CNB Scholar Journals Available online: <u>www.biology.cnbjournals.com</u> Journal of Biology and today's world ISSN 2322-3308



Research Article

# Multivariate analysis of morphological variation in Acanthophyllum Sect. Oligosperma (Caryophyllaceae) from NE of Iran

#### M. Mahmoodi Shamsabadi<sup>1\*</sup>, H.Ejtehadi<sup>1</sup>, J.Vaezi<sup>2</sup>, M. R.Joharchi<sup>3</sup>

<sup>1</sup>Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad., Mashhad. Iran
<sup>2</sup>Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz
<sup>3</sup>Research Centre for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

#### Received: 29 May 2013 / Accepted: 13 June 2013 / Published: 3 July 2013

Copyright © 2013 M. Mahmoodi Shamsabadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

### Abstract

Cluster analysis and principal component analysis were used to investigate the differences among species of *Acanthophyllum* sect. *Oligosperma* in Khorassan provinces (NE Iran). In this study, a total of 60 including 32 quantitatives and 28 qualitatives characters were examined on 98 herbarium specimens. The results explained morphological treats are useful to discriminate taxa. Phenogram and scattergram displayed four distinct groups among samples which suggest four series for this section in NE Iran. These series are agreement with previous series considered for this section in Flora of USSR. In addition, here, a new series named "Speciosa" is introduced for the first time for the Flora of Iran. Our analysis didn't provide any distinguishing pattern between *A. squarrosum* Boiss., and *A. heratense* Schiman-Czeika, and also between *A. pachystegium* Rech. f., *A. adenophorum* Freyn, and *A. lilacinum* Schischk. It seems more ditailed morphological study in field and molecular analysis could solve the problem of theses complexes.

<sup>&</sup>lt;sup>\*</sup> Correspondence should be addressed to M. Mahmoodi Shamsabadi, Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad., Mashhad, Iran; Email: <u>ma\_ma648@stu-mail.um.ac.ir</u>.

Keywords: Cluster Analysis, Principal Component Analysis, Acanthophyllum, Caryophyllaceae, Khorassan provinces

# **1. Introduction**

Acanthophyllum C.A. Mey. (Caryophyllaceae, Caryophylloideae, Caryophylleae) with about 60 species is distributed in the Irano-Turanian region [1-2]. The genus distributes in Iran with 33 species from which 23 species are endemic. However, Basiri et al. [3] suggested seven synonyms and five reductions to the rank of variety for the genus; accepting 21 species in Iran in their recent investigation on Iranian Acanthophyllum species. Traditionally, the root of this genus, have been used as detergent [4]. Other investigations demonstrated that the genus due to presence gypsoside has the positive effects on the cardio-vascular systems [5-6]. Acanthophyllum species are adapted to deserts, mountains and temperate areas [7]. Distribution of this genus is in Iran, Afghanistan, Pakistan, Kazakhstan, Tajikistan, Uzbekistan, Turkmenistan, Western China, Armenia, Iraq, Turkey and Syria. The northeast of Iran and adjacent regions in Afghanistan and Turkmenistan, are considered as the most important center of diversity of the genus [8]. The number of species reduces from the east of Afghanistan to China and the west of Turkey to Syria, so as Acanthophyllum pungens (Bunge) Boiss and A. verticillatum (Willd.) Hand-Mzt., only have been reported in China and Syria, respectively [9]. It has not been reported any Acanthophyllum species from Palestine and Europe [10]. Based on Flora Iranica [2], the genus has been divided to seven sections. Of these, four sections including Oligosperma Schischk., Macrostegia Boiss., Acanthophyllum and Plesiosperma Boiss have been reported for the flora of Iran. The sect, Oligosperma with 23 species worldwide is the largest section of the genus, of which 16 occur in Iran. This section was first described by Shishkin [11] in Flora of the USSR. The members of the section are identified by dense flowers, spherical terminal heads, (4) 6-12 mm long calyx, 1-2 mm long calyx-teeth and 4-ovuled ovary [2, 11]. Basic chromosome number in this genus is x = 14 and x = 15. Three levels of ploidy have been reported for the genus by Ghaffari [9]. Most species in the sect *Oligosperma* and *Macrostegia* are diploid (2n = 2x = 30), except for A. cespitosum (sect. Oligosperma) which is different in chromosome number (2n=2x=28) and in morphology of inflorescence. Ghaffari and Corgues [8] recognized two karyotypic variants in populations of A. laxiusculum: variant A (2n=30) and variant B (2n=30) with 0 to 3 Bchromosomes. The comparison of behaviors in two variants showed an increase in pollen stainability and seed production; it seems these effects were due to presence of Bchromosomes. The species in sect Acanthophyllum are uniformly tetraploid (2n = 4x = 60)and distributed in central and western parts of the Irano-Turanian region. The third ploidy level of the genus is found in the sect. *Plesiosperma* which is hexaploid (2n = 6x = 90). The species of this section are found in the eastern and northern parts of Irano-Turanian region [8-9]. Meratan et al. [12] investigated tolerance mechanisms against salinity and water stress among three species of Acanthophyllum with three different ploidy levels. Their study showed that the hexaploid species in contrast with diploid and tetraploid species has better mechanisms against salinity and water stresses and shows greater tolerance. These results

provide a support for distribution pattern of Acanthophyllum species. In the current study, morphological variations have been investigated within sect. Oligosperma in the northeast of Iran (including Khorassan provinces). According to Flora Iranica [2], this section represents in Khorassan provinces by 13 species namely A. borsczowii Litw., A. speciosum Rech. f. & Schiman-Czeika, A. korshinskyi Schischk., A. pachystegium Rech. f., A. adenophorum Freyn., A. lilacinum Schischk., A. brevibracteatum Lipsky., A. diezianum Hand.-Mzt., A. laxiusculum Schiman-Czeika, A. squarrosum Boiss., A. heratense Schiman-Czeika, A. elatius Boiss., A. andersenii Rech. f. & Schiman-Czeika. A. lilacinum firstly described by Shishkin [11] in Flora USSR as a species covered with simple hairs, lilac petals and obliquely ascending leaves which were placed in series squarrosa. But Samples which identified by distinguishing characters in Flora Iranica [2] as A. lilacinum have stems and leaves covered with glandular hairs and in inflorescence multicellular simple hairs intermix with glandular hairs. Davis [13] studied the anatomy of Caryophyllaceae and reported that the glandular and eglandular hairs have diagnostic value in this family. Also other workers [2, 11], used this character in separation of species in this genus. Therefore it seems the concept of A. lilacinum needs to be revised. During the survey on specimens, we observed samples 43817 (FUMH) and 40772 (FUMH) (appendix 1) fully match with the original description of A. lilacinum [11]. These specimens have been previously named as A. brevibracteatum based on Flora Iranica. The latter species have been described in Flora USSR [11] as a plant with simple hairs intermixed with glandular hairs on stem and leaf, and calyx length of 7.5-8.5 mm, placed in series Adenophora. But Schiman-Czeika [2] in Flora Iranica has recognized this species as a plant with simple hairs on calyx and with 6 mm long calyx but hairs type on stem and leaves is unclear. Therefore, these difficulties indicate a need for a clarification of the specific boundaries of these two species. Schiman-Czeika [2] separated A. adenophorum from the closest species, namely A. pachystegium and A. lilacinum, using calyx character length (calyx longer or shorter than 8 mm). Our preliminary investigation indicated that this character could not establish a sharp boundary between the species. It should be noted that Schiman-Czeika [2] notes under the description of A. adenophorum the similarity among this species and two species A. lilacinum and A. pachystegium. This delimitation has led to confusion and several specimens have been misidentified. Hence, we have a complex group including A. adenophorum, A. lilacinum, and A. pachystegium namely Adena to be investigated. The diagnostic character for identification of A. speciosum is "petals longer than 20 mm" based on Schiman-Czeika [2]. In this study, the petal length of the specimens 18690 (FUMH) and 35634 (FUMH) (appendix 1) was measured ca.15 mm, but other characters were similar to A. speciosum. Are these specimens' new taxa or relate to A. speciosum? If these specimens are A. speciosum, what characters are suitable to establish a distinguishing boundry?. Ghazanfar & Nasir [14] characterized two variates for A. squarrosum as A. squarrosum var. squarrosum and A. squarrosum var. stocksianum. The var. stocksianum has been reduced under the synonymy of A. stocksianum and Itch introduced a form for this species as nana. The species A. heratense has close similarity to A. squarrosum var. squarrosum which led to confusion to delimit these taxa. Hence, we have other complex with these two species which in this study has been named as Squarra. Our objectives in the current study are to investigate the morphological relationships among the Acanthophyllum species within the sect. *Oligosperma* and find distinguishing characters and finally provide an identification key.

# 2. Materials and Methods

#### 2.1. Plant material

The materials included in this study were matched to descriptions of *A. borsczowii*, *A. speciosum*, *A. korshinskyi*, *A. pachystegium*, *A. adenophorum*, *A. lilacinum*, *A.brevibracteatum*, *A. diezianum*, *A. laxiusculum*, *A. squarrosum*, *A. heratense*. Only specimens with fully open flowers and mature leaves were included to allow standardized measurements to be made. Selected morphological characters were studied on 98 herbarium specimens. The majority of specimens are from Ferdowsi University of Mashhad Herbarium (FUMH), Herbarium of Mashhad School of Pharmacy and a few of them collected from around Khorassan provinces (appendix 1). Specimens borrowed from Herbarium of Mashhad School of Pharmacy, were without herbarium number.

#### 2.2. Morphological characters

A total of 60 including 32 quantitatives and 28 qualitatives characters were examined on each specimen (Table 1). Qualitative characters were scored as binary or multistate characters. The published keys and descriptions of the genus [2, 11, 14], checked to establish characters that had previously been considered to be of taxonomic importance and some of characters were used in this investigation have not been employed in previous studies. Some characters such as stem length, despite of their taxonomic importance, were not measurable in herbarium sheets (e. g. stem length in *A. borsczowii* reaches to ca. 50 cm and herbarium sheets were incomplete in this feather). Instead of this character, the flowering branched length measured. In this investigation missing data replacement were made with the means of variables [15]. Table1. Qualitative and quantitative characters used in multivariate analysis of *Acanthophyllum* sect. *Oligosperma* followed by their abbreviations in brackets. The qualitative characters are in mm

#### Table1. Missing data replacement were made with the means of variables

|    | Characters                                                       |
|----|------------------------------------------------------------------|
| 1. | Flowering branch height (FBHI)                                   |
| 2. | *Plant state (PLST) [erect (0) / cushion-shape (1)]              |
| 3. | Inflorescence diameter (INDI)                                    |
| 4. | Lateral flower pedicel length (LFPE)                             |
| 5. | Style length (STLE)                                              |
| 6. | Middle inflorescence pedicel length (MIPL)                       |
| 7. | Lateral inflorescence pedicel length (LIPL)                      |
| 8. | *Inflorescence shape (INSH) [bowl shape (0) / umbrella like (1)] |
| 0  | *Density of long glandylar hairs on inflanceance radical (DI CD) |

9. \*Density of long glandular hairs on inflorescence pedicel (DLGP)

- 10. \*Density of short glandular hairs on inflorescence pedicel (DSGP)
- 11. \*Density of unicellular hair on pedicel (DUHP)
- 12. \*Density of multicellular hair on pedicel (DMHP)
- 13. Floral leaves length (FLLE)
- 14. Floral leaves width (FLWI)
- 15. Maximum length/width ratio flower leaves (MLWF)
- 16. \*Floral leaves shape (FLSH) [linear (1), lanceolate (2), ovate-lanceolate (3)]
- 17. Bract length (BRLE)
- 18. Bract width (BRWI)
- 19. Maximum length/width ratio bract (MLWB)
- 20. \*Bract shape (BRSH) [linear (1), lanceolate (2), ovate-lanceolate (3)]
- 21. Bract length (BRLE)
- 22. Bracteole length (BTLE)
- 23. Bracteole width (BTWI)
- 24. Maximum length/width ratio bracteole (MLWT)
- 25. Petal length (PTLE)
- 26. Petal width (PTWI)
- 27. Maximum length/width ratio petals (MLWP)
- 28. Petals extra calyx length (PECL)
- 29. \*Petal's colour at neck (PECN) [white (1), pink (2), lilac (3), purple (4)]
- 30. \*Petal's colour at base (PECB) [white (1), pink (2), lilac (3), purple (4)]
- 31. Calyx length (CALE)
- 32. Calyx teeth length (CATL)
- 33. Calyx mucronum length (CAML)
- 34. \*Calyx teeth shape (CATS) [triangular (1), narrow triangular (2)]
- 35. Calyx teeth size (CATE)
- 36. \*Density of Long glandular hairs on calyx (DLGC)
- 37. \*Density of short glandular hairs on calyx (DSGC)
- 38. \*Density of unicellular hairs on calyx (DUSE)
- 39. \*Density of multicellular hairs on calyx (DMSE)
- 40. Superior Leaves length (LELE)
- 41. Leaves width (LEWI)
- 42. Maximum length/width leaves ratio (MLWL)
- 43. Lower leaves length (LLEL)
- 44. \*Density of Long glandular hairs on leaves (DLGL)
- 45. \*Density of short glandular hairs on leaves (DSGL)
- 46. \*Density of unicellular hairs on leaves (DUSL)
- 47. \*Density of multicellular hairs on leaves (DMHL)
- 48. Superior leaves angle (SLAN)
- 49. Lower leaves angle (LLAN)
- 50. \*Leaves colour (LECO) [Pallid (0), Green (1), brown (2), Grayish Green (3)]
- 51. Gemma length (GELE)
- 52. Internodes length (INLE)

- 53. \*Stem colour (STCO) [Pallid (0), Green (1), brown (2), Grayish Green (3)]
- 54. \*Density of long glandular hairs on stem (DLGS)
- 55. \*Density of short glandular hairs on stem (DSGS)
- 56. \*Density of unicellular hairs on stem (DUHS)
- 57. \*Density of multicultural hairs on stem (DMHS)
- 58. \* Swollen in the middle of calyx (SMCA) [clearly (1), unclearly (2)]
- 59. \*Bracts spreading (BRSP) [horizontal (1), ascending (2), recurved (3), erect (4)]
- 60. \*Superior flower leaves spreading (SFSP) [horizontal (1), ascending (2), recurved (3), erect (4)]

#### 2.3. Measurement

All measurements except for hairs density were made on dried herbarium materials. For each specimen, three measurements were taken from mature flowers and calyces in the middle of the inflorescence. Mature leaves were measured from the second nodes of the shoot apex and internodes considered between the second and third leaves of the shoot apex. The second leaves from top were taken to measure superior leave's angle and for lower leaves were taken on the leaves at the base of the flowering branches, which defined on the scale of  $0^{\circ}-180^{\circ}$ . In this survey, hairs density was considered as three states including 1<d<5 scored as 1, 5<d<10 scored as 2 and d>10 scored as 3, where "d" is the number of hairs in 1 mm<sup>2</sup> for the same magnification of all measurements.

#### 2.4. Numerical methods

Ordination and cluster analysis are two keys approaches have been used in the numerical analyses [16]. The results of these investigations are based on Principal Component Analysis (PCA) and Cluster Analysis (CA). To ascertain evaluation relationship among taxa prior to doing PCA and CA, the data matrix was standardized to eliminate the results of characters with large variance.

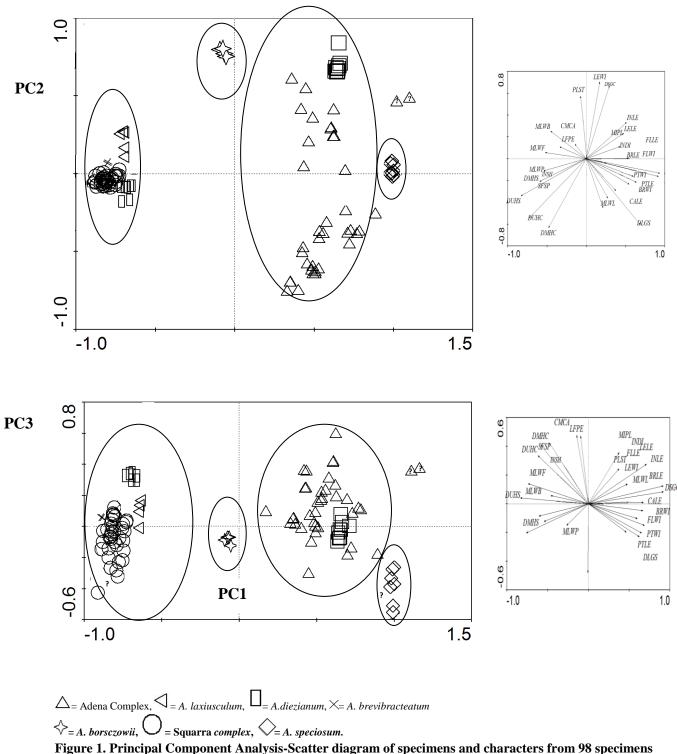
#### 2.5. PCA

Principal Component Analysis is an R-mode type of analysis, in which the relationship among characters is, assessed [17]. This technique was performed using CANOCO software version 4.5 [18]. For collection the characters that found to be functional in separating an apriori group several runs of PCA were carried out. In this analysis OTU'S were a total of 98 herbarium specimens and only those characters allow to be contributed that variability of the first three axes of the PCA (r>0.5) and had the least correlation coefficient (r<0.5) were used to differentiate specimens from each other.

#### 2.6. CA

This analysis is a Q-mode type of analysis, in which the relationship between specimens is being, assessed [17]. This techniques first developed by the school of numerical taxonomic and numerical ecologists, later improved by other researchers in the physical sciences and humanities [15]. This technique carried out based on UPGMA method and Euclidian distance and was performed using Ntsys-pc software version 2 [19].

## 3. Results


#### 3.1. PCA

Using all 60 characters didn't produce distinct grouping between samples (data not shown). For establishing differentiation between OTU's, some characters that have no role in grouping were logically eliminated. Only characters that have high Eigen value on the first three Principal component (r>0.5) and had the least correlation coefficient (r< 0.5) were selected to separate OTU's (Table 2). The first three components explain 72.8 % of the total character variation 58 %, 11.7 % and 3.1 % for the respective axes. In a plot of the first and second PCs (Fig. 1 A); one group comprising OTU's of *A. korshinskyi*, *A. speciosum* and complex Adena have been formed an assemblage at the positive end of axis 1. While individuals of *A. laxiusculum*, *A. diezianum*, *A.lilacinum* and Squarra complex occupied the negative end. OTU's of *A. korshinskyi*, *A. speciosum*, *A. diezianum*, *A.lilacinum* had the greatest separation along the second PC. *Acanthophyllum korshinskyi* separated from Adena complex in first PC but along the third axes (Fig. 1B) *A. korshinskyi* has been fallen between Adena complex individuals. Two individuals of Adena complex 36220 (FUMH) and 36810 (FUMH) are misplace.

Table 1. Eigen vectors of the characters have been used on the first three axes in PCA1

|     | NAME | AX1 | AX2 | AX3 |  |
|-----|------|-----|-----|-----|--|
| AX4 |      |     |     |     |  |

| 5  | FLWI |        | -0.4903 | -0.1325 | 0.9412  | -1.3364 |
|----|------|--------|---------|---------|---------|---------|
| 6  | MLWF | 1.169  | 2       | 0.5237  | 0.2170  | 0.9958  |
| 7  | BRLE |        | 0.5320  | 0.2509  | 0.6215  | 0.3858  |
| 8  | BRWI |        | -0.3946 | 0.2128  | 1.1762  | -1.0871 |
| 9  | MLWB | 1.1956 | )       | 0.3275  | 0.0685  | 0.8789  |
| 10 | BTLE |        | 0.5516  | 0.4474  | 0.4311  | 0.5428  |
| 11 | BTWI |        | -0.2636 | -0.1427 | -0.5087 | -2.4745 |
| 12 | MLWT | 1.0580 |         | 0.5606  | 1.4102  | 1.4353  |
| 13 | PTLE |        | 0.1862  | 0.3679  | 0.8119  | 0.1192  |
| 14 | PTWI |        | -0.0949 | 0.3692  | 0.4877  | -0.6266 |
| 15 | MLWP | 0.764  | 2       | 0.3671  | 0.8150  | 0.5069  |
| 16 | PECL |        | 0.0716  | 0.2121  | 0.4962  | -0.2433 |
| 17 | CALE |        | 0.2357  | 0.4087  | 0.4866  | 0.3859  |
| 20 | LELE | 0.1270 | -0.1924 | 0.6769  | -0.2198 |         |
| 21 | LEWI |        | 0.2929  | -2.2073 | 0.6206  | -1.0975 |
| 22 | MLWL | 0.212  | 6       | 0.6268  | 0.5635  | 0.3058  |
| 23 | PECO | 0.6350 | 0.7725  | 0.3050  | -0.0831 |         |
| 26 | INLE |        | -0.2424 | -0.8046 | 0.5028  | 0.7967  |
| 29 | DLGS |        | -4.3609 | 5.2887  | -0.4606 | 1.7070  |
| 30 | DSGS |        | -3.5313 | 0.2507  | -1.2146 | -2.4684 |
| 31 | DUHS |        | 4.6343  | 2.4232  | -0.6074 | 1.0208  |
| 32 | DMHS | 7.889  | 96      | 0.4151  | -0.7624 | 0.2910  |
| 33 | DLGC |        | -4.2392 | 4.4092  | -2.3766 | 4.4756  |
| 34 | DSGC |        | -3.5908 | -4.9555 | -0.2072 | -1.7109 |
| 35 | DUHC | 2.637  | 7       | 2.7565  | -2.5798 | -2.3570 |
| 36 | DMHC |        | 2.6553  | 2.9506  | -3.3263 | 0.4804  |
| 37 | INSH |        | 1.0534  | 0.4115  | 0.2912  | 0.7692  |
| 39 | PLST |        | 0.8886  | 0.5739  | 0.4709  | -0.5714 |
| 41 | FBHI | 0.7047 | 0.2679  | 0.0461  | 0.3358  |         |
| 42 | INDI |        | 0.4986  | 0.1579  | 0.3711  | 0.1960  |
| 45 | BRSP | 0.1060 | 0.4653  | 0.4721  | 0.5013  |         |
| 47 | SFSP | 0.0596 | 0.0801  | 0.4025  | 0.4026  |         |
| 51 | CMCA |        | 0.1189  | 0.5057  | 0.5407  | 0.7391  |
|    |      |        |         |         |         |         |



of *Acanthophyllum* sect. *Oligosperma* in Khorassan provinces. The ellipses encompass the suggestion series for this section in Khorasan province

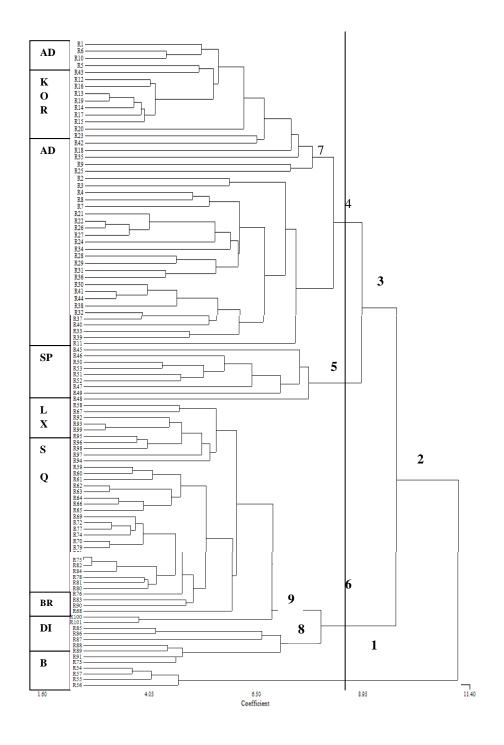



Figure 2. Phenogram resulting from the UPGMA of the Acanthophyllum sect. Oligosperma in khorassan provinces. OTU'S represented by AD= complex Adena, KOR= A. korshinskyi, SP= A. speciosum, DI= A. diezianum, SQ= complex Squarra, BR= A. brevibracteatum, LX= A. laxiusculum, B= A. borsczowii.

These samples have robust stature and are similar to *A.stenostegium* Freyn which belong to the flora of Afghanistan (the neighbor of Iran) and with having glandular hairs distinct from

that. Elements of Square complex formed a continuous range and samples have overlapped each other. In ordination between characters, elements of *A. speciosum* are well isolated by DLGS (Density of Long glandular hairs on stem), PTLE (Petal length), CALE (calyx length), FLWI (floral leaves width) and BRWI (bract width) (Table 1). Specimens of *A. borsczowii*, as was expected, sharply isolated from the rest by PLST (plant state) character. DSGC (density of short glandular hairs on calyx) character caused *A. korshinsky* separate from Adena complex. Characters LFPE (lateral flower pedicel length), SMCA (swollen in the middle of calyx) have been distinctive for *A. laxiusculum* from Squara complex. *Acanthophyllum diezianum* have been separated by characters INSH (inflorescence shape), DMHC (density of multicellular hairs on calyx) from Square complex.

#### 3.2. CA

The UPGMA of the OTU'S used in this study is shown in Fig 2. A small cluster of four elements including *A. borsczowii* emerges as a branch off the two primary groups (labeled1). *Acanthophyllum borsczowii* considered as sister group for the rest. In addition, the bigger cluster (labeled 2) divided to two branches (labeled 3and 6). Middle branch (labeled 5) excluded the elements of *A. speciosum* from the rest. The outcome indicates samples 18690 (FUMH) and 35634 (FUMH) that had a doubtful position fall between elements of *A. speciosum*. Specimens of *A. korshinskyi* added to three elements of Adena complex formed a subgroup that joined to individuals of complex Adena (labeled 7). OUT'S of *A. diezianum* (labeled 8) joined to elements of *A. brevibracteatum* (samples 43817 (FUMH) and 40772 (FUMH), that seems to be real *A. lilacinum*), *A.laxiusculum* and Squarra complex (labeled 9).

### 4. Conclusion and Discussion

The clusters clearly confirmed the obtained results from Principal Component Analysis. Multivariate analysis in this investigation (Fig. 1 and Fig. 2) with the exception of A. borsczowii explained two assemblages of species including Adena complex, A. korshinskyi and A. speciosum in the positive end of PC1 and bigger branch in CA (labeled 3). While negative end of PC1 and smaller branch in CA (labeled 6) occupied by Squarra complex, A. laxiusculum, A. diezianum and A. lilacinum. Acanthophyllum borsczowii in PCA (Fig. 1) contains intermediate position between two assemblages, and in CA excluded from the rest by having erect state, ovate-lanceolate leaves, glabrous leaves and stem that have not seen in the other species in this section except for A. elatius Bunge ex Boiss which didn't participate in this analysis. Based on Schiman-Czeika [2, 11], A. borsczowii is distinguished from A. elatius due to leaves width and length. With respect to the whole attempts that have been made to collect *A.elatius*; this species has not been reported from anywher, after the typus specimen reported, and existence of this species is doubtful. However, A. borsczowii is quite different from the rest, as Boissier [20] and Parsa [21] placed it in the sect. Euacanthophyllum. In Acanthophyllum genus appears character glandular hairs are linked with broader bract, bracteole, floral leaves and petals followed by longer calyces and petals. Species with these characters are often found in Northern parts of Khorassan provinces in less

dry climate and are growing in mountainous region. On the other hand, Acanthophyllum species which grow in southern parts of Khorassan provinces with drier climate and in desert regions possess simple hairs, narrower leaves, floral leaves, bracts, bracteoles and petals which followed by shorter calvees and petals. As have been shown by Meratan et al. [12], water and salt stresses are effective on seedling and growing parameters. Hence, ecological condition seems to have an important role in isolation and diversion in Acanthophyllum species. Acanthophyllum lilacinum in flora USSR placed in squarra series but in this study placed in Adena series (Fig. 1). This replacement is the result of conflict in feathure of this species in flora USSR and flora Iranica. We faced with this problem in A. brevibracteatum too. Acanthophyllum brevibracteatum in this investigation placed in Squarrosa series but in flora USSR sited in Adenophora series. In order to solve problems we need to observe the type specimens of these species. However, location of these species still remained uncertain. Although samples [(35634) (FUMH), (18690) (FUMH) identified as A. speciosum], in this analysis have fallen inter A. speciosum elements but, as clear in first and second PC (fig. 1B), they are a little apart from the other A. speciosum individuals. Likely they are in the initial stage of speciation way. Distinctive value of some morphological traits (such as swollen in the middle of calyx, flower and cympartial pedicel, width and length of leaf, type of hairs and etc.) that used in species delimitation is unclear, isolating range of these traits are ambiguous. As the results of the analysis have shown, close morphological traits are there in Adena complex and also in Squarra complex individuals. Despite the morphological homoplasy has been reported for Caryophyllaceae familly by Fior et al. [22], we have seen the high interspecies diversity and intermediate traits in Acanthophyllum genus, especially within Adena and Squarra complxes may be due to the influence of hibridization, poliploidy, Bchoromosome or ecological stress, Similar evidences have been reported for other genera in the family Caryophyllaceae (e.g. Weiss et al. [23], Minder et al. [24].

### **5.** Taxonomic conclusion

Identification key to Acanthophyllum sect. Oligosperma in Khorassan provinces

1. Erect, leaves shorter than internodes .....series 1. *Elatiora* Schischk.

2. Shrub, leaves longer than internodes, plant covered with simple as well as glandular hairs or short glandular only.....series 2. *Adenophora* Schischk.

3- Shrub, leaves longer than internodes, petals longer than 16 mm (often longer than 20), plant coverd only with long glandular hairs (not papillose)......series 3 *Speciosa* Mahmoudi.

## References

[1] Takhtajan, A. L. 1986. Floristic region of the world. University of California Press, Berkley. USA.

[2] Schiman-Czeika, H. 1988. *Acanthophyllum*. In (Ed.) Rechinger, K. H. Flora Iranica. Akademische Druck- u, Verlagsantalt Graz Austria. Volume 163, 253-330.

[3] Basiri, E. Sh., Bidi, B., Assadi, M & Rahimi Nejad, M. 2011. A taxonomic study of *Acanthophyllum* C.A.Mey. (Caryophyllaceae) in Iran. Iran. Journ. Bot. 17: 1. 24-39.

[4] Zargari, A. 1992. Herbal plants. Tehran University Publications, Tehran, Volume 1.

[5] Aghel, N., Moghimipour, E & Raies Dana, A. 2007. Formulation of a Herbal Shampoo using Total Saponins of *Acanthophyllum squarrosum*. Iranian Journal of Pharmaceutical Research. 6: 3. 167-172.

[6] Yukhananov, D. Kh., Bordanuk. L. S & Sapunova. L. A. 1971. Gypsoside Content in Some Plants of the Genus *Acanthophyllum*. Pharmaceutical Chemistery Journal. 5:11. 697- 698.

[7] Heywood, V. H. 1985. Flowering plant of the world. Croop Helm, London. 63-70.

[8] Ghaffari, M & Bidmeshkipoor, A., 2002. Presence and behaviour of B-chromosomes in *Acanthophyllum laxiusculum* (Caryophyllaceae). Genetica. 115:3. 319–323.

[9] Ghaffari, M. 2004. Cytotaxonomy of some species of *Acanthophyllum* (Caryophyllaceae) from Iran. Biologia, Bratislava. 59:1. 53-60.

[10] Zohary, M. 1996. Flora Palastina. The Israel Academy of Sciences and humanities, Jerusalem. Volume 1, 78-136.

[11] Shishkin. 1936. *Acanthophyllum*. In (Ed.) Komarov, L. Flora U. R. S. S. Moscow. Volume 6, 781-802 (Rassian page).

[12] Meratan, A., Ghaffari, M & Niknam, V. 2008. Effects of salinity on growth, proteins and antioxidant enzymes in three *Acanthophyllum* species of different ploidy levels. JUST. 33:4. 1-8.

[13] Davis, P. H. 1967. Flora of Turkey and the East Aegen Island. Edinburgh University Press. 99:2. 143.

[14] Ghazanfar, Sh. A & Nasir, Y. J. 1986. Caryophyllaceae. In (Ed.) Nasir, E., Ali, S. I. Flora of Pakistan. Department of Botany University of Karachi, Karachi.Volume 175, 102-108.

[15] Legendre, P & Legendre, L. 1998. Numerical ecology. Elsevier, Amsterdam. 47-48.

[16] Chandler, G.T & Crisp, M. D. 1998. Morphometric and phylogenetic analysis of the Daviesia ulicifolia complex (Fabaceae, Mirbelieae). Plant Systematics and Evolution. 93–122.

[17] Henderson, A. 2006. Traditional morphometrics in plant systematics and its role in palm systematics. Botanical Journal of the Linnean Society. Volume 151, 103-111

[18] Ter Braak, C. 1988. CANOCO. an extension of DECORANA to analyse species environment relationship. Vegetatio. 159-160.

[19] Rohlf, F. J. 1998. NTSYS. numerical taxonomy and multivariateanalysis system. New York: Exeter Software.

[20] Boissier, E. 1810. Flora Orientalis. H. Georg, Genevae. (Reprint: 1975, A. Asher and Co. B. V. Amesterdam). Volume I. 560–566.

[21] Parsa, A. 1951. Flora de l' Iran. Imprimerie Danesh, Tehran, Volume 1, 979- 981 and 1043-1055.

[22] Fior, S., Karis, P. O., Gabriele, C., Minuto, L & Sala, F. 2006. Molecular Phylogeny of the Caryophyllaceae (Caryophyllales) Inferred From Chloroplast Matk and Nuclear RDNA ITS Sequences. American Journal of Botany. 93:3. 399-411.

[23] Weiss, H., Dobes, C., Schneeweiss, G. M & Greimler, J. 2002. Occurrence of tetraploid and hexaploid cytotypes between and within populations in Dianthus sect. Plumaria (Caryophyllaceae). New Phytologist. 156:1. 85-94.

[24] Minder, A. M., Rothenbuehler, C & Widmer, A. 2007. Genetic structure of hybrid zones between Silene latifolia and Silene dioica (Caryophyllaceae). evidence for introgressive hybridization. Molecular Ecology. Volume 16, 2504 – 2516.

| Ierbarium<br>No. | Locality                                    | Altitude<br>(m) | Date of collection | Taxa              |
|------------------|---------------------------------------------|-----------------|--------------------|-------------------|
| 31542            | Khorassan: South East of                    | 1500            | 10/6/1998          | А.                |
| 51542            | Bojnurd, Nodeh to Esfidan                   | 1300            | 10/0/1998          | л.<br>adenophorum |
|                  | Bojnurd, Noden to Esndan                    |                 |                    | Freyn             |
| 23578            | Khorassan: North East of                    | 1500            | 4/7/1993           | A.                |
| 25578            |                                             | 1300            | 4/ // 1995         |                   |
|                  | Bojnourd, between Ali<br>Muhammad and Robat |                 |                    | adenophorum       |
| 40541            |                                             | 1707            | 21/5/2000          | Freyn             |
| 40541            | Khorassan: South of Bojnourd,               | 1737            | 31/5/2008          | <i>A</i> .        |
|                  | Esfarayen road, 14 km from                  |                 |                    | adenophorum       |
|                  | Bash Ghardash to Asadly                     |                 |                    | Freyn             |
| 23088            | Khorassan: Dargaz, south hills              | 250             | 16/5/1993          | А.                |
|                  | of Hesar                                    |                 |                    | adenophorum       |
|                  |                                             |                 |                    | Freyn             |
| SN               | Khorassan: South west Bojnurd,              | 1970            | 28/5/2010          | A.                |
|                  | Rein                                        |                 |                    | adenophorum       |
|                  |                                             |                 |                    | Freyn             |
| 23546            | Khorassan: South of Bojnurd,                | 1600            | 4/7/1993           | <i>A</i> .        |
|                  | Rakhtian to Hesar                           | 1000            |                    | adenophorum       |
|                  |                                             |                 |                    | Freyn             |
| 38225            | Khorassan: South West of                    | 1970            | 3/7/2006           | A.                |
| 00220            | Bojnourd                                    | 1770            | 0,,,_0000          | adenophorum       |
|                  |                                             |                 |                    | Freyn             |
| 2405             | Khorassan: Mashhad, East of                 | 800             | 25/5/1994          | A.                |
| 2703             | Kalat-e Naderi                              | 000             | <i>23/3/177</i>    | adenophorum       |

| 36810 | Khorassan: North of Mashhad,                                           | 1000 | 3/7/2005  | Freyn<br>A.                             |
|-------|------------------------------------------------------------------------|------|-----------|-----------------------------------------|
| 50810 | Kalat-e Naderi                                                         | 1000 | 5/1/2005  | adenophorum<br>Freyn                    |
| 24455 | Khorassan: Bojnourd, Bdranlu                                           | 1900 | 10/7/1994 | A.<br>adenophorum<br>Freyn              |
| 23428 | Khorassan: Ghoochan, Bajgiran                                          | 1700 | 23/6/1993 | <i>A adenophorum</i><br>Freyn           |
| 13079 | Khorassan: Mashhad, North East<br>of Kalat-e Naderi                    | 1000 | 20/5/1985 | A.<br><i>adenophorum</i><br>Freyn       |
| 40360 | Khorassan: East of Bojnourd,<br>Sisab                                  | 1362 | 27/5/2008 | A.<br>adenophorum<br>Freyn              |
| 20553 | Khorassan: South of Sabzevar,<br>Hares Abad                            | 800  | 1/6/1991  | A. borsczowii<br>Bunge ex Boiss.        |
| 38868 | Khorassan: Sout East of<br>Sabzevar between Shamakan<br>and Yahya Abad | 1097 | 21/5/2007 | <i>A. borsczowii</i><br>Bunge ex Boiss. |
| 32456 | Khorassan: South West of Sabzevar, Parvand                             | 800  | 17/5/1999 | A. borsczowii<br>Bunge ex Boiss.        |
| 34546 | Khorassan: South West of Sabzevar, Parvand                             | 900  | 21/5/2003 | A. <i>borsczowii</i><br>Bunge ex Boiss. |
| 25602 | Khorassan: North East of Ghaen,<br>Tikab                               | 1200 | 28/5/1995 | A. korshinskyi<br>Schischk.             |
| 30825 | Khorassan: East of Ghaen,<br>Verzg to Verzgh                           | 1600 | 20/5/1998 | A. korshinskyi<br>Schischk.             |
| 34249 | Khorassan: East of Ghaen,<br>Ghaleh Ahangaran mountain                 | 1100 | 18/6/2002 | A. korshinskyi<br>Schischk.             |
| SN    | Khorassan: Mashhad, Ferdowsi<br>University, Mashhad                    |      | 10/6/2010 | A. korshinskyi<br>Schischk.             |
| 18586 | Khorassan: Sarakhs, Madan<br>darband road                              | 500  | 20/5/1990 | A. korshinskyi<br>Schischk.             |
| 15359 | Khorassan: Torbat Heydarieh,<br>Sagh village                           | 1800 | 9/6/1987  | A. korshinskyi<br>Schischk.             |
| 32422 | Khorassan: South of Sabzevar,<br>Dowlat Abad,                          | 1000 | 16/5/1999 | A. korshinskyi<br>Schischk.             |
| 28826 | Khorassan: Kashmar, Zarmehr<br>to Ghaleh Jugh                          | 1300 | 21/5/1991 | A. <i>korshinskyi</i><br>Schischk.      |
| 38877 | Khorassan: South East of                                               | 1155 | 21/5/2007 | A. korshinskyi                          |

| 24041 | Sabzevar, Cheshmeh Avish<br>Khorassan: Mashhad, North East<br>of Kalat-e Naderi | 1200          | 24/5/1994 | Schischk.<br><i>A. speciosum</i><br>Rech. f. &<br>Schiman-Czeika |
|-------|---------------------------------------------------------------------------------|---------------|-----------|------------------------------------------------------------------|
| 35448 | Khorasan: Dargaz National Park,<br>Tandureh, Chehel Mir                         | 1032          | 31/5/2004 | A. <i>speciosum</i><br>Rech. f. &<br>Schiman-Czeika              |
| 35634 | Khorassan: Dargaz, Tandureh<br>National Park, Shekarab to<br>Chehel Mir         | 1700–<br>1900 | 26/6/2004 | A. <i>speciosum</i><br>Rech. f. &<br>Schiman-Czeika              |
| 28993 | Khorassan: Mashhad, Kalat-e<br>Naderi to Archangan                              | 1100          | 1/6/1997  | A. <i>speciosum</i><br>Rech. f. &<br>Schiman-<br>Czeika          |
| 18690 | Khorassan: South of Dargaz,<br>Doab                                             | 1400          | 29/5/1990 | A. <i>speciosum</i><br>Rech. f. &<br>Schiman-Czeika              |
| 27635 | Khorassan: South West of<br>Dargaz, Sanghez                                     | 1500–<br>1800 | 1/7/1996  | A. <i>speciosum</i><br>Rech. f. &<br>Schiman-Czeika              |
| 27500 | Khorassan: East of Ghochan,<br>Goganlu mountain                                 | 1650          | 20/6/1997 | A. <i>speciosum</i><br>Rech. f. &<br>Schiman-Czeika              |
| 24337 | Khorassan: 10 km from Imam<br>Ghuli to Dargaz                                   | 1800          | 6/7/1994  | A. <i>speciosum</i><br>Rech. f. &<br>Schiman-Czeika              |
| 15422 | Khorassan: Ghochan, Dargaz,<br>Aghmazar hill                                    | 1850          | 30/6/1987 | A. <i>speciosum</i><br>Rech. f. &<br>Schiman-Czeika              |
| 30525 | Khorassan: East of Bajestan,<br>Hojat Abad to Helali                            | 1250          | 9/5/1998  | A. <i>laxiusculum</i><br>Schiman-Czeika                          |
| 23505 | Khorassan: Between Torbat Jam<br>and Fariman, North of Zharf<br>mountain        | 1950          | 25/6/1993 | A. laxiusculum<br>Schiman-Czeika                                 |
| 1085  | Khorassan: 201 km from Zabol to Sefidabeh                                       | 550           | 10/5/1986 | A. <i>laxiusculum</i><br>Schiman-Czeika                          |
| 10943 | Khorassan: Ozbako mountains                                                     | 1000          | 1/5/1985  | A. <i>laxiusculum</i><br>Schiman-Czeika                          |
| 17703 | Khorassan: Birjand, Ghaleh<br>mountains                                         | 2000          | 12/6/1989 | A. <i>laxiusculum</i><br>Schiman-Czeika                          |
| 28575 | Khorassan, South West of<br>Gonabad, 4 km from Sano road                        | 1400          | 20/5/1997 | A. laxiusculum<br>Schiman-Czeika                                 |

| 14246  | Khorassan: Birjand, Shokra<br>mountain                                      | 2000          | 18/5/1986 | A. laxiusculum<br>Schiman-Czeika               |
|--------|-----------------------------------------------------------------------------|---------------|-----------|------------------------------------------------|
| SN     | Khorassan: South west of                                                    | 1700          | 25/5/2002 | A. pachystegium                                |
| 27190  | Bojnurd, Rein<br>Khorassan: North of Bojnurd, 8<br>km from Chudar           | 1600          | 11/6/1996 | Rech. f.<br><i>A. pachystegium</i><br>Rech. f. |
| 11247b | Khorassan: East Sabzevar,                                                   | 1400          | 27/5/1984 | A. <i>pachystegium</i><br>Rech. f.             |
| 40660  | Mount Baghjar<br>Khorassan: South West Bojnurd,<br>13 km from Bash Ghardash | 1785          | 2/6/2008  | A. <i>pachystegium</i><br>Rech. f.             |
| 20758  | Khorassan: North East Bojnurd,<br>Gifan                                     | 1300–<br>1400 | 16/6/1991 | A. <i>pachystegium</i><br>Rech. f.             |
| 34771  | Khorassan: North West Bojnurd,<br>Turkmenistan border                       | 900           | 16/6/2003 | A. <i>pachystegium</i><br>Rech. f.             |
| 38975  | Khorassan: North East Bojnurd,<br>8 km from Gifan Road                      | 900           | 29/5/2007 | A. <i>pachystegium</i><br>Rech. f.             |
| SN     | Khorassan: Dargaz, Aghmazar                                                 | 1600          | 1/5/2002  | A. pachystegium<br>Rech. f.                    |
| 40477  | Khorassan: West Bojnourd,<br>Badranloo                                      | 1633          | 28/5/2008 | <i>A. pachystegium</i><br>Rech. f.             |
| 33994  | Khorassan: South of Digrostam,<br>Lut desert                                | 900           | 16/4/2002 | A. <i>pachystegium</i><br>Rech. f.             |
| 31026  | Khorassan: Bojnourd, 75 km<br>from Bojnourd to Almeh                        | 1250          | 28/5/1997 | <i>A. pachystegium</i><br>Rech. f.             |
| 33702  | Khorassan: North West of<br>Bojnourd, between Goinik and<br>Baghlagh        | 1400          | 11/6/2001 | A. pachystegium<br>Rech. f.                    |
| 26895  | Khorassan: North West Gonabad                                               | 1300          | 14/5/1997 | A. <i>heratense</i><br>Schiman-Czeika          |
| 28506  | Khorassan: Bajestan, 16 km<br>from Bajestan to Ghasem Abad                  | 1700          | 19/5/2002 | <i>A. heratense</i><br>Schiman-Czeika          |
| 34124  | Khorassan: 25 km from Bajestan<br>to Ferdows                                | 1700          | 19/5/2002 | <i>A. heratense</i><br>Schiman-Czeika          |
| 34148  | Khorassan: Between Gonabad<br>and Kakhak                                    | 1250          | 21/5/2002 | <i>A. heratense</i><br>Schiman-Czeika          |
| 11247a | Khorassan: East of Sabzevar,<br>Baghjar mountain                            | 1400          | 27/5/1984 | <i>A. heratense</i><br>Schiman-Czeika          |
| 11353  | Khorassan: 5 km from Jajarm to<br>Garmeh                                    | 1000          | 30/5/1989 | <i>A. heratense</i><br>Schiman-Czeika          |
| 21891  | Khorassan: Taibad, Polband<br>Barrier                                       | 1050          | 26/5/1992 | <i>A. heratense</i><br>Schiman-Czeika          |
| 30561  | Khorassan: Neyshabor, Sabzevar                                              | 1200          | 1/6/1976  | <i>A. heratense</i><br>Schiman-Czeika          |

| 23513 | Khorassan: Between Torbat<br>Heydarieh and Fariman, | 1850 | 25/6/1993 | A. <i>heratense</i><br>Schiman-Czeika |
|-------|-----------------------------------------------------|------|-----------|---------------------------------------|
|       | Kallehmanar                                         |      |           |                                       |
| 32019 | Khorassan: West of Tabas,                           | 900  | 14/4/1999 | A. heratense                          |
|       | Darin                                               |      |           | Schiman-Czeika                        |
| 11255 | Khorassan: East Sabzevar,                           | 1400 | 27/5/1984 | A. heratense                          |
|       | Baghjar mountains                                   |      |           | Schiman-Czeika                        |
| 32225 | Khorassan: South East of                            | 1400 | 2/5/1999  | A. heratense                          |
|       | Gonabad                                             |      |           | Schiman-Czeika                        |
| 37462 | Khorassan: South East of                            | 1533 | 12/5/2006 | A. heratense                          |
|       | Gonabad, Kabotarkoh                                 |      |           | Schiman-Czeika                        |
| 17664 | Khorassan: Ghaen, Birjand after                     | 1850 | 11/6/1989 | A. heratense                          |
|       | Khonik                                              |      |           | Schiman-Czeika                        |
| 16580 | Khorassan: South West of                            | 850  | 15/5/1988 | A. heratense                          |
|       | Bojnourd, between Sankhast and<br>Khorashah         |      |           | Schiman-Czeika                        |
| SN    | Khorassan: Torbat Heydarieh,                        | 1100 | 18/5/2002 | A. heratense                          |
|       | Robatsefid                                          |      |           | Schiman-Czeika                        |
| 24197 | Khorassan: North East of                            | 1900 | 14/6/1994 | A. heratense                          |
|       | Birjand, Rack to Tazian                             |      |           | Schiman-Czeika                        |
| 23505 | Khorassan: Between Torbat                           | 1950 | 25/6/1993 | A. heratense                          |
|       | Heydarieh and Fariman, Zharf mountains              |      |           | Schiman-Czeika                        |
| 43145 | Khorassan: Torbat Jam, Saleh                        | 1200 | 17/6/2009 | A. maimanense                         |
|       | Abad, North of Kalkrab                              |      |           | Rech. f. &                            |
|       |                                                     |      |           | Schiman-Czeika                        |
| 5311G | Khorassan: North East of                            | 1900 | 3/6/1991  | A.lilacinum                           |
|       | Bojnurd, Naveh to ghatlish, 3                       |      |           | Schischk.                             |
|       | km to Izman                                         |      |           |                                       |
| 42945 | Khorassan: Dargaz, 2 km from                        | 1000 | 21/5/2006 | A.lilacinum                           |
|       | Dihesar to Lotf Abad                                |      |           | Schischk.                             |
| 40779 | Khorassan: North of Bojnurd,                        | 1430 | 11/6/2008 | A.lilacinum                           |
|       | Ghezelghan                                          |      |           | Schischk.                             |
| 15422 | Khorassan: North West of                            | 1850 | 30/6/1987 | A.lilacinum                           |
|       | Bojnourd, Garglan region                            |      |           | Schischk.                             |
| 31158 | Khorassan: Ghochan, Dargaz,                         | 1500 | 31/5/1998 | A.lilacinum                           |
|       | Aghmazar                                            |      |           | Schischk.                             |
| 30997 | Khorassan: Bojnourd, Aghtapeh                       | 1600 | 28/5/1998 | A.lilacinum                           |
|       |                                                     |      |           | Schischk.                             |
| 30692 | Khorassan: Bojnourd, Aghtapeh                       | 1500 | 12/5/1998 | A.lilacinum                           |
|       |                                                     |      |           | Schischk.                             |
| 23405 | Khorassan: East of Ferdows,                         | 1800 | 20/7/1993 | A. squarrosum                         |
|       | Sarand to Bajestan                                  |      |           | Boiss.                                |

| 30751 | Khorassan: Between Gonabad and Ferdows, Cheshmehmahi                         | 1300 | 13/5/1985 | A. squarrosum<br>Boiss.         |
|-------|------------------------------------------------------------------------------|------|-----------|---------------------------------|
| 30764 | Khorassan: 18 km from<br>Gonabad to Kakhak                                   | 1700 | 19/5/1985 | A. squarrosum<br>Boiss.         |
| SN    | Khorassan: North West of<br>Ghaen Road, 6 km from<br>Karghnd village         | 1200 | 12/5/2002 | <i>A. squarrosum</i><br>Boiss.  |
| 12818 | Sistan, Chahekhorma                                                          | 1200 | 13/5/1985 | A. squarrosum<br>Boiss.         |
| 35412 | Khorassan: Gonabad, between<br>Zibod and Darsofeh                            | 850  | 25/5/2004 | A. squarrosum<br>Boiss.         |
| 32465 | Khorassan: East of Jajarm,<br>between Khorashah and Jorbat                   | 1000 | 17/5/1999 | A. squarrosum<br>Boiss.         |
| 11113 | Khorassan: South West<br>Sabzevar, Parvand mountain                          | 1600 | 16/5/1985 | A. squarrosum<br>Boiss.         |
| 289G  | Khorassan: Torbat Heydarieh,<br>Segholle mountain                            | 1100 | 19/5/1981 | A. squarrosum<br>Boiss.         |
| 38931 | Khorassan: Kalat-e Karchaki                                                  | 1500 | 25/5/2007 | A.Diezianum<br>Hand-Mzt.        |
| 30872 | Khorassan: Kashmar, Chalpoo                                                  | 1750 | 22/5/1998 | A. Diezianum<br>Hand-Mzt.       |
| 20667 | Khorassan: North West of<br>Ghaen, 12 km from Grymnij to<br>Behyod           | 2000 | 9/6/1991  | A. Diezianum<br>Hand-Mzt.       |
| 32615 | Khorassan: Between Mashhad<br>and Torbat Heydarieh, Robat<br>Sefid mountains | 1700 | 25/5/1999 | A. Diezianum<br>Hand-Mzt.       |
| 23879 | Khorassan: North of Kashmar,<br>10 km from South Ataieh                      | 1200 | 11/5/1994 | A. Diezianum<br>Hand-Mzt.       |
| 20706 | Khorassan: North of Torbat Jam,<br>between Timnak and Dosangeh               | 2000 | 12/6/1991 | A. Diezianum<br>Hand-Mzt.       |
| 34622 | Khorassan: North West of<br>Torbat Heydarieh, Kadkan, Burs<br>mountain       | 1500 | 4/6/2003  | A. Diezianum<br>Hand-Mzt.       |
| 43817 | Khorassan: South of Mashhad,<br>10 km from Robat Sefid                       | 1534 | 7/6/2010  | A. Diezianum<br>Hand-Mzt.       |
| 40772 | Khorassan: West of Bojnurd,<br>Ghorkhord Protected Area                      | 1430 | 11/6/2008 | A.<br>brevibracteatum<br>Lipsky |
| 31542 | Khorassan: North West Bojnurd,<br>Jargalan area                              | 1500 | 10/6/1998 | A.<br>brevibracteatum           |

Lipsky