence and/or approaches to propagation and
aggregation of confidence-aware trust. One of the first
works in this area is the one conducted by Jøsang and
Knapsdog [16].They represent a trust opinion using a
triple b, d, u in which b, d and u denote belief, disbelief
and uncertainty respectively. They also introduce a
subjective logic with operators for opinion propagation
and aggregation as follows:

1) Let A and B be two agents so that wA
B =

{bAB , dAB , uAB} is A’s opinion about trustworthiness of
B, and wB

C = {bBC , dBC , uBC} is B’s opinion abou trust-
worthiness of C reported to A. Then A’s opinion about
trustworthiness of C based on the recommendation
from B is defined by [16]:

wA:B
C = wA

B ⊗ wB
C = {bA:B

C , dA:B
C , uA:B

C }, (1)

where 
bA:B
C = bABb

B
C ,

dA:B
C = bABd

B
C ,

uA:B
C = dAB + uAB + bABu

B
C .

(2)

2) Let wA
C = {bAC , dAC , uAC} and wB

C = {bBC , dBC , uBC}
be opinions about trustworthiness of the same entity
C, held by agents A and B, respectively. Then the
aggregated opinion is expressed by [16]:

wA,B
C = wA

C ⊕ wB
C = {bA,B

C , dA,B
C , uA,B

C }, (3)

where 

bA,B
C =

bACu
B
C + bBCu

A
C

uAC + uBC − uACuBC
,

dA,B
C =

dACu
B
C + dBCu

A
C

uAC + uBC − uACuBC
,

uA,B
C =

uACu
B
C

uAC + uBC − uACuBC
.

(4)

In their later works, Jøsang et al. extended and
improved their opinion model and subjective logic.
One of the problems addressed in these studies is that
subjective logic requires trust graphs to be expressed
in a canonical form with no dependent paths. In the
same vein, they proposed an approach to achieve
independent trust edges based on edge splitting in [17].

Similarly, some researchers use Dempster-Shafer
theory to deal with the issue of confidence in trust
computing . For example in [22], trust opinions are
represented as mass assignments in DST and then
combined using Dempster’s rule of combination to
obtain the aggregated opinion.

Elsewhere in [23], four strategies for trust propaga-
tion and aggregation have been evaluated to maximize
confidence in trust estimate. The strategies include
weighted mean aggregation among shortest paths,
min-max aggregation among shortest paths, weighted
mean aggregation among all paths, and min-max ag-
gregation among all paths

In [24], a model is proposed for aggregation of trust
evidences which computes confidence scores taking
into account the dynamic properties of trust.

To address the issue of unfair testimonies, a credi-
bility model has been introduced in [25] which helps
the trusters evaluate the confidence of the witnesses
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who provide testimonies on the trustees and guides
the trusters how to filter and aggregate testimonies
based on the evaluation of confidence.

In [26] the authors maintain that a single trust value
cannot depict the real trust level very well under cer-
tain circumstances. They therefore suggest a trust
vector which consists of three values: final trust level,
service trust trend, and service performance consis-
tency level. In fact, the two latter values represent
some kind of confidence. The present paper also in-
troduces an aggregation method in which each rating
with a clear distance to the average of ratings is taken
as marginal. Marginal ratings are then discarded in
aggregation as they are not confident.

Most of the other studies in this regard, including
[7–9], make use of the well-known weighted-averaging
method to compute the resultant of trust opinions. In
this method, when the source entity receives reports
from two or more appraisers on the target entityŠs
trustworthiness level, it considers its own confidence
in each appraiser as the weight of that appraiser and
then calculates the weighted average of all received
values.

3 The Proposed Framework

In the field of trust management, confidence is consid-
ered as a metric that represents the accuracy of the
trust values [27]. In fact, it denotes the capacity in
which an entity is assured about its own or another
entity’s assessment on a target entity’s trustworthi-
ness level. In other words, the confidence that n has
in n0 is n’s belief on the correctness of information
provided by n0 [7].

As an example, suppose that entity S asks entity A
about D’s trustworthiness level and A replies with 0.7.
In this opinion, however, S’s (or A’s itself) confidence
may be 0.8.

Therefore, there appears to exist a need to a suitable
way of representing the concept of confidence along
with trust. It is also important to have methods for
propagating and aggregating confidence-aware trust
opinions.

In this section, using intervals, we first introduce a
novel idea of representing trust and confidence, both
together. Then the two operations, multiplication and
summation are defined on these intervals, which may
be used for propagation and aggregation purposes.

3.1 Representation of Trust and Confidence
using Interval Notation

When trust and confidence are denoted with two dis-
tinct numbers, simultaneous calculation of the two
will be difficult. To bridge this gap, these two values
are proposed to be integrated in a new representation
using intervals, as shown in (5) below.

TI = [C ∗ T,C ∗ T + 1− C] (5)

Where TI is Trust Interval, andC and T are confidence
and trust values respectively.

We now explain how the lower and upper bounds
of the trust interval in (5) are obtained: in order to
determine the lower bound of the trust interval, we
should consider the case when base rate is a = 0. Base
rate determines how uncertainty is to contribute to
the opinion’s probability expectation value [17]. C is
the level of confidence and thus 1− C is the value of
uncertainty. Since trust is reported as T , the minimum
value of the confident trust is C ∗ T . Consequently,
the lower bound of the trust interval is achieved as
shown by (6).

L = C∗T+(1−C)∗a = C∗T+(1−C)∗0 = C∗T. (6)

To determine the upper bound of the trust interval,
on the other hand, we should consider the case when
a=1, finally arriving at [7] as for the upper bound.

U = C ∗ T + (1− C) ∗ a
= C ∗ T + (1− C) ∗ 1

= C ∗ T + 1− C. (7)

As an example, assume T = 0.7.With some different
values of C, the trust intervals will be as follows:

C = 0→ TI = [0, 1]

C = 0.5→ TI = [0.35, 0.85]

C = 0.8→ TI = [0.56, 0.76]

C = 1→ TI = [0.7, 0.7]

In fact, in the case of C = 0, there is no confidence
in the opinion of the appraiser at all. This means
that no valuable knowledge is obtained about the
trustworthiness level of the target. Therefore, the trust
interval is [0,1]. Note that in the case of C = 0, the
trust interval is independent of the value of T and
is always [0,1]. As C is increased, the trust interval
becomes narrower and the lower and upper bounds
approach to T . Finally in the case of C = 1, there
is an absolute confidence in the appraiser’s opinion.
Hence, the trust estimation is quite accurate and the
lower and upper bounds of the trust interval are the
same and equal to T , i.e. [0.7,0.7], in our example.
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It is believed that using an integrated interval for
representing both trust and confidence is clearer and
more intuitive in comparison to using two distinct
variables for them. However, the values of trust and
confidence can be again extracted from the trust inter-
val anytime needed, especially for evaluation purposes
where different methods are to be compared. To this
end, one may consider (6) and (7) as a system of two
equations and solve the system for T and C. Thus,
trust and confidence will be obtained as in (8) and (9).

T =
L

1 + L− U
=

L

1−W
(8)

C = 1−W (9)
where W is the width of the trust interval, defined as

W = U − L (10)

The idea of using interval concept for representing
trust and confidence proposed here is conceptually
similar to the one introduced by Jøsnag in [16]. As
mentioned earlier in Section 2, Jøsnag’s model uses
a triple to represent belief, disbelief, and uncertainty.
However, it is believed that, due to using the well-
known concept of interval, the proposed notation is
more intuitive compared with the one put forth by
Jøsang. It has to be noticed yet, that these two nota-
tions are convertible to each other. For instance, using
(11) and (12), we can easily convert Jøsang’s notation
to our proposed model.

L = B (11)

U = 1− d (12)

Note that in Jøsang’s notation, u is not an indepen-
dent variable and may be obtained having b and d as
u = 1 − (b + d). The value of u is equivalent to the
width of the trust interval in our representation. For
example, the triple 0.5,0.3,0.2 in Jøsang’s model is rep-
resented as the interval [0.5,0.7] in the new notation.

The center of a trust interval may be considered
as the probability expectation value of trust, when
a = 0.5. It should not be mistaken for the value of T
that is obtained from (8). Consider the trust interval
[0.6,0.8] for example. The center of the interval is 0.7
meaning that, supposing a = 0.5, the expectation
value of trust is 0.7. The value of 0.75, on the other
hand, is obtained for T from (8), with a value of 0.8
for C obtained from (9). From the probability point
of view, we may arrive at the conclusion that “with
the probability of 0.8, the trust value is 0.75, while
with the probability of 0.2 the trust value is unknow”.
As another example, consider the trust interval [0.4,1].
The center of this interval is also 0.7. Therefore, once

again the expectation value of trust, for a = 0.5, is 0.7.
However, the values of 1 and 0.4 are obtained from
(8) and (9) for T and C, respectively. In fact, though
the expectation values of trust in the two intervals are
the same, the first interval reflects a higher level of
confidence.

3.2 Trust Interval Multiplication

Suppose that the entity S (source) has some trust in the
intermediate entity X represented by [LSX , USX ]. S
asks X to report its opinion about the trustworthiness
level of the entity D (destination or target). X replies
in the form of trust interval [LXD, UXD] (In practice
S may first receive from X the values of trust and
confidence as distinct variables. In such a case it should
calculate the trust interval using (5), replacing T in (5)
with X’s reported trust in D, and Cwith X’s confidence
in its own opinion). To determine the final assessment
of S on D’s trustworthiness as the value of propagated
trust, and the capacity in which this estimation is
confident, a special kind of multiplication operator is
being defined for trust intervals, as represented in (13)-
(15). Note that this does not refer to the classic interval
multiplication operator, but rather a novel operator
which reflects trust and confidence propagation.

[LSX , USX ]⊗ [LXD, UXD] = [LSD, USD] (13)

such that
LSD = LSXLXD (14)

LSD = 1− LSX(1− UXD) (15)

Where [LSD, USD] denotes the final propagated trust
interval.

Equations (14) and (15) are obtained from trans-
ferring (2) into interval space.

In order to illustrate the concept and applications of
interval notation as well as the multiplication operator
defined in (14) and (15), the product of some different
pairs of intervals have been computed, the results of
which are reported in Table 1. As expressed by (13),
in interval multiplication, the upper bound of first
interval is of no role. That is why it is denoted by x
in the table.

Using (13)-(15) and the results summarized in Ta-
ble 1, we now investigate some of the trust interval
multiplication properties as described below:

1) If [LSX , USX ] = [1, 1], then the product is equal
to [LXD, LXD]. In other words, [1,1] is the left identity
element for trust interval multiplication operator. This
is justifiable because S has absolute confident trust in
X and thus accepts its recommendations exactly.
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2) The proposed operation of trust interval multi-
plication is not commutative. For example we have

[0, 0.33]⊗ [0.33, 0.66] = [0, 1],

whereas

[0.33, 0.66]⊗ [0, 0.33] = [0, 0.78].

3) The product is independent of USX . In other
words, in trust interval multiplication, only the lower
bound of the left operand is important. This is not-
comes as no surpriseing because since in computing
both the upper and lower bounds of the result inter-
val, we should apply only the minimum of confident
trust is to be applied from source to the intermediate
node, i.e. LSX . This is eEquivalent to the fact that
in (2), dAB has no role in computing bA:B

C , dA:B
C and

even uA:B
C (if we extend the formula of uA:B

C , we see
that it is independent of dAB).

4) If LSX = 0, then the product of two intervals will
always be [0,1]. In fact, in such a case the source(S)
has no confident trust in the intermediate node(X)
at all; hence, X’s recommendations do not provide
any confident information to S. As mentioned before
in this section, this case is represented by the trust
interval [0,1].

5) If [LXD, UXD] = [0, 1], then the product of trust
intervals will also be [0,1]. This is true as in such a
case, X has no confidence in its own assessment about
D at all, and it is obvious that the propagated trust
interval will be absolutely unconfident as well. It has
to be noted again that the trust interval [0,1] reflects
zero confidence.

6) Theorem 1 states that, in trust interval multi-
plication, the trust value of the result is equal to the
trust value of the right operand.

Theorem 1. Let’s represent the values of trust related
to the trust intervals [LXD, UXD] and [LSD, USD] in
(13) with [TXD] and [TSD], respectively. Then we will
have [TSD = TXD].

Proof. Using (8), (14) and (15), we may write:

TSD =
LSD

1 + LSD − USD

=
LSXLXD

1 + LSXLXD − 1 + LSX(1− UXD)

=
LXD

LXD + (1− UXD)
=

LXD

1 + LXD − UXD
= TXD

3.3 Trust Interval Summation

Suppose that the entity S (source) asks two interme-
diate entities A and B to report their opinions about
the trustworthiness level of the entity D (destination
or target). A and B send their replies in the form of
trust intervals [LA, UA] and [LB , UB ], respectively. As
mentioned above, it is possible for S to first receive
the values of trust and confidence from A and B as
distinct variables. In such a case it should calculate
the trust interval using (5). For example, for calcu-
lating [LA, UA], C in (5) should be replaced with S’s
confidence in A’s opinion and T with A’s reported
trust in D. To determine what the final assessment of
S is on D’s trustworthiness as the resultant of A’s and
B’s opinions, and in what capacity this estimation is
confident, a special kind of summation operator for
trust intervals is proposed, as illustrated in (16)-(17).
Note again that this is not the classic interval summa-
tion operator, but a novel operator that determines
the resultant of two opinions on the trustworthiness
of a target entity.

[LA, UA]⊕ [LB , UB ] = [LC , UC ] (16)

LC =
LAUB + LBUA − 2LALB

WA +WB −WAWB
, (17)

UC =
UAUB − LALB

WA +WB −WAWB
, (18)

Where LC and UC denote the lower and upper bounds
of the resultant’s trust interval, respectively and W is
the interval width.

Equations (17) and (18) are obtained from transferring
(4) into the interval space.

In order to illustrate the summation operator de-
fined in (16)-(18), we have computed the sum of some

Table 1. Product of some trust interval pairs.

Intervals [0,0] [0,0.33] [0,0.66] [0,1] [0.33,0.33] [0.33,0.66] [0.33,1] [0.66,0.66] [0.66,1] [ 1,1]

[0, x], 0 ≤ x ≤ 1 [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1] [0,1]

[0.33, x], 0.33 ≤ x ≤ 1 [0,0.67] [0,0.78] [0,0.89] [0,1] [0.11,0.78] [0.11,0.89] [0.11,1] [0.22,0.89] [0.22,1] [0.33,1]

[0.66, x], 0.66 ≤ x ≤ 1 [0,0.34] [0,0.56] [0,0.78] [0,1] [0.22,0.56] [0.22,0.78] [0.22,1] [0.44,0.78] [0.44,1] [0.66,1]

[1, 1] [0,0] [0,0.33] [0,0.66] [0,1] [0.33,0.33] [0.33,0.66] [0.33,1] [0.66,0.66] [0.66,1] [1,1]
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Table 2. Sum (resultant) of some trust interval pairs.

Intervals [0,0.25] [0,0.5] [0,0.75] [0,1] [0.25,0.5] [0.25,0.75] [0.25,1] [0.5,0.75] [0.5,1] [0.75,1]

[0,0.25] [0,0.14] [0,0.2] [0,0.23] [0,0.25] [0.14,0.29] [0.1,0.3] [0.08,0.31] [0.29,0.43] [0.2,0.4] [0.43,0.57]

[0,0.5] [0,0.2] [0,0.33] [0,0.43] [0,0.5] [0.2,0.4] [0.17,0.5] [0.14,0.57] [0.4,0.6] [0.33,0.67] [0.6,0.8]

[0,0.75] [0,0.23] [0,0.43] [0,0.6] [0,0.75] [0.23,0.46] [0.21,0.64] [0.2,0.8] [0.46,0.69] [0.43,0.86] [0.69,0.92]

[0,1] [0,0.25] [0,0.5] [0,0.75] [0,1] [0.25,0.0.5] [0.25,0.75] [0.25,1] [0.5,0.75] [0.5,1] [0.75,1]

[0.25,0.5] [0.14,0.29] [0.2,0.4] [0.23,0.46] [0.25,0.0.5] [0.29,0.43] [0.3,0.5] [0.31,0.54] [0.43,0.57] [0.4,0.6] [0.57,0.71]

[0.25,0.75] [0.1,0.3] [0.17,0.5] [0.21,0.64] [0.25,0.75] [0.3,0.5] [0.33,0.67] [0.36,0.79] [0.5,0.7] [0.5,0.83] [0.7,0.9]

[0.25,1] [0.08,0.31] [0.14,0.57] [0.2,0.8] [0.25,1] [0.31,0.54] [0.36,0.79] [0.4,1] [0.54,0.77] [0.57,1] [0.77,1]

[0.5,0.75] [0.29,0.43] [0.4,0.6] [0.46,0.69] [0.5,0.75] [0.43,0.57] [0.5,0.7] [0.54,0.77] [0.57,0.71] [0.6,0.8] [0.71,0.86]

[0.5,1] [0.2,0.4] [0.33,0.67] [0.43,0.86] [0.5,1] [0.4,0.6] [0.5,0.83] [0.57,1] [0.6,0.8] [0.67,1] [0.8,1]

[0.75,1] [0.43,0.57] [0.6,0.8] [0.69,0.92] [0.75,1] [0.57,0.71] [0.7,0.9] [0.77,1] [0.71,0.86] [0.8,1] [0.86,1]

different pairs of trust intervals. Table 2 below sum-
marizes the results in this regard.

Having (16)-(18) and the results in Table 2 at hand,
we investigate some of the trust interval summation
properties and explain in the following section how it
gives the resultant of two or more opinions in different
cases:

1) Sum of two similar or equal trust intervals reflects
the confidence increment as the opinions confirm each
other. For example sum of the two equal trust intervals
[0.25,0.5] and [0.25,0.5] is [0.29,0.43]. As mentioned
earlier, a reduction in the interval width indicates the
increment of confidence.

2) If we add two or more different (and possibly
contradictory) opinions, again the result interval will
be narrower than both operand intervals. However,
the result is a trust interval that reflects the resultant.
Therefore, sum of the two intervals of [0,0.5] and
[0.75,1], for instance, would be [0.6,0.8].

As another example, suppose that we are to deter-
mine the sum (resultant) of four people’s opinions
given in the form of trust intervals as follows:

P1 = [0.6, 0.8]

P2 = [0.6, 0.8]

P3 = [0.5, 0.75]

P4 = [0.1, 0.3]

The step-by-step calculation displays how the resultant
is obtained for the first three opinions confirming each
other and the fourth opinion contradicting them:

P1 ⊕ P2 = [0.67, 0.78]

(P1 ⊕ P2)⊕ P3 = [0.67, 0.75]

((P1 ⊕ P2)⊕ P3)⊕ P4 = [0.53, 59]

The resultant achieved in this way is different from
the usual weighted average described in Section 2. In
fact, this method for calculating the resultant is more
accurate than the weighted average. Later in Section 5,
we report the results of experiments confirming this
idea.

3) The sum of any trust interval X and the inter-
val [0,1] is X itself. In other words, [0,1] is the addi-
tive identity of the trust intervals. This property is
explained here: as was discussed before, the trust in-
terval [0,1] provides no valuable knowledge about the
trustworthiness level of the target. Therefore, adding
it to any other trust interval X has no affect and the
sum will be X itself.

4) Theorem 2 states that in trust interval summa-
tion, the width of the result is always less than, or
equal to, the width of each summed interval.

Theorem 2. Let R be the resultant (sum) of two
trust intervals A and B according to (16)-(18) and
widths of the three intervals equal to WR, WA, and
WB respectively. Then we always have

(a) WR ≤WA, (19)

(b) WR ≤WB , (20)

with equality possible only in the case where an arbitrary
interval is summed to the interval [0,1].

Proof. (a) is proved below. The same procedure can
be followed for (b) as well.

WR = UR − LR =
UAUB + LALB − LAUB − LBUA

WA +WB −WAWB

=
(UA − LA) (UB − LB)

WA +WB −WAWB

=
WAWB

WA +WB −WAWB
(21)
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WR −WA =
WAWB

WA +WB −WAWB
−WA

=
WA

2 (WB − 1)

WA +WB −WAWB
(22)

We know that W 2
A ≥ 0. On the other hand, WB

is less than or equal to 1. Therefore, WB − 1 ≤ 0. In
addition, sinceWA andWB are both less than or equal
to 1, the denominator is a positive number. Then we
have

WR −WA ≤ 0

or
WR ≤WA

The fact that the width of sum interval is less than
the width of each summed interval indicates that sum-
mation of two trust intervals magnifies the confidence
and reduces the uncertainty. In fact, when the opin-
ions of two people are being obtained, we have more
confidence and less uncertainty comparing to the case
where only the opinion of a single person is available.
Obviously, the more numbers of opinions we add, the
higher the confidence will be. In order to attain the
maximum confidence, i.e. 1, infinite numbers of opin-
ions need to be added.

5) Theorem 3 states that if two trust intervals with
equal values of trust (T ) are added, the trust value
itself does not change.

Theorem 3. Let R be the resultant (sum) of two trust
intervals A and B that are based on the same value of
trust, i.e. TA = TB = T , or equivalently

LA

1−WA
=

LB

1−WB
= T (23)

then we will have
TR = T (24)

Proof. From (8), we have

TR =
LR

1−WR
(25)

On the other hand, we may rewrite the formula for
LR based on (17) as follows:

LR =
LAUB + LBUA − 2LALB

WA +WB −WAWB

=
LA (UB − LB) + LB(UA − LA)

WA +WB −WAWB

=
LAWB + LBWA

WA +WB −WAWB
(26)

Replacing the values of LR from (26) andWR from
(21) in (25), we obtain

TR =
LAWB + LBWA

WA +WB − 2WAWB

=
LAWB + LBWA

WA (1−WB) +WB (1−WA)

=
LA

(
WB +WA

LB

LA

)
(1−WA)

(
WB +WA

1−WB

1−WA

) (27)

From (23), we conclude
1−WB

1−WA
=
LB

LA
(28)

Merging (27) and (28), we arrive at

TR =
LA(WB +WA

LB

LA
)

(1−WA) (WB +WA
LB

LA
)

=
LA

1−WA
= T

(29)

6) The proposed operation of trust interval summa-
tion is commutative. This property is obvious from
(16)-(18). This property may also be observed in Ta-
ble 2, which is symmetric with respect to the main
diagonal.

7) The operator is associative as well. The proof
for associativity, on the other hand, is simple, but too
long to be included here. It can be illustrated using
an example:

([0.2, 0.6]⊕ [0.35, 0.5])⊕ [0.25, 0.8]

= [0.35, 0.47]⊕ [0.25, 0.8] = [0.37, 0.48]

[0.2, 0.6]⊕ ([0.35, 0.5]⊕ [0.25, 0.8])

= [0.2, 0.6]⊕ [0.37, 0.51] = [0.37, 0.48]

8) The commutativity and associativity properties
imply that changing the order of the received opin-
ions and summation process does not change the final
result. One may argue that this is not true when peo-
ple are to decide based on two or more recommenda-
tions. For example, one might not come up with the
same conclusion if s/he receives a confirming opinion
about something first and a disconfirming one later
compared to when he receives the same two opinions
in the reverse order. This can be accounted for by
the subjectivity in human decision making. However,
objective methods are to be employed in trust man-
agement as they will be executed by machines, even
if the raw opinions are provided by people.

3.4 Scalar by Interval Multiplication

The width of the result interval comes even narrower,
if more than two equal opinions are added. Accord-
ing to theorems 2 and 3, more equal opinions added
together, yield more confidence in the resultant, with-
out changing the trust. The sum of multiple equal
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opinions may be regarded as a kind of scalar by trust
interval multiplication. Based on this, the results of
multiplication of numbers 1 through 4 and also 100 by
the trust interval [0.25,0.5] are presented in Table 3. It
is to be noted again that this is not the classic scalar
by interval multiplication, but a novel multiplication
operator which describes the resultant of some equal
opinions. The formal definition of this operator is as
follows:
Definition 1. Let n is be a natural number, i.e. n ∈
N0, and [L,U ] is be a trust interval. Then the scalar
multiplication of n by [L,U ] is defined as:

n ∗ [L,U ] =
[
L(n), U (n)

]
=

 [0, 1] ,

[L,U ]⊕ ((n− 1) ∗ [L,U ]) ,

n = 0

otherwise

Theorem 4 suggests formulas for calculating the
result of scalar multiplication of trust intervals.

Theorem 4. Let [L(n), U (n)] be the result of
n ∗ [L,U ], n ∈ N0, where the width of [L,U ] is W .
Then we have

L(n) =
nL

n− (n− 1)W
(30)

U (n) =
U + (n− 1)L

n− (n− 1)W
(31)

Proof. Theorem can be proved using mathematical
induction on n. However, the proof is, though rather
simple, too long to be included here.

Table 3. Summation of some equal opinions
(Multiples of [0.25, 0.5]).

1*[0.25,0.5] 2*[0.25,0.5] 3*[0.25,0.5] 4*[0.25,0.5] 100*[0.25,0.5]

[0.25,0.5] [0.29,0.43] [0.3,0.4] [0.31,0.38] [0.33,0.34]

Theorem 5 determines the limit of n ∗ [L,U ] when
n approaches infinity.

Theorem 5. Let T be the trust value on which the
trust interval [L,U ] is constructed. Then

lim
n→∞

[L(n), U (n)] = [T, T ] (32)

Proof. According to (30), we have

lim
n→∞

L(n) = lim
n→∞

nL

n− (n− 1)W

= lim
n→∞

nL

n
(
1− n−1

n W
) (33)

And we know

lim
n→∞

n− 1

n
= 1, (34)

thus we will arrive at

lim
n→∞

L(n) = lim
n→∞

nL

n (1−W )
=

L

1−W
= T. (35)

Similarly , from (31), we conclude

lim
n→∞

U (n) = lim
n→∞

U + (n− 1)L

n− (n− 1)W

= lim
n→∞

n
(
U
n + n−1

n L
)

n
(
1− n−1

n W
) (36)

We also know that

lim
n→∞

U

n
= 0 (37)

Considering (34) and (37), we obtain from (36),

lim
n→∞

U (n) =
L

1−W
= T (38)

Now, the last column of Table 3 can be interpreted
based on Theorem 5.

3.5 Trust Intervals as an Algebraic System

Consider the set of all intervals in the range of 0
through 1, with distinct lower and upper bounds:

A = [a, b]|a, b ∈ [0, 1], a 6= b (39)

The set A with our summation operator defined in
(16)-(18) may be considered as an algebraic structure.
This structure has two properties: associativity and
identity element, which are investigated earlier in this
section.Thus A may beconsidered as a monoid.

However, A is not a group, as it does not satisfy
the invertibility property. To satisfy this property, for
any interval, we would have [a, b] ∈ A, as well as an
inverse interval [a’,b’] such that

[a, b]⊕ [a′, b′] = [0, 1] (40)

Nevertheless, this is impossible if the width of the
interval [a,b] is less than 1, since, according to Theo-
rem 2, the width of the result is always less than the
width of each summed interval in such cases.

4 Trust Inference Algorithm Based on
the Proposed Framework

A trust inference problem is a triple (TN, n0, n∞)
where TN is the trust network or web of trust. It is,
as described in section 1, a directed labeled graph in
which the vertexes denote entities and the label of an
edge vivj signifies the value of direct trust the entity I
has in the entity j. n0 and n∞ are the source and the
target nodes in TN , respectively. A solution to a trust
inference problem is a trust value from the interval
[0,1] that describes the amount of trust the source has
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in the target. If there is no solution, then the amount
of trust of the source in the target remains unknown
[8].

If the source node has some experience of interacting
with the target, it can usually evaluate the target’s
trustworthiness level directly and the result of this
evaluation is reflected in the trust network using a
direct edge (arc) from source to target. In such a case,
the solution to the trust inference problem is often
simply the label of that edge. However, the difficulty
of trust inference problem arises when the source node
has no experience of prior interaction with the target
node. For such a case, it is necessary to find ways
of estimating the trust value indirectly based on the
recommendations from intermediate nodes and other
ways.

In this section, first the algorithm for calculating
the inferred trust is being proposed. Since the confi-
dence used in this algorithm is estimated based on a
novel multi-measure approach, a description of this
approach will also be provided.

4.1 Trust Estimation Algorithm

As was also discussed before, trust interval multipli-
cation and summation operators refer to computing
propagated and aggregated confidence-aware trust,
respectively. Therefore, the two operators can be com-
bined in order to estimate the trust from a source to
a target in the web of trust. For example, to estimate
the trust from node S to node D in the web of trust
in Figure 1, we can compute

TISD = TISA ⊗ TIAB ⊗ TIBD ⊕ TISC ⊗ TICD.

Having this in mind, the algorithm proposed here
to find the solution to trust inference problem can be
represented as in Algorithm 1. To estimate the value
of trust from the source node (s0) to the target node
(s∞), one should find all paths (trust chains) from
source to target. In the same vein, in order to solve the
problem of dependent paths, first the approach based
on edge splitting is used as suggested in [17]. The
function CanonicaliseTrustNetwork performs this task
and returns the canonical trust network, CTN . As
explained in [17], optimal splitting leads to removing
the least certain paths from trust network.

Then we should determine the propagated trust
through each path (TIpath), and finally compute the
resultant of the values obtained from different paths
as inferred trust (TIinf ). In each path, the multiplica-
tion operator stated in (13)-(15) is utilized for trust
propagation. TIpath is initialized with [1,1] i.e. the
left identity element of multiplication operator. Then
the propagated trust interval (TIpath) is multiplied
by trust interval of each edge in the path (TIij).

Algorithm 1 Trust inference
Input:

Trust Network (TN),
source node (n0),
target node (n_)

Output:
Inferred trust which describes the amount of trust
that the source has in the target (TIinf )

1: CTN = CanonicaliseTrustNetwork(TN ,n0,n_)
2: TIinf = [0,1]
3: for all paths p in CTN do
4: TIpath = [1, 1]
5: for all edges ninj in the path p do
6: TIpath = TIpath ⊗ TIij(using(12)− (14))
7: TIinf = TIinf ⊕ TIpath(using(15)− (17))
8: end for
9: end for

10: return TIinf

To compute the final trust, TIinf , as the resultant
of the trust intervals obtained from different paths,
the summation operator described in (16)-(18) is used.
The identity element of this operation is [0,1]. Accord-
ingly, the TIinf is initialized with [0,1].

4.2 Confidence Estimation Approach

The value of confidence used in the algorithm may be
achieved directly. However, in many cases the trust
network contains only the values of trust. In such cases,
the values of confidence should be estimated in some
way indirectly. Several studies including [7, 8, 19] use
similarity measures as an estimation of the confidence
the source has in an appraiser (intermediate) node. In
fact, the degree of similarity between the opinions of
the source and an appraiser in the cases where opinions
of both are available, is considered as a measure of
the confidence of the source node in the appraiser’s
recommendations.

Our approach to estimating the confidence, on the
other hand, uses four measures:

(1) Expertise Confidence (ExpC ): based on the ex-
pertise level of the appraiser,

(2) Source Confidence (SrcC ): based on the level
of similarity between the appraiser’s and the
source’s opinions about other nodes,

(3) Society Confidence (SocC ): based on the level
of similarity between the appraiser’s and the
average of the society’s opinions about the des-
tination node,

(4) Freshness Confidence (FrsC ): based on the time
passed from the moment the opinion was offered.

For a node i, ExpC can be calculated using (41).
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ExpCi =

(
1− 1

n+ 1

) ∑n
j=1Ej,i

n
(41)

Where Ej , i is the value of trust node j has in node
i’s expertise, and n is the number of reporting nodes.
SrcCi may be estimated using (42).

SrcCi = (1− 1

m+ 1
)

∑m
j=1 |Tsrc,j − Ti,j |

m
(42)

in which Tsrc,j and Ti, j are the trust ratings for
node j, according to source and node i, respectively,
and m is the number of the nodes they both rated.

Similarly SocCi. may be estimated using (43) below:

SocCi =

(
1− 1

p+ 1

) ∑p
j=1 |Ti,dest − Tj,dest|

p
,

(43)

where Ti,dest and Tj ,dest are trust ratings for desti-
nation node, according to nodes i and j, respectively,
and p is the number of nodes that have rated the
destination node.

Finally, (44) is suggested for estimating FrsCi.

FrsCi = (1− λ)
∆t (44)

where ∆t is the time passed since the appraiser i
has given its opinion, and 0 ≤ λ < 1 is the freshness
(recency) impact factor.

Now, these four types of confidence are combined
to obtain the overall confidence:

Ci = FrsCi(
n.ExpCi +m.SrcCi + p.SrcCi

n+m+ p
) (45)

5 Experiments and Results

To evaluate the accuracy of the proposed solution,
the method was applied to the well-known datasets
of Advogato and Epinions together with some other
methods. The former dataset contains information of
trust among the members of an internet community
of programmers and one of its aims is to provide a
source for trust experiments. The latter is a web of
trust, obtained from the general consumer review site
Epinions.com, where the users are encouraged to not
only rate the items but also explicitly express their
trust on other users. Several other works including [4, 5,
28] used these datasets for evaluating their algorithms,
as well.

However, these datasets contain no information on
confidence and, to the best of our knowledge, there is
no other trust dataset which contains such information.
Accordingly, the approach described in Section 4.2
was used for confidence estimation.

To evaluate and compare the accuracy of the pro-
posed method, the leave-one-out technique, which is
a common validation method in trust research works,
was employed. In this method, since any pairs of nodes,
say vi and vj , which direct trust of vi in vj is available,
we also calculate the indirect (estimated) value of
trust from vi to vj , using each algorithm and consider
the correlation and mean of absolute error (MAE) for
both the direct and indirect trust as measures of the
algorithm accuracy.

Thus, all of the pairs (i, j) in the trust network,
between which the value of direct trust was available,
were found,. In each case, we calculated the estimated
value of trust from ni to nj in the form of a trust
interval using the proposed algorithm. In order to draw
comparisons between the results and the ones obained
by the other methods, we then extracted the explicit
value of trust from trust interval using (8). On the
other hand, we calculated the estimated trust of each
node ni in node nj ,using TidalTrust [6], SUNNY [7],
and FIRE [9] methods independently. As mentioned
earlier, TidalTrust is a well-known trust inference
algorithm, and SUNNY and FIRE are among the
most important trust models addressing the concept
of confidence.

5.1 Experiments on Advogato

The dataset of Advogato is a text file including about
71000 lines of data, containing information on trust
among about 14000 programmers. Each programmer
has stated the value of his/her trust in another pro-
grammer in the terms of one of the words Apprentice,
Journeyer, or Master. Mapping these words into the
numbers in the range [0,1] is left to the user. We tried
different mappings as follows: the values 0, 0.1, 0.2,
and 0.3 were considered for Apprentice, 0.4, 0.5, and
0.6 for Journeyer, and 0.7, 0.8, 0.9, and 1 for Mas-
ter, resulting in totally 4× 3× 4 = 48 different map-
pings. The first of these mappings, for instance, is
represented by <0, 0.4, 07>.

Having tested the four algorithms with each map-
ping , it was found that,

(1) The proposed algorithm provides lower MAE
and higher correlation values comparing to the
other algorithms for all mappings.

(2) The mappings with which each algorithm works
best (in terms of minimizing theMAE) are either
<0.2, 0.5, 0.8> or <0.2, 0.5, 0.9>. Hence, the
results of the comparison will be reported based
on these two mappings.

It should be noted that since the data in Advogato
do not include the time point when the rating is cre-
ated, we ignored FreshnessConfidence(FrsC) mea-
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sure in confidence estimation in the experiments on
Advogato. To this end, we may let λ = 0 (or equiva-
lently ∆t = 0) in (44) obtaining FrsCi = 1 for every
opinion. In fact, we temporarily reduce the confidence
estimation approach to a static one where only the
other measures -rather than time- play a role.

We ran our method together with the other above-
mentioned algorithms on the dataset and computed
the MAE and correlation comparing to real (direct)
trust values, each time. The results are summarized
in Table 4.

As can be observed in Table 4 , the mean value of ab-
solute error in our method is remarkably less than the
values in TidalTrust, FIRE, and SUNNY using each
of the two mappings. On the other hand, the correla-
tion among indirect and direct trust values has been
increased when compared to the other algorithms.

Table 4. Comparison of the proposed method with other
algorithms using Advogato dataset.

Mapping
<0.2,0.5,0.8>

Mapping
<0.2,0.5,0.9>

MAE correlation MAE correlation

TidalTrust 0.052 0.86 0.059 0.82

FIRE 0.070 0.81 0.067 0.82

SUNNY 0.046 0.88 0.053 0.84

Proposed
Method

0.037 0.92 0.041 0.90

For comparison purposes, the results of a different
approach are represented in Table 5. Here, the results
of trust estimation have been converted back to the
three-level categorical space and the rate at which
each algorithm estimated the correct/incorrect cat-
egories have been also computed. Different types of
incorrect estimates are shown in separate rows in the
table, where A, J, and M stand for Apprentice, Jour-
neyer, and Master, respectively. The row A→ J , for
instance, indicates the rate of cases where the real
trust category is Apprentice, but the algorithm esti-
mates it as Journeyer, incorrectly. The other rows can
be interpreted in a similar way.

As can be viewed from Table 5, the rate of correct
estimates by the proposed method is higher compar-
ing to the other algorithms. Besides, the rate of wrong
estimates by this method is less than the other algo-
rithms, almost for all different types of incorrectness.

Therefore, it can be concluded that this new method
outperforms the other algorithms using all the 48
possible mappings. However it may not be the case if
an unreasonable mapping, e.g. <0, 0.9, 1>, is used.

Table 5. Rates of correct and different types of incorrect
estimates on Advogato using different algorithms.

Mapping
<0.2,0.5,0.8>

Mapping
<0.2,0.5,0.9>

Correct 0.931 0.918

A→ J 0.014 0.017

A→M 0.004 0.005

J → A 0.013 0.013

J →M 0.013 0.019

M → A 0.007 0.006

TidalTrust

M → J 0.018 0.022

Correct 0.903 0.912

A→ J 0.020 0.018

A→M 0.007 0.003

J → A 0.017 0.014

J →M 0.017 0.016

M → A 0.011 0.012

FIRE

M → J 0.025 0.025

Correct 0.946 0.923

A→ J 0.012 0.015

A→M 0.001 0.004

J → A 0.012 0.013

J →M 0.012 0.018

M → A 0.004 0.006

SUNNY

M → J 0.013 0.021

Correct 0.960 0.947

A→ J 0.008 0.010

A→M 0.001 0.005

J → A 0.009 0.009

J →M 0.007 0.011

M → A 0.004 0.002

Proposed
Method

M → J 0.011 0.016

5.2 Experiments on Epinions

The dataset of Epinions consists of 49,288 users and
487,183 trust statements. Each trust statement con-
tains the IDs of truster and trustee, the value of trust,
and the time point when the rating is created. The last
field is important for us and one of our major reasons
to choose this dataset, as our approach to confidence
estimation requires the time parameter, and to the
best of our knowledge, other well-known trust datasets
do not include the time field for each trust statement.

Therefore, different values for the freshness impact
factor (λ) were tried and it was found that the opti-
mum value for this parameter is λ = 0.004. However,
the optimal value for λ depends in general on sev-
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eral factors including the context of trust, the society,
and the unit of time. However as will be shown, our
solution outperforms the other methods, even if we
consider λ = 0, i.e. absolutely ignoring the impact of
time.

Similar to the experiments on Advogato, we cal-
culated the estimated trust of each node ni in node
nj , using TidalTrust, SUNNY, and FIRE algorithms
independently.

Once again, we computed the mean of absolute
error (MAE) and correlation coefficient among each
method’s results and direct trust values. The results
are illustrated in Table 6.

As Table 6 shows, the mean of absolute error in our
method with λ = 0, is 0.046 which is less than the
values in TidalTrust, FIRE, and SUNNY. In addition,
it is observable form the table that the correlation
among indirect and direct trust values has been in-
creased to 0.86. This implies that our method provides
more accuracy even if we just consider the three other
measures we explained in Section 4.2 rather than time,
in confidence estimation.

The last row of the table signifies that when we
consider the optimal value we have found for λ, that is
0.004 as mentioned before, the accuracy of our method
is even higher. In this case, MAE is reduced to 0.042,
and the correlation is increased to 0.90.

Table 6. Comparison of the proposed method with other
algorithms using Epinions dataset.

MAE Correlation

TidalTrust 0.060 0.81

FIRE 0.074 0.79

SUNNY 0.048 0.82

Proposed
Method

with λ = 0

0.046 0.86

Proposed
Method
with

λ = 0.004

0.042 0.90

6 Conclusion and Future Work

In the present paper, first a framework was introduced
for integrated representation of trust and confidence
using intervals, as well as operations on trust inter-
vals. In this regard, some properties of the proposed
operations were analyzed and proved. In addition, an
approach to confidence estimation was aslo proposed
considering four measures, which was shown to im-
prove the accuracy of confidence-aware trust compu-
tation.

The notation and operations proposed here, not
only represent the trust along with confidence in a
more intuitive way, but also provide a good approach
to combine opinions confirming or contradicting one
another.

However, the effect of other measures in confidence
estimation such as appraiser’s distance from the source
and conflicts among opinions are intended to be in-
vestigated in future. It may cause the trust interval
system to include summation and/or multiplication
reverse for trust intervals and therefore, convert the
system into a more advanced algebraic system. other
future studies will include invesigation of the appli-
cations of intervals in analyzing the sources of uncer-
tainty in trust management, eliminating subjectivity
from trust assessment, and clustering nodes of the
web of trust.
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