A New Approach for Event Triggering Probability Estimation in Active
Database Systems to Rule Scheduling Improvement

Abbas Rasoolzadegan, Rohollah Alesheykh, Ahmad Abdollahzadeh
Intelligent Systems Laboratory
http://ce.aut.ac.ir/islab
Department of Computer Engineering and Information Technology

Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
{Rasoolzade, Alesheykh, Ahmad}@aut.ac.ir

Abstract

Active database systems (ADBS) can react to the
occurrence of some predefined events automatically.
Reactive behavior of ADBS is organized by a collection
of active rules. One of the most important modules of
ADBS is the rule manager. The main responsibility of the
rule manager is triggering, buffering, firing and selecting
(scheduling) rules. Rule scheduling approach has
considerable impact on performance and efficiency of
ADBS. In this paper, we propose a new approach for
improving the rule scheduling in ADBS. We first
introduce a framework to compare and evaluate existing
rule scheduling approaches. In this framework, five
evaluation criteria have been proposed: Average
Response Time, Response Time Variance, Throughput,
Time Overhead per Transaction and CPU Utilization.
Existing approaches have been evaluated by using this
framework and the approach which has the most positive
impact on performance and efficiency of ADBS has been
selected by analyzing the weaknesses and strengths of
existing approaches. Then, to improve the selected rule
scheduling approach, we developed an Event Triggering
Probability Estimation algorithm and integrated this
algorithm to selected rule scheduling approach. Results
of experiments show that the new proposed algorithm
increases the positive impact of selected rule scheduling
approach on performance of ADBS.

1. Introduction

Traditional database systems (passive databases) can
only store and retrieve data [1]. They work directly with
user requests. By application getting grown and
databases getting larger, passive database systems were
unable to manage these large systems, and as a result,
database systems needed to supervise some predefined
special situations and react to some occurrences [2].
These predefined situations are called events. For
supporting reactive behavior of new database systems
(called Active Database Systems), Event-Condition-
Action (ECA) rule format was created. The ECA format

has three sections: Event, Condition, and Action. When
an event occurs, condition gets evaluated and if the
condition is true, action is executed.

1.1. Active Database Management Systems
(ADBMS)

There are many types of events in different ADBS,
such as data insertion, data manipulation, transaction
start, commit, abort and rollback. The conditions specify
what should be checked after the occurrence of an event
and before execution of an action. The actions can
contain anything such as: data modification and retrieval
(in relational DBMS), transaction operation like commit
or abort, method invocation (in object-oriented DBMS),
procedure call (in relational DBMS) and rule operations
[3].

One of the most important aspects of the ADBS that
affects their power is rule language [4]. Besides the main
components of rule language, there are additional
features that play an important role in the specification of
ECA rules. One of these important features is coupling
modes. The phases of rule execution discussed so far are
not necessarily executed contiguously, but depend on the
so-called coupling modes which are pairs of values (x, y)
associated with each rule. The value ‘x’ couples event
signaling and condition evaluation of a rule, whereas ‘y’
couples condition evaluation and action execution.
Possible coupling modes are immediate, deferred and
independent [4]:

e Immediate mode: in this mode, when an event occurs,
current transaction is suspended and the action is
executed, if the condition holds.

e Deferred mode: in this mode, after the occurrence of
an event condition evaluation and action execution is
deferred till the end of the current transaction. In
deferred mode, the action of triggered rule should be
executed before current transaction commits.

e Independent mode: when an event is triggered in
independent mode, there are no time-constraints and
restrictions on condition evaluation and action
execution.

In order to support reactive behavior of the ADBS, they
should contain additional units for managing rule base
and rule processing steps in comparing with Passive
Database Management systems. Such a DBMS is called
an Active Database Management System (ADBMS) [5].

1.2. Rule Processing In Active Database Systems

In this section, we briefly describe what happens when
an event occurs. An application runs sequentially until an
event occurs. After an event occurs, the rule processing
unit is activated and triggers the appropriate rule(s).
Triggered rule(s) are queued in a temporary buffer. Then
triggered rule(s) are selected according to some special
criteria and then their “condition” section is evaluated. If
condition is true, the action section will be executed. If
the current rule triggers some other rules, new triggered
rules will be passed to the rule processing unit. When
there aren’t any triggered rules, the application continues
running. In summary, there are five different rule
processing steps:

(a) Event Signaling: When a primitive event occurs,
the primitive event detector signals that event.
Additionally, the composite event detector
considers these primitive events that contribute to
composite events.

(b) Rule Triggering: After the event is signaled, ECA
rules that correspond to the signaled event are
selected, and for each of them rule instances are
created. In each rule instance, there is some
additional information based on scheduling
approach, such as timestamp, deadline, execution
time, etc. These rule instances are buffered to use
in the next step.

(c) Condition Evaluation: After the buffering of rule
instances, their conditions are evaluated. Then, for
each rule with a true condition, a transaction is
generated.

(d) Transaction Selection: This step is also called
transaction scheduling phase. In this phase, a
selection algorithm [6] operates on execution
buffer and selects one transaction which is
generated based on triggered rules, and sends the
transaction to the execution unit.

(e) Transaction Execution: Transactions generated
based on triggered rules are executed in this
phase.

This paper has five sections. In section two, we
analyze existing rule scheduling approaches in ADBS. In
section three, we introduce a framework to compare and
evaluate existing rule scheduling approaches. In this
framework, five evaluation criteria have been proposed:
Average Response Time, Response Time Variance,
Throughput, Time Overhead per Transaction and CPU
Utilization. Existing approaches have been evaluated by
using this framework and the approach which has the
most positive impact on performance and efficiency of
ADBS has been selected by analyzing the weaknesses
and strengths of existing approaches. Then in section
four we introduce an Event Triggering Probability

Estimation algorithm and integrate it to selected
scheduling approach. Then we show the positive impact
of this algorithm on performance of ADBS. At the end,
in section five, there is a conclusion and some favorite
jobs we tend to do in the future for improvement more
rule scheduling in ADBS.

2. Related Works

In this section we briefly describe the approaches used
for rules scheduling. For selecting one of the buffered
rules the execution unit uses a selection algorithm. There
are numerous approaches for rule scheduling in ADBS
[7]. Rule processing in ADBS has an active nature [7].
This means that each triggered rule might cause other
rules to fire. So ADBS can not use typical scheduling
approaches.

In the rest of this section we briefly describe rule
processing approaches used in ADBS. In this paper, we
use “rule selection” and “transaction selection” terms
interchangeably.

e Random Scheduling Approach: Random selection
is one of the easiest approaches for rule scheduling in
ADBS [10]. This approach has been implemented in RPL
and Ode active database systems [10]. In the Random
approach ADBMS selects one of the activated rules
randomly. The most important characteristic of this
approach is its simplicity, at the cost of efficiency.

e Static Priority Scheduling Approach: In this
approach, the system assigns a numeric priority to each
ECA rule but the priorities need not be unique. In the
Ariel [11] and POSTGRES [3] systems, each rule is
assigned a priority between -1000 and +1000. When an
activated rule should be selected to run, the rule that has
the minimum static priority is selected.

e FCFS Scheduling Approach: FCFS (First Come
First Serve) scheduling approach is one of the classic
approaches used for rule scheduling in ADBS [6]. When
an event occurs and rules are triggered, an instance of
each triggered rule is generated. This instance of
triggered rule contains a timestamp which shows the time
the rule is triggered. When an activated rule should be
selected to run, the activated rule that has the earliest
timestamp is selected. This scheduling approach is used
in SAMOS [12].

e Concurrent Execution Scheduling Approach:
HiPAC active database system [6] supports this
approach. Rule processing in HiPAC is invoked
whenever an event occurs and triggers one or more rules.
This approach differs from most other rule scheduling
approaches in its handling of multiple triggered rules. So
we can not quantatively compare it with other rule
scheduling approaches which are serial. HIPAC executes
all triggered rules concurrently. This means that if during
rule execution, additional rules are triggered, they are
executed concurrently. Another ADBMS called FAR [8]
also uses concurrent rule execution.

e EDF based Scheduling Approach: Earliest
Deadline First (EDF) is one of the classic algorithms for
transaction scheduling in real-time systems [7]. The EDF
based approach [7] is one of the best approaches
introduced for rule scheduling till now. This approach
has been presented for Real-time Active Database
(RADB). In this approach rules are scheduled based on
their deadline. This approach has three different versions:
(1) EDFPD, (2) EDFD]V, and (3) EDFSL. The EDFPD isa
static baseline policy where rules priorities do not change
with time. EDFpy and EDFg. are dynamic policies
where rules priorities change depending on the amount of
dynamic work they have generated [7].

e E,-SJF Scheduling Approach: The SJF algorithm is
one of the classic scheduling algorithms. This approach
is one of the most effective scheduling approaches [13].
SJF algorithm is not useful for rule scheduling in ADBS
due to active work load nature [7] of it. So there is
defined preprocess for preparing rule base to use the SJF
algorithm for rule scheduling in E,-SJF (Extended SJF)
approach [9]. The difference between SJF and E,-SJF is
in manner of transactions (rules) execution time
calculation. In E,-SJF approach, the execution time of each
parent transaction (rule) is related to the number of its
immediate and deferred child transactions (rules).
According to manner of interference of immediate and
deferred child transactions (rules) execution time in their
parent rules execution time, there are two versions of
E,-SJF which are named E;-SJFgxs and E,-SJFpro [9].

Although E,-SJF is generally more effective than
other mentioned rule scheduling approaches, it has some
weakness points such as: (1) It is useless in real-time
systems and systems with concurrent execution ability.
(2) Tt does not calculate the execution time of
transactions (rules), exactly.

3. Proposed Framework to compare and

evaluation of existing rule scheduling
approaches
In this section we introduce a framework for

comparison and evaluation of existing rule scheduling
approaches [14]. This framework contains five
evaluation criteria: Average Response Time, Response
Time Variance, Throughput, Time Overhead per
Transaction and CPU Utilization.

We need an environment which can simulate an active
database system. With such system we can implement
each rule scheduling approach and consider the
performance of it. For this reason, an environment which
is named Active Database System Simulator (ADSS) has
been designed and implemented at the Intelligent
Systems Laboratory [9].

Experiments are performed in three modes [9]: (1)
“Deferred mode”, (2) “Immediate mode” and (3)
“Composite mode”. In the first mode system uses rules
only in deferred mode. In the second mode, system uses
rules only in immediate mode and ultimately in the third
mode, system uses rules in all immediate, deferred, and

independent modes. Results of experiments in deferred,
immediate and composite modes are shown in tables 2, 3,
4, respectively. The content of each cell shows the rank
of corresponding scheduling approach according to
corresponding evaluation criteria.

Table 2. Results of simulation of available rule
scheduling approaches in deferred mode

Evaluation
Criteria -
l;\verage Response OL‘;;; d CPU .
esponse Time Throughput Utilizati
Time Variance per on
Transaction
Approaches
Random 4 3 1 1 1
Static Priority 3 2 3 2 1
FCFS 3 2 3 2 1
EDFpp 2 1 4 2 1
EDFpiv 2 1 4 2 1
EDFg. 2 4 5 2 1
E.-SJFexa 1 1 2 2 1
E,-SJFpro 1 1 2 2 1

Table 3. Results of simulation of available rule
scheduling approaches in immediate mode

Evaluation
Criteria .
RAverage ResPonse O;l:;::; d CPU .
esponse Time Throughput Utilizati
Time Variance per on
Transaction
Approaches
Random 2 3 1 1 3
Static Priority 2 3 1 1 3
FCES 2 2 1 1 3
EDFpp 2 5 2 1 3
EDFpy 2 2 2 1 3
EDFg. 2 4 3 1 1
Ex-SJFexa 1 4 2 1 2
E;-SJFpro 1 1 2 1 2

Table 4. Results of simulation of available rule
scheduling approaches in composite mode

Evaluation
Criteria :

Average Response O‘};:l:]l::a d CPU .

Response Time Throughput Utilizati
Time Variance per on

Transaction
Approaches

Random 3 3 2 3 3
Static Priority 3 3 2 3 3
FCFS 3 3 2 1 1
EDFpp 2 2 1 1 2
EDFpiv 2 2 1 1 2
EDFs, 1 1 3 2 2
E,-SJFexa 2 2 3 3 2
E.-SJFpro 1 1 4 2 2

Results of experiments show that E,-SJFpro has
generally the most positive impact on performance
(Response Time, Response Time Variance, and
Throughput) and efficiency (Time Overhead per
Transaction and CPU Ultilization) of ADBS, but it has
also some weaknesses as stated previously. In the next
section we introduce a solution to solve one of its
problems.

4. A new approach for Event Triggering
Probability Estimation

In section 3 we concluded that E,-SJFpro is the most
effective approach based on mentioned evaluation
criteria in any of the three referred modes. But as
mentioned in the last section, this approach has also
some weakness points such as disability in exact rule
execution time calculation. Before introducing the new
approach for Event Triggering Probability Estimation
which solves this problem, we state the manner of rules
execution time calculation in E,-SJFpro approach [9].

As we mentioned in section one, there are three
coupling modes for rule triggering. Figure 1 shows the
life of a complex active transaction T that triggers some
transactions in immediate and deferred modes. Active
transactions in ADBS are produced by active rules.

Transaction T arrives at time t; (a(T)) and is started at
time t, (s(T)). Deferred transactions? “ and?.” are
triggered at times t; and t;, respectively. Immediate
transactions” ™" and”:"" are triggered at times ts and
t;, respectively. This figure shows that the transactions
are executed immediately while T is
suspended. Finally, figure 1 shows that once the T is

completed at to, the deferred transactions” " and

T." are executed. We refer to transaction T as parent
transaction and refer to immediate, deferred and
independent transactions activated by T as child
transactions. Also, we refer to active rules that produce
the transaction T as parent rules and refer to active rules
triggered by the parent rule as child rules. Child rules can
produce immediate, deferred and independent child
transactions.

According to figure 1, the execution of transaction T
is finished at time ty but it is committed at time t;,. In
other words, the execution time of each parent
transaction (rule) is related to the number of its
immediate and deferred child transactions (rules).
Therefore if we can determine the relations between rules
before the execution we can compute the exact execution
time of each rule. For the extraction of relations between
rules in the rule base, a hierarchical structure of rules is
defined and is referred to as “Rule Execution Tree” [9].

Each active rule in the rule base is defined using the
ECA format [5]. Each active rule is considered as
Ri(E;,Ci,A,ES;,RS;) where E;,C; and A; are event,
condition and action of rule R;, respectively. The ES; is a
set of events occurred by the execution of A; instructions
and the RS; is a set of rules activated by one or more
events of the ES; set. For constructing the “Rule
Execution Tree” (RET) two ES and RS sets are added to
each active rule.

4.2. Constructing the RET and calculating exact
execution time

Each rule in ADBS is executed if and only if it is
activated and its condition is true. Therefore, we consider
a new parameter to compute the “exact execution time”
of active rule. This new parameter is the probability of
the rule’s condition being true. The condition part of
active rules may be formed as a combination of logical
conditions using logical operations such as AND, OR,
NOT, etc. For computing the probability of the condition
part of each rule which is formed as¢: ¥ €2 0 Cae W €
we assume that:

Cy, Cy, Cs,...C, are independent.

P (C)) =P (Cy) =P (C;) =...=P (Cy) =1/2.

Table 5 shows the parameters which are used for
calculating “exact execution time” of rules. Figure 2
shows a generic RET. Each rule in figure 2 is presented
with three attributes: R; (the name of rule), X; (rule
execution time), P; (the probability of condition part of
the rule). Now the “exact rule execution time” of each
rule is calculated as shown in equation 1 [9], where ‘n‘ is
the total number of levels of RET and ‘I’ is the level of
the rule ‘R’ in the RET.

For calculating the exact execution time of each rule,
equation 1 should be evaluated from the bottom of tree to
the top (from leaf to root). Therefore, post order traversal
algorithm is used to make equation 1 applicable. Then
the “exact execution time” of each active rule is
calculated and stored in X attribute presented in figure 2.

Table 5. The parameters for computing “the exact
execution time” of active rules

The E,-SJF approach has three steps: The probability of condition part of
Step 1: Scanning the rule base. P R) rule R to be true
Step 2: Constructing “Rule Execution Tree”. X ™ (R The exact execution time of rule Ri
Step 3: Computing “exact execution time” for each ! which is triggered in immediate mode
rule using post order traversal. X “ (R) The exact execution time of rule Rj
» " ' which is triggered in deferred mode
i A p ™ ¥ L(R) The execution time of rule R
T T ! ﬂ ‘ ‘ n (R) Number of deferred rules triggered by
Toeee T during its execution
| | | - | | I I o Number of immediate rules triggered
| ! I I] ! ! " (R) by T during its execution
bbbt s bk b Y £ 118 exect
am) sm X (R) The exact execution time of rule R

Figure 1. Life of a complex active transaction [9]

4.1. Scanning the rule base

Now if we use these active rules in an ADBS, SJF
algorithm could be used for rule scheduling. This

approach is named Extended SJF Probabilistic

(EX'SJFPRO) .

)5
Roaoalaa

Figure 2. A Generic Rule Execution Tree [9]

n"m (R") » n% (R")
X(R’):L(RI)Jr Z“P(Rim)*mem(Rj/Jrl)Jr ZP(RJI+I)*Xde/(R;+I)
i=1 j=1

1:{11—1,11—2,...,1} (1)

As mentioned before, the correctness probability of
each logical statement in condition part of each rule is
assumed !%2 that is not exact. Calculation of logical
statement correctness probability more exactly leads to
more exact rule execution time calculation, and increases
the efficiency of the scheduling approach.

Proposed solution adds an estimation module to
E,-SJFpro which is introduced as a new version of it and
we name it E,-SJFpro-V.1.8. In new approach, at first,
execution time of each rule is calculated in the E,-SJFpro
approach. Then in every time which an activated rule
such as R; is selected according to scheduling approach
from activated rules list for condition evaluation,
correctness probability of each logical statement of
condition part of Ry, i.e. P(R,LS;) is repeatedly calculated
and stored based on equation 2.

P(R.LS) = 1-(2)

(T;: times which LS; has been evaluated and has been
true so far, T,: times which R has been activated so far.)

This process is repeated for each logical statement of
condition part of the corresponding rule until the
changes rate of correctness probability of that logical
statement, achieves to a desired value (e.g., 0.0000001
and in general mode €). At this time, new value is
replaced with primary default value (i.e. %2). It is evident
that the smaller value €, the more exact calculation of
P(R,LS;). When correctness probabilities of all logical
statements of a condition are updated, correctness
probability of that condition is updated too. And
ultimately execution time of rule R is updated, when
condition part correctness probability and all R’s childes
execution time are updated. So, after passing a short time
from start of executing the system (which this time is
very insignificant in compare with total executing time of
system), execution time of all rules are calculated with a
satisfied precision (which amount of this precision is
depend on value &).

An important characteristic of ADSS is flexibility. It
means that we can implement each rule scheduling
approach, only by replacing the selection algorithm in the
ADSS. So we implemented the E,;-SJFpro-V.1.8
approach and embedded it in ADSS. Then we compared
E-SJFpro and E,-SJFpro-V.1.8 approaches in deferred,
immediate, composite modes.

Table 6 shows the percentage of improving the rule
scheduling in new version in compare with E,-SJFpgo,
based on three evaluated criteria: average response time,
response time variance and throughput

Table 6. Percentage of rule scheduling improvement
in E,-SJFpro-V.1.8 in compare with E;-SJFpro

Evaluat.1on. Average | Response
criteria | Response Time Throughput
Time Variance
Mode
Immediate 8% 12.6% 9%
Deferred 18.8% 33.6% 14.3%
Composite 14.2% 21.4% 12%

Results of experiments show that by adding estimation
module, executing time of rules are calculated more
exactly (the amount of this precision depends on
value¢) and leads to improving the Average Response
Time, Response Time Variance and Throughput of
E-SJFpro approach. Event triggering probability
estimation process dose not impose any overhead on the
ADBS. So the Time Overhead per Transaction and CPU
Utilization of E,-SJFpro-V.1.8 and E,-SJFpgo are equal.

5. Conclusions and future works

In this paper, we first introduced a framework to
compare and evaluate existing rule scheduling
approaches. In this framework, five evaluation criteria
had been proposed: Average Response Time, Response
Time Variance, Throughput, Time Overhead per
Transaction and CPU Utilization. Existing approaches
were evaluated by using this framework and the
approach which has the most positive impact on
performance and efficiency of ADBS was selected. Then,
to improve the selected rule scheduling approach, we
developed an Event Triggering Probability Estimation
algorithm and integrated this algorithm to selected rule
scheduling approach. Results of experiments show that
the new proposed algorithm increases the positive impact
of selected rule scheduling approach on performance of
ADBS.

In future, we intend to increase the efficiency of
E,-SJFpro-V.1.8 approach by adding a learning module
(using techniques such as Learning Automata and
Reinforcement). Learning techniques cause to calculate
the value € automatically. System calculates the value
€ according to feedback which is received from
functionality of the system. Functionality of the system is
determined based on system’s status according to
evaluated criteria.

Acknowledgment

The authors would like to thank Mr. Mohammad Reza
A. Shirazi for his technical assistance and helpful
advices.

References

[1]C. J. Date, “An Introduction to Database Systems”, 8th
Edition, Addison-Wesley, 2003.

[2] E. Bertino, B. Catania and G. P. Zarri, "Intelligent Database
Systems", Addison-Wesley, 2001.

[3]S. Potaminsto and M. Stonebraker, "The POSTGRES Rule
System", in Active Database Systems: Triggers and Rules for
Advanced Systems, Morgann Kaufmann Publishers,
Sanfrancisco, CA, 1996.

[4]H. Fritshi and Z. Flaach, “A Component Framework to
Construct Active Database Management Systems”, PhD Thesis,
CS Department, University of Zurich, 2002.

[5]vadua, "Rule Development for active database", PhD
Thesis, CS Department, University of Zurich, 1999.

[6]Vaduva, S. Gatziu and K. R. Dittrich, "Investigating
Termination in Active Database Systems with Expressive Rule
Languages". In Proceedings of the 3rd International Workshop
on Rules In Database Systems, pp. 149-164, Skovde(Sweden),
1997.

[7]R. M. Sivasankaran, J. A. Stankovic, D. Towsley, B.
Purimetla and K. Ramamritham, "Priority Assignment in Real-
Time Active Databases", The International Journal on Very
Large Data Bases, Vol. 5, No. 1, January 1996.

[8]S. Ceri, C. Gennaro, S. Paraboschi and G. Serazzi,
“Effective Scheduling of Detached Rules in Active Database”,
IEEE Transaction on Knowledge and Data Engineering, Vol.
15, No.1, January/February 2003.

[9]R. Alesheykh, A. Abdollahzadeh, "Evaluation of Shortest
Job First Approach for Rule Scheduling in Active Database
Systems", in the Proceedings of the 9th IASTED International
Conference on Artificial Intelligence & Soft Computing
(ASC'05), Benidorm, Spain, September 2005.

[10]S. Chakravarthy, "Architectures and monitoring
techniques for active databases: An evaluation". In Technical
Report TR-92-041, University of Florida, Gainesville, 1992.

[11]J. Stankovic, M. Spuri, M.D. Natale and G.C. Buttazo,
“Implications of Classical Scheduling Results for Real-Time
Systems”, IEEE Computer Society Press, Los Alamitos, CA,
1995.

[12] Geppert, S. Gatziu, K. R. Dittrich, H. Fritschi, and A.
Vaduva, "Architecture and implementation of the active object-
oriented database management system SAMOS", Technical
Report 95.29, CS Department, University of Zurich, 1995.

[13] H. Theodore, "A survey of Active Database Systems",
available in http://www.doc.ic.ac.uk/~twhl/academic/papers/
active.ps, April 1997.

[14]R. Alesheykh, A. Abdollahzadeh, "Evaluation and
Comparison of Rule Scheduling Approaches in Active
Database Systems", in the Proceedings of the 2nd IASTED
international Multi-Conference on Automation, Control, and
Information Technology (ACIT’05), Russia, June 2005.

