
MATEMATIKA, 2013, Volume 29, Number 1b, 95-105 

©Department of Mathematical Sciences, UTM 

 

95 

 

An Almost General Code in R to Find Optimal Designs 
 

1
Ehsan Masoudi, 

2
Majid Sarmad and 

3
Hooshang Talebi 

1,2
Department of Statistics, Faculty of Mathematical Sciences,  

P.O. Box: 91775-1159, Ferdowsi University of Mashhad-Iran 
3
Department of Statistics, Faculty of Sciences  

Post Code: 8174673441, University of Isfahan-Iran 

e-mail: ehsan.masoudi@stu-mail.um.ac.ir, sarmad@um.ac.ir , h-talebi@sci.ui.ac.ir 

 

 

Abstract Optimal designs play an important role in many applied areas such as medical 
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optimization process based on the Fisher information matrix. Using a nice technique in R 

(a very popular statistical software), an almost general code can be used for many various 

cases of  optimization processes. 
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1     Introduction 
 

In many experimental situations, regression techniques are applied for modelling a response of 

interest in terms of explanatory variables. For example, in biology, Michaelis-Menten model is used 

to describe the effect of substrate concentration on velocity of the enzyme reaction [1]. In these cases, 

the models are known and estimating their unknown parameters is desired. The precision of estimates 

depends on the choice of design in an experiment. The aim of an optimal design problem is to find 

appropriate design that leads to efficient estimates of parameters in final fitted regression model. 

Therefore, an exact optimal design is of optimally selecting the number of distinct levels, the 

explanatory variable levels and weight of each levels with respect to a given optimality criterion. The 

obtained optimal design can be verified by equivalence theorem [2]. 

     Determination of optimal designs can be done analytically or numerically. Then, a computational 

software is required even for some analytical methods. A web based designed program at 

http://optimal-design.biostat.ucla.edu/optimal/ applies Matlab to find optimal designs. In addition, 

Poursina [3] and Roshan-Nezhad [4] addressed optimal design problems in Logistic and Poisson 

models by using Maple which can bear testimony to the fact that R [5] as a popular statistical 

programming language
1
 is not common to be used for this type of calculations and there are no 

available packages for finding optimal designs in nonlinear models. 

     Fortunately, R has powerful functions for manipulating character type variables and can be used to 

build Information matrix. In this paper, an intelligent technique is nicely applied to automatically 

construct Fisher information matrix for nonlinear models. In section 2, a short brief on optimal design 

problem is presented and the mentioned technique is described in section 3. 

 

 

2     A Short Brief on Optimal Designs 
 

Consider a nonlinear model (a model that is not linear in terms of parameters) with one explanatory 

variable as 

 

( , )y x= +θθθθ ϵ        (1) 
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where y denotes the dependent variable, ( , )xη θθθθ  is a nonlinear function of the explanatory variable 

x  with a  vector of unknown parameters θθθθ  and random errors, ϵ, are assumed to be i.i.d. with zero 

mean and unknown constant variance. A design is a collection of points of the explanatory variable. 

As there are ties in this collection with n different support points, it can be written as a weighted form 
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In general, a unique optimal design does not exist and using different criteria ends with various 

designs. The criteria depend on purpose of experimenter. If the aim is to estimate the parameters in 

the model, reasonable one is determinant of Fisher information matrix and the design ξ is D-optimal if 

maximizes this determinant. It should be noted that the number of support points must be at least as 

equal as the number of parameters to avoid 

singularity of the matrix. When the function ( , )xη θθθθ in (1) is differentiable with continuous derivative 

for all elements of θθθθ , the Fisher information matrix for a design ξ will be 

 

    
1

( , ) ( , )
n

i i

i

M w m xξ
=

=∑θ θθ θθ θθ θ ,     (2) 

 

where 

 
2

1 1 2 1

2

2 1 2 2

1 2

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )

( , )

( , ) ( , ) ( , ) ( , ) ( , )

i i i i i

p

i i i i i

i p

i i i i i

p p p

x x x x x

x x x x x

m x

x x x x x

η η η η η
θ θ θ θ θ

η η η η η
θ θ θ θ θ

η η η η η
θ θ θ θ θ

 ∂ ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
 = ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ

θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ
θθθθ

θ θ θ θ θθ θ θ θ θθ θ θ θ θθ θ θ θ θ
2

 
 
 
 
 
 
 
 
 
 
   

. 

 

It is obvious that nonlinearity of ( , )xη θθθθ  causes the dependency on unknown parameters in Fisher 

information  matrix which results in a paradox. Chernoff [6] proposed choosing initial guess values 

for the unknown parameters. This approach leads to a locally optimal design. 

     Michaelis-Menten model, as following, is an example of nonlinear models 

 

1

2

( )
x

E y
x

θ
θ

=
+

.                                                (3) 

 

In the next section, a technique is described to automatically construct the Fisher information matrix 

for almost nonlinear functions, η, via the Michaelis-Menten model as an example. In addition, the 

performance of this algorithm is evaluated by Exponantial and Log-linear models as two another 

nonlinear models. 

 

 

3     Auto-Constructing the Fisher Information Matrix Determinant by R 
 

To obtain D-optimal design, it is necessary to define (2) for a given model. Unfortunately, R is limited 

to handle the symbolic computation (D is an example of it), but it has a powerful functions that can 
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work with string and character variables such as gsub, paste and eval which play an important role 

in the technique [7]. 

     Generally, auto-constructing technique for Fisher information matrix in (2) can be described as the 

following algorithm: 

 

Step 1 Set input variables: 

- npar: Number of parameters in model 

- n: Number of support points (by default is set to npar) 

- ymean: ( , )ixη θθθθ as a character string 

- vp:
0θθθθ , vector of initial values for the parameters in locally optimal design approach. 

 

Step 2 For each i, construct matrix mc_i, ( , )im x θθθθ as string. 

 

Step 3 Construct matrix Mc, ( , )M ξ θθθθ , as string. 

 

Step 4 Substitute parameter symbols in Mc with the given initial values of parameter (vp elements). 

 

Step 5 Substitute ix ’s and iw ’s with symbolic elements of a vector which will be used in 

optimization process. 

 

Step 6 Construct the string definition of a function for Fisher information matrix determinant as 

character string. 

 

Step 7 Evaluate the string function to make a real function of Information matrix determinant (ready 

to use for maximization). 

 

By coding the above algorithm within R workspace, the Fisher information matrix for the models of 

form (1) can be constructed without user-inerfere and just by setting the appropriate input variables. 

Hence, selecting the suitable input variables in step 1 has a crucial importance in performance of the 

algorithm. For instance, to construct the two-point design Fisher information matrix for Michaelis-

Menten model with 
0

1 2( 1.3, 1)θ θ= = =θθθθ , the input variables must defined as following: 

 
npar=2 
n=2 
ymean="(theta1*xi)/(theta2+xi)" 
vp=c(1.3,1) 
 
As can be seen in the of ymean definition, xi and theta1, theta2, ... must be used as notations for 

2θ , 2θ , ... and ix , respectively. Following tables contain a few key pieces of R codes in each step for 

the above algorithm. 

 

Table 1 Constructing ( , )m xi θθθθ for each i (step 2) 

ymean=gsub("i",i,ymean)  
 

 

Substitute the "i" character with real valued 
of i in ymean 

row=paste("theta",k,sep="") 
charac1=paste("D(expression(",ymean,") 
,"," ' ",row," ' ",")",sep="") 
 

Construct 
( , )i

k

xη
θ

∂
∂

θθθθ
 as a character string, 

where k is the number of rows in ( , )im x θθθθ   
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col=paste("theta",j,sep="") 
charac2=paste("D(expression(",ymean,") 
,"," ' ",col," ' ", ")",sep="") 
 

Construct 
( , )i

j

xη
θ

∂
∂

θθθθ
 as a character string, 

where j is the number of columns in 

( , )im x θθθθ . 

a1=eval(parse(text=(charac1)))  
 Evaluate charac1 to compute 

( , )i

k

xη
θ

∂
∂

θθθθ
 

a2=eval(parse(text=(charac2)))  
 Evaluate charac2 to compute 

( , )i

j

xη
θ

∂
∂

θθθθ
 

a1=as.character(as.expression(a1)) 
a2=as.character(as.expression(a2)) 
 

Convert type of a1 and a2 from "language" 

to "character" 

 

paste(a1,a2,sep ="*") 
Paste a1 and a2 to construct 

( , )i

k

xη
θ

∂
∂

θθθθ

( , )i

j

xη
θ

∂
∂

θθθθ
 

 

The constructed mc_i (i = 1) for Michaelis-Menten model is: 

 

      [,1] 
[1,] "x1/(theta2 + x1)*x1/(theta2 + x1)" 
[2,] "x1/(theta2 + x1)*-((theta1 * x1)/(theta2 + x1)^2)" 
      [,2] 
[1,] "- ((theta1 * x1)/(theta2 + x1)^2)*x1/(theta2 + x1)" 
[2,] "- ((theta1 * x1)/(theta2 + x1)^2)*-((theta1 * x1)/(theta2 + x1)^2)" 
 

In step three, the Mc should initially be set as an empty string by Mc = " ". The other stages 
of step three is described in table (2) and will be looped for each i. 

 

 

Table 2 Constructing matrix ( , )M ξ θθθθ (step 3) 

weight=paste("w",i,sep="") 
mcw=paste(weight,mc_i,sep="*") 

Construct ( , )i iw m x θθθθ  

 

Mc=paste(Mc,mcw,sep="+") Stepwise summation of mcw 

 

 
Table 3 Substitute parameter symbols in Mc with given initial values (step 4) 

par_symbol=paste("theta",j,sep="") 

Mc=gsub(par_symbol,vp[j],Mc) 

Substitute the j-th parameter 

symbol with vp[j], the jth el- 

ment of 
0θθθθ  

 

 

Now, Mc for Michaelis-Menten model is 

 

[1] "+w1*x1/(theta2 + x1)*x1/(theta2 + x1) 

      +w2*x2/(theta2 + x2)*x2/(theta2 + x2)" 

[2] "+w1*x1/(theta2 + x1)*-((theta1 * x1)/(theta2 + x1)^2) 

      +w2*x2/(theta2 + x2)*-((theta1 * x2)/(theta2 + x2)^2)" 

[3] "+w1*-((theta1 * x1)/(theta2 + x1)^2)*x1/(theta2 + x1) 

      +w2*-((theta1 * x2)/(theta2 + x2)^2)*x2/(theta2 + x2)" 
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[4] "+w1*-((theta1 * x1)/(theta2 + x1)^2)*-((theta1 * x1)/(theta2 + x1)^2) 

      +w2*-((theta1 * x2)/(theta2 + x2)^2)*-((theta1 * x2)/(theta2 + x2)^2)" 

. 

In step five, ix ’s and iw ’s will be substituted with [.]q , respectively, to achieve the standards of 

being an objective function in R optimization functions arguments. It is also be applicable any extra 

information from theorems on the designs of some nonlinear models, such as equality of weights or 

even adding penalty function as a character string [8]. 

 

 
Table 4 Constructing the string definition of a function for Fisher information matrix determinant (step 6) 

Mc=paste(Mc[1:((npar)*(npar))], 

sep=',',collapse=",") 

Concatenate all elements of MC 

matrix into a single string 

charac<-paste("detM=function(q) 

{Mat<-matrix(c(", Mc,"),npar,npar 

;d=det(Mat);return(d)}",sep="") 

Paste the required codes to Mc 

string 

 

 

In step seven, eval(parse(text=charac)) defines the function of detM in the global environment: 

 

function(q){Mat<-matrix(c( 
+q[3] * 1/(1) * q[1]/(1 + q[1]) * q[1]/(1 + q[1]) 
+q[4] * 1/(1) * q[2]/(1 + q[2]) * q[2]/(1 + q[2]), 
+q[3] * 1/(1) * -((1.3 * q[1])/(1 + q[1])^2) * q[1]/(1 + q[1]) 
+q[4] * 1/(1) * -((1.3 * q[2])/(1 + q[2])^2) * q[2]/(1 + q[2]), 
+q[3] * 1/(1) * q[1]/(1 + q[1]) * -((1.3 * q[1])/(1 + q[1])^2) 
+q[4] * 1/(1) * q[2]/(1 + q[2]) * -((1.3 * q[2])/(1 + q[2])^2), 
+q[3] * 1/(1) * -((1.3 * q[1])/(1 + q[1])^2) * -((1.3 * q[1])/(1 + q[1])^2) 
+ q[4] * 1/(1) * -((1.3 * q[2])/(1 + q[2])^2) * -((1.3 * q[2])/(1 + q[2])^2 
)),2,2);d=det(Mat);return(d)} 
 
 
3.1     Performance Evaluation of auto-constructing Algorithm 

 

Exponential and Log-linear models as two another examples of nonlinear dose response models can 

be written as (1), where 1 2 3( , ) exp( / )x xη θ θ θ= +θ  for Exponential and �(�, �) = 

1 2 3log( )xθ θ θ+ +  for Log-linear model. Because of the broad applicability of these models, efficient 

experimental designs are important [9]. To construct Fisher informtion matrix of three-points design 

at �� = (1.6, 1.3, 1) the input variables must be npar = 3, n=3, vpar=c(1.6,1.3,1) with 
ymean=theta1+theta2*exp(xi/theta3) and ymean=theta1+theta2*log(xi+theta3) for 

Exponential and Log-linear models, respectively. Then, by applying auto-constructing algorithm the 

constructed information matrix for Exponential model will be 

 

function(q){Mat<-matrix(c( 
+q[4] * 1/(1) * 1 * 1 + q[5] * 1/(1) * 1 * 1 
+q[6] * 1/(1) * 1 * 1, +q[4] * 1/(1) * exp(q[1]/1) * 1 
+q[5] * 1/(1) * exp(q[2]/1) * 1 + q[6] * 1/(1) * exp(q[3]/1) * 1, 
+q[4] * 1/(1) * -(1.3 * (exp(q[1]/1) * (q[1]/1^2))) * 1 
+q[5] * 1/(1) * -(1.3 * (exp(q[2]/1) * (q[2]/1^2))) * 1 
+q[6] * 1/(1) * -(1.3 * (exp(q[3]/1) * (q[3]/1^2))) * 1, 
+q[4] * 1/(1) * 1 * exp(q[1]/1) + q[5] * 1/(1) * 1 * exp(q[2]/1) 
+q[6] * 1/(1) * 1 * exp(q[3]/1), 
+q[4] * 1/(1) * exp(q[1]/1) * exp(q[1]/1) 
+q[5] * 1/(1) * exp(q[2]/1) * exp(q[2]/1) 
+q[6] * 1/(1) * exp(q[3]/1) * exp(q[3]/1), 



 

 

100 

 

+q[4] * 1/(1) * -(1.3 * (exp(q[1]/1) * (q[1]/1^2))) * exp(q[1]/1) 
+q[5] * 1/(1) * -(1.3 * (exp(q[2]/1) * (q[2]/1^2))) * exp(q[2]/1) 
+q[6] * 1/(1) * -(1.3 * (exp(q[3]/1) * (q[3]/1^2))) * exp(q[3]/1), 
+q[4] * 1/(1) * 1 * -(1.3 * (exp(q[1]/1) * (q[1]/1^2))) 
+q[5] * 1/(1) * 1 * -(1.3 * (exp(q[2]/1) * (q[2]/1^2))) 
+q[6] * 1/(1) * 1 * -(1.3 * (exp(q[3]/1) * (q[3]/1^2))), 
+q[4] * 1/(1) * exp(q[1]/1) * -(1.3 * (exp(q[1]/1) * (q[1]/1^2))) 
+q[5] * 1/(1) * exp(q[2]/1) * -(1.3 * (exp(q[2]/1) * (q[2]/1^2))) 
+q[6] * 1/(1) * exp(q[3]/1) * -(1.3 * (exp(q[3]/1) * (q[3]/1^2))), 
+q[4] * 1/(1) * -(1.3 * (exp(q[1]/1) * (q[1]/1^2))) * -(1.3 * 
(exp(q[1]/1) *(q[1]/1^2))) 
+q[5] * 1/(1) * -(1.3 * (exp(q[2]/1) * (q[2]/1^2))) * -(1.3 * 
(exp(q[2]/1) *(q[2]/1^2))) 
+q[6] * 1/(1) * -(1.3 * (exp(q[3]/1) * (q[3]/1^2))) * -(1.3 * 
(exp(q[3]/1)*(q[3]/1^2)))), 
3,3);d=det(Mat);return(d)} 
 
while this matrix for Log-linear model is constructed as following R function 

 
function(q){Mat<-matrix(c( 
+q[4] * 1/(1) * 1 * 1 + q[5] * 1/(1) * 1 * 1 
+q[6] * 1/(1) * 1 * 1, +q[4] * 1/(1) * log(q[1] + 1) * 1 
+q[5] * 1/(1) * log(q[2] + 1) * 1 + q[6] * 1/(1) * log(q[3] + 1) * 1, 
+q[4] * 1/(1) * 1.3 * (1/(q[1] + 1)) * 1 
+q[5] * 1/(1) * 1.3 * (1/(q[2] + 1)) * 1 
+q[6] * 1/(1) * 1.3 * (1/(q[3] + 1)) * 1, 
+q[4] * 1/(1) * 1 * log(q[1] + 1) 
+q[5] * 1/(1) * 1 * log(q[2] + 1) 
+q[6] * 1/(1) * 1 * log(q[3] + 1), 
+q[4] * 1/(1) * log(q[1] + 1) * log(q[1] + 1) 
+q[5] * 1/(1) * log(q[2] + 1) * log(q[2] + 1) 
+q[6] * 1/(1) * log(q[3] + 1) * log(q[3] + 1), 
+q[4] * 1/(1) * 1.3 * (1/(q[1] + 1)) * log(q[1] + 1) 
+q[5] *1/(1) * 1.3 * (1/(q[2] + 1)) * log(q[2] + 1) 
+q[6] * 1/(1) * 1.3 * (1/(q[3] + 1)) * log(q[3] + 1), 
+q[4] * 1/(1) * 1 * 1.3 * (1/(q[1] + 1)) 
+q[5] * 1/(1) * 1 * 1.3 * (1/(q[2] + 1)) 
+q[6] * 1/(1) * 1 * 1.3 * (1/(q[3] + 1)), 
+q[4] * 1/(1) * log(q[1] + 1) * 1.3 * (1/(q[1] + 1)) 
+q[5] * 1/(1) * log(q[2] + 1) * 1.3 * (1/(q[2] + 1)) 
+q[6] * 1/(1) * log(q[3] + 1) * 1.3 * (1/(q[3] + 1)), 
+q[4] * 1/(1) * 1.3 * (1/(q[1] + 1)) * 1.3 * (1/(q[1] + 1)) 
+q[5] * 1/(1) * 1.3 * (1/(q[2] + 1)) * 1.3 * (1/(q[2] + 1)) 
+q[6] * 1/(1) * 1.3 * (1/(q[3] + 1)) * 1.3 * (1/(q[3] + 1))), 
3,3);d=det(Mat);return(d)} 
 
 

4     Discussion and Results 
 

In spite of the fact that R has many powerful packages for optimization2, the most of them are unable 

to deal with D-optimal problems in nonlinear models. In fact, changing the values of support points 

leads to a large value (NaN) for the determinant and optimization will be terminated with no result. It 

seems that the best available package for our purpose is Rsolnp that does a general nonlinear 
optimization using augmented Lagrange multiplier method [10]. In the current work, gosolnp 
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function from Rsolnp is applied which is random initialization and multiple restarts of the solnp 
solver and also can carry out a constraint optimization that is required in an optimal design problem 

because of 
1

1
n

ii
w

=
=∑ . 

     As a result, numerical local D-optimal designs for Michaelis-Menten, Exponential and Log-linear 

models are given in tables (5), (6) and (7), respectively, with design space [0, 10]. The obtained 

designs in these tables is exactly as same as the analytical results that are given in [1] and [9]. The 

other part of coding (in R) has been done, by the authors, to verify the optimality of these designs 

based on the equivalence theorem and needs to be documented. As can be seen from these tables, the 

local D-optimal designs are robust with respect to 1θ for Michaelis-Menten model and with respect to 

1θ  and 2θ  for Expnential and Log-linear models. Hence, the local D-optimal designs for these models 

are relatively robust with respect to misspecication of the model parameters. 

     Moreover, local D-optimal designs for Weibull, Richards and Inverse Quadratic can also be easily 

obtained by setting the appropriate input variables. 

 

 
Table 5 Some locall D-optimal designs in the Michaelis-Menten model with the design space 0 10x≤ ≤  

 

             
0

1θ     
0

2θ          1x        2x     1w               

2w  

1.3    1.0    0.833    10    0.5    0.5 

1.6    1.0    0.833    10    0.5    0.5 

1.9    1.0    0.833    10    0.5    0.5 

2.2    1.0    0.833    10    0.5    0.5 

2.5    1.0    0.833    10    0.5    0.5 

2.8    1.0    0.833    10    0.5    0.5 

3.1    1.0    0.833    10    0.5    0.5 

3.4    1.0    0.833    10    0.5    0.5 

3.7    1.0    0.833    10    0.5    0.5 

4.0    1.0    0.833    10    0.5    0.5 

4.3    1.0    0.833    10    0.5    0.5 

1.0    1.3    1.032    10    0.5    0.5 

1.3    1.3    1.032    10    0.5    0.5 

1.6    1.3    1.032    10    0.5    0.5 

1.9    1.3    1.032    10    0.5    0.5 

2.2    1.3    1.032    10    0.5    0.5 

2.5    1.3    1.032    10    0.5    0.5 

2.8    1.3    1.032    10    0.5    0.5 

3.1    1.3    1.032    10    0.5    0.5 

3.4    1.3    1.032    10    0.5    0.5 

3.7    1.3    1.032    10    0.5    0.5 

4.0    1.3    1.032    10    0.5    0.5 

4.3    1.3    1.032    10    0.5    0.5 

1.0    1.6    1.212    10    0.5    0.5 

1.3    1.6    1.212    10    0.5    0.5 

1.6    1.6    1.212    10    0.5    0.5 

1.9    1.6    1.212    10    0.5    0.5 

2.2    1.6    1.212    10    0.5    0.5 

2.5    1.6    1.212    10    0.5    0.5 

2.8    1.6    1.212    10    0.5    0.5 

3.1    1.6    1.212    10    0.5    0.5 

3.4    1.6    1.212    10    0.5    0.5 

3.7    1.6    1.212    10    0.5    0.5 
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4.0    1.6    1.212    10    0.5    0.5 

4.3    1.6    1.212    10    0.5    0.5 

1.0    1.9    1.377    10    0.5    0.5 

1.3    1.9    1.377    10    0.5    0.5 

1.6    1.9    1.377    10    0.5    0.5 

1.9    1.9    1.377    10    0.5    0.5 

2.2    1.9    1.377    10    0.5    0.5 

2.5    1.9    1.377    10    0.5    0.5 

2.8    1.9    1.377    10    0.5    0.5 

3.1    1.9    1.377    10    0.5    0.5 

3.4    1.9    1.377    10    0.5    0.5 

3.7    1.9    1.377    10    0.5    0.5 

4.0    1.9    1.377   10    0.5    0.5 

4.3    1.9    1.377   10    0.5    0.5 

1.0    2.2    1.528    10    0.5    0.5 

 

 

 
Table 6 Some locall D-optimal designs in the Exponential dose response model with the design space 

0 10x≤ ≤  

 

                
0

1θ      
0

2θ      
0

3θ    1x       2x         3x        1w          2w           

3w  

1.6    1.3    1.0    0    9.000    10    0.333    0.333    0.333 

1.9    1.3    1.0    0    9.000    10    0.333    0.333    0.333 

1.0    1.6    1.0    0    9.000    10    0.333    0.333    0.333 

1.3    1.6    1.0    0    9.000    10    0.333    0.333    0.333 

1.6    1.6    1.0    0    9.000    10    0.333    0.333    0.333 

1.9    1.6    1.0    0    9.000    10    0.333    0.333    0.333 

1.0    1.9    1.0    0    9.000    10    0.333    0.333    0.333 

1.3    1.9    1.0    0    9.000    10    0.333    0.333    0.333 

1.6    1.9    1.0    0    9.000    10    0.333    0.333    0.333 

1.9    1.9    1.0    0    9.000    10    0.333    0.333    0.333 

1.0    1.0    1.3    0    8.705    10    0.333    0.333    0.333 

1.3    1.0    1.3    0    8.705    10    0.333    0.333    0.333 

1.6    1.0    1.3    0    8.705    10    0.333    0.333    0.333 

1.9    1.0    1.3    0    8.705    10    0.333    0.333    0.333 

1.0    1.3    1.3    0    8.705    10    0.333    0.333    0.333 

1.3    1.3    1.3    0    8.705    10    0.333    0.333    0.333 

1.6    1.3    1.3    0    8.705    10    0.333    0.333    0.333 

1.9    1.3    1.3    0    8.705    10    0.333    0.333    0.333 

1.0    1.6    1.3    0    8.705    10    0.333    0.333    0.333 

1.3    1.6    1.3    0    8.705    10    0.333    0.333    0.333 

1.6    1.6    1.3    0    8.705    10    0.333    0.333    0.333 

1.9    1.6    1.3    0    8.705    10    0.333    0.333    0.333 

1.0    1.9    1.3    0    8.705    10    0.333    0.333    0.333 

1.3    1.9    1.3    0    8.705    10    0.333    0.333    0.333 

1.6    1.9    1.3    0    8.705    10    0.333    0.333    0.333 

1.9    1.9    1.3    0    8.705    10    0.333    0.333    0.333 

1.0    1.0    1.6    0    8.419    10    0.333    0.333    0.333 

1.3    1.0    1.6    0    8.419    10    0.333    0.333    0.333 

1.6    1.0    1.6    0    8.419    10    0.333    0.333    0.333 

1.9    1.0    1.6    0    8.419    10    0.333    0.333    0.333 

1.0    1.3    1.6    0    8.419    10    0.333    0.333    0.333 
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1.3    1.3    1.6    0    8.419    10    0.333    0.333    0.333 

1.6    1.3    1.6    0    8.419    10    0.333    0.333    0.333 

1.9    1.3    1.6    0    8.419    10    0.333    0.333    0.333 

1.0    1.6    1.6    0    8.419    10    0.333    0.333    0.333 

1.3    1.6    1.6    0    8.419    10    0.333    0.333    0.333 

1.6    1.6    1.6    0    8.419    10    0.333    0.333    0.333 

1.9    1.6    1.6    0    8.419    10    0.333    0.333    0.333 

1.0    1.9    1.6    0    8.419    10    0.333    0.333    0.333 

1.3    1.9    1.6    0    8.419    10    0.333    0.333    0.333 

1.6    1.9    1.6    0    8.419    10    0.333    0.333    0.333 

1.9    1.9    1.6    0    8.419    10    0.333    0.333    0.333 

1.0    1.0    1.9    0    8.152    10    0.333    0.333    0.333 

1.3    1.0    1.9    0    8.152    10    0.333    0.333    0.333 

1.6    1.0    1.9    0    8.152    10    0.333    0.333    0.333 

1.9    1.0    1.9    0    8.152    10    0.333    0.333    0.333 

1.0    1.3    1.9    0    8.152    10    0.333    0.333    0.333 

1.3    1.3    1.9    0    8.152    10    0.333    0.333    0.333 

 

 
Table 7 Some locall D-optimal designs in the Log-linear dose response model with the design space 0 10x≤ ≤  

                
0

1θ      
0

2θ      
0

3θ    1x       2x         3x        1w          2w           

3w  

1.6    1.3    1.0    0    1.638    10    0.333    0.333    0.333 

1.9    1.3    1.0    0    1.638    10    0.333    0.333    0.333 

1.0    1.6    1.0    0    1.638    10    0.333    0.333    0.333 

1.3    1.6    1.0    0    1.638    10    0.333    0.333    0.333 

1.6    1.6    1.0    0    1.638    10    0.333    0.333    0.333 

1.9    1.6    1.0    0    1.638    10    0.333    0.333    0.333 

1.0    1.9    1.0    0    1.638    10    0.333    0.333    0.333 

1.3    1.9    1.0    0    1.638    10    0.333    0.333    0.333 

1.6    1.9    1.0    0    1.638    10    0.333    0.333    0.333 

1.9    1.9    1.0    0    1.638    10    0.333    0.333    0.333 

1.0    1.0    1.3    0    1.877    10    0.333    0.333    0.333 

1.3    1.0    1.3    0    1.877    10    0.333    0.333    0.333 

1.6    1.0    1.3    0    1.877    10    0.333    0.333    0.333 

1.9    1.0    1.3    0    1.877    10    0.333    0.333    0.333 

1.0    1.3    1.3    0    1.877    10    0.333    0.333    0.333 

1.3    1.3    1.3    0    1.877    10    0.333    0.333    0.333 

1.6    1.3    1.3    0    1.877    10    0.333    0.333    0.333 

1.9    1.3    1.3    0    1.877    10    0.333    0.333    0.333 

1.0    1.6    1.3    0    1.877    10    0.333    0.333    0.333 

1.3    1.6    1.3    0    1.877    10    0.333    0.333    0.333 

1.6    1.6    1.3    0    1.877    10    0.333    0.333    0.333 

1.9    1.6    1.3    0    1.877    10    0.333    0.333    0.333 

1.0    1.9    1.3    0    1.877    10    0.333    0.333    0.333 

1.3    1.9    1.3    0    1.877    10    0.333    0.333    0.333 

1.6    1.9    1.3    0    1.877    10    0.333    0.333    0.333 

1.9    1.9    1.3    0    1.877    10    0.333    0.333    0.333 

1.0    1.0    1.6    0    2.077    10    0.333    0.333    0.333 

1.3    1.0    1.6    0    2.077    10    0.333    0.333    0.333 

1.6    1.0    1.6    0    2.077    10    0.333    0.333    0.333 

1.9    1.0    1.6    0    2.077    10    0.333    0.333    0.333 

1.0    1.3    1.6    0    2.077    10    0.333    0.333    0.333 

1.3    1.3    1.6    0    2.077    10    0.333    0.333    0.333 
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1.6    1.3    1.6    0    2.077    10    0.333    0.333    0.333 

1.9    1.3    1.6    0    2.077    10    0.333    0.333    0.333 

1.0    1.6    1.6    0    2.077    10    0.333    0.333    0.333 

1.3    1.6    1.6    0    2.077    10    0.333    0.333    0.333 

1.6    1.6    1.6    0    2.077    10    0.333    0.333    0.333 

1.9    1.6    1.6    0    2.077    10    0.333    0.333    0.333 

1.0    1.9    1.6    0    2.077    10    0.333    0.333    0.333 

1.3    1.9    1.6    0    2.077    10    0.333    0.333    0.333 

1.6    1.9    1.6    0    2.077l   10    0.333    0.333    0.333 

1.9    1.9    1.6    0    2.077    10    0.333    0.333    0.333 

1.0    1.0    1.9    0    2.248    10    0.333    0.333    0.333 

1.3    1.0    1.9    0    2.248    10    0.333    0.333    0.333 

1.6    1.0    1.9    0    2.248    10    0.333    0.333    0.333 

1.9    1.0    1.9    0    2.248    10    0.333    0.333    0.333 

1.0    1.3    1.9    0    2.248    10    0.333    0.333    0.333 

1.3    1.3    1.9    0    2.248    10    0.333    0.333    0.333 

 

 

 

5     Conclusion 
 

For optimal design problems, there has not been an effort to apply R for finding optimal designs in 

nonlinear models because of two reasons. The first reason is lack of symbolic computation in R which 

causes codding to be time-consumer and boring. The second reason is connected with the element 

values of Fisher information matrix which exceeds the double-precision (R precision default) for 

some points of design space and gives rise to halt in optimization process as NaN is produced in 
calculations. To address the R symbolic computation issue, auto-constructing technique is introduced 

to construct Fisher information matrix without user-interference. Furthermore, the auto-constructing 

technique can facilitates the other optimal design approaches. For instance, in minimax D-optimal 

design algorithm the number of support points may be changed for some iterations (See [11]) and by 

this technique the Fisher information matrix can be constructed just by setting the value of n through 

variables. R users can apply this technique for constructing the complicated formulas instead of 

symbolic computations in R. What is more, function gosolnp from package Rsolnp can be applied 
to minimize determinant or any function of Fisher information matrix. In fact, while the other 

nonlinear optimizer such as optim is failed when NaN appears, gosolnp as a multistart algorithm 

can ignore the produced NaN and carry out the optimization process without halt. 
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