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Abstract-A new approach to high-fidelity aerodynamic design optimization of a wind turbine blade configuration is offered. 
This method combines Blade Element Momentum (BEM) theory with the high fidelity aerodynamic shape optimization of an 
airfoil. The chord length and the twist angle of the blade at various radiuses have been calculated by BEM. The Navier Stokes 
equations are solved to simulate both two and three dimensional flows. The Results which are obtained from 2D 
Computational Fluid Dynamics (CFD) have been utilized to train a Neural Network (NN). E387 Eppler is used as the base 
cross section of the blade. In the process of airfoil optimization, Genetic Algorithm (GA) is coupled with trained NNto attain 
the best airfoil shape at each angle of the attack. The simulation and validation of the base wind turbine with calculated pitch 
angle, twist angle, chord profile and base airfoil have been performed. The comparison of the results of this turbine with 
optimized one, illustrates a significant improvement in power factor. 

Keywords Wind turbine blade, NN, GA, NVD, BEM. 

 

1. Introduction 
In recent years, wind has become an increasingly 

attractive source of renewable energy. Wind energy is the 
world's fastest-growing energy technology. The optimization 
of wind turbines has an important role to capture as much 
energy as possible from the wind. Designing new airfoils are 
essential to produce a wind turbine with higher efficiency. 
This has been studied by several authors [1-5]. Optimizations 
with High fidelity models are expensive even for two 
dimensional cases. Therefore surrogate models are applied in 
some researches [3, 6-8]. The flow around a wind turbine is 
three dimensional, therefore, distinguishing the other 
important parameters like chord, twist and pitch angle 
profiles as well as complete blade configuration were the 
subject of many other studies[9-14]. BEM method is capable 
to calculate the steady loads and thus also the thrust and 
power for different settings of wind speed, rotational speed 
and pitch angle[15]. It’s also a quick and simple method, 
therefore application of BEM is prevalent in wind turbine 
studies [16-18]. BEM theory usually is uses for evaluating 
the forces on the wind turbine in its design and optimization.  

In this paper, a new approach to high-fidelity 
aerodynamically optimization of a wind turbine blade is 

presented. Twist and chord profile have been determined by 
BEM. The absolute angle of attack of the blade at each cross 
section is different because of differences in twist angle and 
tangential velocity component related to angular velocity. In 
this article, high-fidelity optimization is applied to determine 
the appropriate airfoil shape at various cross sections. High-
fidelity simulation is also applied to calculate the 
aerodynamic characteristics of the wind turbine. Employing a 
surrogate model like neural network is critical to make this 
idea practical, because not only NN reduces the cost of 
optimization substantially but also speed it up. The results 
confirm that this method yield considerable increase in 
power factor. 

2. 2. Methodology 

 

2.1. Governing equation and discretization 

 The basic equations which describe the conservation of 
mass, momentum and scalar quantities can be expressed in 
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the following vector forms which are independent in the 

coordinate system. 

The last two equations are usually expressed in terms of 
basic dependent variables. The stress tensor for a Newtonian 

fluid is: 
and the Fourier-type law usually gives the scalar flux 

vector: 
In this study, k   model is utilized for turbulence 

flow. The k   model is simple and has good stability with 
easy convergence. The discretization of the above differential 
equations is carried out by using a finite-volume approach. 
First, the solution domain is divided into a finite number of 
discrete volumes or cells, where all variables are stored at 
their geometric centers (see e.g. Fig.1). 

 
Fig.1. Finite volume and storage arrangement 

 
 
The equations are then integrated over all the control 

volumes by utilizing the Gaussian theorem. The discrete 
expressions are presented to refer to only one face of the 
control volume, namely, e , for the sake of brevity. For any 
variable   (which may also stand for the velocity 
components), the result of the integration yields: 

   1n n
ep dw n s up I I I I I I S

t 
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Where 'I s  are the combined cell-face convection cI  

and diffusion DI fluxes. The diffusion flux is approximated 
by central differences. The discretization of the convective 
flux requires special attention and it causes to develop the 
various schemes. A representation of the convective flux for 

cell-face ( e ) is: 
The value of e  is not known and it should be estimated 

from the values at neighboring grid points by interpolation. 
The expression for the e  is determined by the SBIC 
scheme [19], that is based on the NVD technique [20]  using 
interpolation from the nodes E, P and W. The functional 
relationship utilized in SBIC scheme for e  is presented as: 
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The limits on the selection of K  could be determined by 

the following ways. Obviously, the lower limit is 0 K  
which would represent switching between upwind and 
central difference. It is not favorable, because it is essential 
to avoid the abrupt switching between the schemes in order 
to achieve the converged solution. The value of K  should 
be kept as low as possible in order to attain the maximum 
resolution of the scheme. The final form of the discretized 

equation from each approximation is given as:    
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Where, ,a s  are the convection-diffusion coefficients. 

The term 'S  in Eq. 10 contains quantities arising from non-
orthogonality, numerical dissipation terms and external 
sources. For the momentum equations, it is easy to separate 
out the pressure-gradient source from the convection 
momentum fluxes. dcS is the contribution due to the adapted 
deferred correction procedure. 

2.2.  Hicks-Henne function 

To produce a smoothed shape airfoil with a few numbers 
of design variables, Hicks-Henne functions have been 
utilized in this work. The geometry of new airfoil can be 

obtained with Eq. 11 [21]. 
Where newy  is the y coordinate of new airfoil, basey  is 

the y coordinate of base airfoil which in this research, Eppler 
E387 airfoil coordinate has been selected. i , 

 1, 2,..,16i   are design variables. Eight design variables 

have been considered for upper side of airfoil  1 8   to   
and other eight design variables have been looked upon for 
lower side of airfoil  9 16   to  . This means that there are 
sixteen design variables totally which will be generated by 
GA at each generation. if   1, 2,..,8i  are shape 

functions and should be calculated from Eqs. 12 to14. 
Where x is the coordinate of airfoil related to basey or 

newy  , k is the number of design variables on each side of 

airfoil and   e k  can be calculated from Eqs. 15 and 16. 

Where kx ,  1, 2, ,8k    determines where 

maximum of kf  occurs and is sundry from  x. values for kx  
which have been applied in this work are illustrated in Table 
1. 

Table 1. The values of kx  which have been used 

1x  2x  3x  4x  5x  6x  7x  8x  

0.08 0.15 0.20 0.30 0.45 0.60 0.75 0.92 
 
It’s prominent to note that each of design variables must 

be bounded to a certain range, because GA can just search in 
a region that has been assigned to it. The wider region 
increases the chance of finding a better solution, but it will 
take more time. Accordingly, the range which assigned to 
each design variable should be determined somehow to 
possess a good compromise between gaining a better 
solution and time. Shadowed area in Fig.2illustrates the 
domain where Genetic Algorithm searches to find the 
optimum solution. 

 
Fig.2. The illustration of domain where Genetic Algorithm 

searches 
 

2.2. Boundary condition 

For two dimensional cases, velocities are prescribed at 
the inlet of the domain and the pressure is obtained by zero 
order extrapolation from interior points. At outlet, the 
pressure is fixed. The far-field boundary is set to 30c from 
the airfoil to minimize its undesired effects on the flow 
surrounding and is set to slip boundary conditions. The non-
slip condition is applied at the airfoil surfaces. To account for 
the steep variations in turbulent boundary layers near solid 
walls, wall functions which define the velocity profile in the 
vicinity of no-slip boundaries are employed. For three 
dimensional cases, the boundary condition for inlet, outlet 
and blade are set to velocity inlet, pressure outlet and wall 
respectively. Moreover, the slip boundary is used for other 
boundaries. The domain and boundary conditions of the wind 
turbine are illustrated in Fig.3. 

2.3. Optimization algorithm and objective function 

Optimization method which is applied in this research is 
Genetic Algorithm (GA). GA is a stochastic optimization 
method to find the minimum or maximum of a problem as 
the best solution. The principles of genetics and natural 
selection which is introduced by Darwin as evolution theory 
is the basis of GA. Elaborate details about GA can be found 
in[22].  

 

1

n

new base i i
i

y y f


   (11) 

      sin 1 e k
kf x x   , k=1,2 (12) 

    3sin e k
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    sin e k
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   ln 0.5 / ln 1 ke k x   k=1,2 (15) 

   ln 0.5 / ln ke k x  k=3,4,5,6,7,8 (16) 
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Fig.3 . The domain and boundary conditions of the wind 

turbine 
 

Maximizing lift to drag ratio is considered as objective 
function for all optimizations which have been done in this 
research. The mathematics expression for objective function 

is expressed in Eq. (17) . 

2.4. Neural Network (NN) 

Neural Network (NN) is a simple model of biological 
neurons. Neural networks are good in fitting functions to any 
set of practical data. Network architecture that is used in this 
research is illustrated inFig.4.This is a feed forward network 
with 3 layers. 

 

 
Fig.4. The architecture of Artificial network used[23] 
 
Table 2 manifests a sample data as NN’s input for one 

random airfoil. This is a small part of entire input data. It is 
notable that for any airfoil, all rows are the same and just 
seventeenth column which the angle of attack is changed. 

The output of network can be calculatedfrom Eq. (18) 

[23]. 
 
 

Table 2. The sample of data as Neural Network’s input 

1  2   
. 
. 

15  16  AOA
 

0.027996 0.00272  
. 
. 

0.007363 0.002982 0 

0.027996 0.00272  
. 
. 

0.007363 0.002982 6 

. . . . . .  
. 
. 

. . . . . . . . . 

0.027996 0.00272  
. 
. 

0.007363 0.002982 18 

0.027996 0.00272  
. 
. 

0.007363 0.002982 20 

 
Number of neurons in first layer R is equal to the 

number of problem’s input.The number of neurons for the 
output layer 3n is equal to the number of problem’s output. It 
is desirable that NNpredicts the values of lift, drag and 
moment coefficients about one fourth of chord from leading 
edge related to each set of Network’s input.Therefore, here, 
the number of output is three. Table 4 shows sample data as 
NN’s target and related to those data in Table 3.In an ideal 
trained neural network, the outputs of NN must be equal to 
the targets. 

 
Table 3. The sample of data as NN’s target and related to 

those data in Table 2 

lC  dC  
/4cmC  

0.225871 0.038546 -0.0422 
0.77316 0.054639 -0.04163 

. . . . . . . . . 
1.162999 0.198523 -0.04913 
1.071324 0.23491 -0.05597 

 
There is no certain method to determine the other 

parameters of network architecture. These parameters which 
are the number of layers and the number of neurons in each 
one must be determined by try and error. Here, several 
networks with various network architecture i.e. sundry 
numbers of layers and different numbers of neurons in each 
layer have been examined to define the appropriate network 
architecture. For all examined networks, transfer function of 
hidden layers is Hyperbolic Tangent Sigmoid and transfer 
function for output layer is linear. The Levenberg-Marquardt 
learning algorithm is applied, because the network is 
relatively small and this algorithm is fast and efficient for 
this kind of networks [24] and also it is proper for the 
purpose of function fitting [23]. The Mean Square Error 

Maximizing:         at absolute AOA 
Subject to :          

 
(17) 

   3 3 3 2 2 1 1 1 2 3 a tf W tf W tf W q b b b     (18) 
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(MSE) is selected as NN’s performance. Training algorithm 
adjust weights in a way to minimize the MSE. 

2.5.   Procedures 

2.5.1. Blade Profile Design 

The chord profile and twist angle of the blade have been 
determined at each cross section of the blade by BEM 
method.The absolute angles of attack at some radiuses are 
calculated because it varies locally alongside the blade. 

2.5.2. Airfoil Optimization 

The GA is coupled with CFD to create and analyze 
manyairfoils.The results of numerical simulation are utilized 
to train various NN architectures. When several NN 
architectures are examined, then the network architecture 
with lower MSE is elected as trained NN.The flow chart 
applied in this paper for NN training illustrated in Fig.5. 

Then the trained NN has been appliedfor the rest 
optimization processes with any desirable objective function. 
Flow chart of optimization with GA coupled with trained NN 
demonstrated inFig.6.In the present research, the training 
process is separated from optimization procedure. 
Therefore,any optimization with any objective function can 
be performed with this trained NN. There is no need to do 
more CFD simulation for new optimizations. 

2.5.3. Wind Turbine Simulation 

Several simulation of wind turbine with different domain 
length and various grid sizes have been carried out to find the 
best dimensions. The validation of numerical results with 
experimental data has been done. Moreover Comparison of 
base wind turbine with optimized one has been carried out. 

3. Results and Discussion 

The base airfoil which is applied for optimization 
process is E387 Eppler. The blade length is equal to 16.24m. 
The tip speed ratio (TSR) is 7 which mean Angular velocity 
is 6.17 rad/s. The wind speed is considered 15m/s. The angle 
of attack varies from -2.5 to 20.04 degrees and average 
Reynolds number of the flow is 4500000. 

In the numerical simulation, the results must be 
independent of grid and domain. Also, numerical procedure 
and resultsmust be validated by comparing them with 
experiment and published data. The grid structure that is used 
in CFD for 2D simulation is created by a structured mesh, 
because of its simplicity and applicability to the current 
problem. This structured grid which is applied in this 
research illustrated in Fig.7 

 
Fig.5. The flow chart utilized to train NN 

 
Fig.6. The flow chart to optimize with GA and NN 

 
However the structure mesh has lower computational 

cost than unstructured mesh but, because of complexity of 
the wind turbine geometry, utilizing the unstructured mesh is 
necessary. The applied mesh in the domain is illustrated in 
Fig.8 and its detail view of the rotor is demonstrated in Fig.9. 
In addition, the rotor’s configuration can be seen in Fig.10 .  

 

 
Fig.7. The part of the H Grid 
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Fig.8. The mesh of the Domain 

 

 
Fig.9. The mesh details of the rotor 

 
Fig.10. The rotor configuration of designed wind turbine 
 
The domain and grid sizing is determined by doing 

several different trials. For instance, the effect of grid size is 
demonstrated inFig.11. According to this figure, to simulate 
the flow a mesh with 26650 numbers of nodes is utilized. In 

Fig.12, the pressure distribution on the surface of 
NACA0012 with zero angle of attack at Reynolds number 

equal to 66 10 is indicated and validated with experimental 
data [25]. These comparisons prove that the numerical results 
are in a good agreement with experimental data. 
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Fig.11. The effect of grid sizing on pressure distribution on 

the surface of the E387 airfoil for an angle of attack 1.6° 
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Fig.12. The comparison of numerical and experimental 
pressure coefficient distribution around airfoil NACA0012 

with 0    
Effects of domain length and grid size for 3D case have 

been examined. The influence of the domain length on 
moment coefficient(

pC ) is presented in Fig.13. Moreover 

influence of grid sizing on 
pC is manifests in Fig.14. These 

figures demonstrate the appropriate domain length and grid 
sizing. 

The validation of 3D simulations has been carried out by 
comparing the numerical results with NREL phase VI wind 
turbine rotor. The pressure coefficient for 50% of the blade is 
illustrated in Fig.15. 
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Fig.13. The influence of length on pC  

 
Fig.14. The influence of grid size on pC  

 
Fig.15. The pressure coefficient of the experiment data 

NREL phase VI and numerical result at 50% of the blade 
 

The pressure coefficient distribution at 50% of the blade 
for present numerical simulation and experimental data is 
demonstrated in Fig.15. This comparison shows that there is 

a difference between these two results. This difference could 
be due to several parameters such, turbulent, separation 
phenomenon, wakes in downwind of the wind turbine, 
rotation of the blades and tip vorticesthat are not well 
predicted by the numerical simulation. 

As mentioned before, MSE is selected as NN’s 
performance. In other words, MSE is a measure to 
distinguish the ability of a network in predicting the 
targets.InFig.16, the performances of several examined 
networks architecture are illustrated. Horizontal axis of this 
figure is the network architecture, for example 8-8-3 means 8 
neurons in first layer, 8 neurons in second layer and 3 
neurons in output layer. Here, 8-8-3 is the best, because not 
only it has the lowest MSE, but also manifests no significant 
over fitting or under fitting and performances values are 
approximately equal for training, test, and validation sets. 

 

 
Fig.16. The performance of several networks 

architecture 
 
The regression plot of this network’s outputs with 

respect to targets is demonstrated inFig.17. It is important to 
note that in a perfect fitting, data must lie in 45 degree line 
i.e. the line whose outputs of the network is equal to the 
targets       Output Target .This figure indicates that suitable 
weight matrices are obtained and NN is able to predict the 
aerodynamic coefficients accurately. It can be concluded 
from these two figures that 8-8-3 Network is eligible to use 
as surrogate model therefore it is used for all optimizations 
which have been performed in this research. 

Shape of optimized airfoils in respect to base airfoil at 
some angles of attack is illustrated in Fig.18. This figure 
shows that the airfoils at higher angles of attack are thicker 
because this postpones the separation. The comparison of 
pressure coefficient for both wind turbines, in spanwise 
direction are presented in Fig.19, Fig.20 and Fig.21. 
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Fig.17. The regression plot of 8-8-3 network’s outputs 

with respect to targets. 
 
The area inside the pressure distribution diagram is equal 

to lift. These figures clearly rely that optimized blades 
produce the higher lift.  

Power factor with respect to Tip Speed Ratio is 
illustrated in Fig.22. This figure confirms considerable 
improvement in power factor. 

 

 
Fig.18. The shape of smart airfoil in respect to base 

airfoil at each AOA 
 

 
Fig.19. The pressure coefficient of base and optimized wind 

turbine in 30% of the blade 

 
Fig.20. The pressure coefficient of base and optimized 

wind turbine in 50% of the blade 

 
Fig.21. The pressure coefficient of base and optimized wind 

turbine in 95% of the blade 
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Fig.22. The power factor with respect to Tip Speed Ratio 

 

4. CONCLUSION 

In this article, a technique to high-fidelity 
aerodynamically optimization of a wind turbine blade 
presented which not only uses no simplifying assumption but 
also is very fast and practical. The main points can be 
summarized as follow. 

1) The applied numerical method yield acceptable 
results of aerodynamic characteristics for both 2D and 3D 
cases. 

2) The agreement between numerical result of trained 
NN and CFD simulation is considerable. 

3) The results confirm that presented technique yield 
noticeable improvement in power factor. 

4) The application of airfoils with high efficiency and 
good stall characteristics cause noticeable enhancement in 
wind turbine power factor. 

5) The utilization of surrogate model in optimization 
process causes significant speed increase in optimization. 

Nomenclature 

GA = Genetic Algorithm 
NVD = Normalized Variable Diagram 
CFD = Computational Fluid Dynamic 
k = Turbulence Model Parameter 
  = Turbulence Model Parameter 

S


 = Source Term 

T = Time 
CL = Lift Coefficient 
CD = Drag Coefficient 
c  = Chord Length 
AOA = Angle of Attack 
  = Density 

V


 = Velocity Vector 

T


 = Stress Tensor 

  = Scalar Quantity 

q  = Scalar Flux Vector 
SBIC = Second  and Blending Interpolation 

Combined 
  = Diffusivity Coefficient 

cI  = Convection Flux 
DI  = Diffusion Flux 

  = Cell Volume 
F = Mass Flux 
A = Cell Face Area, 
  convection-diffusion coefficient 
x  = Normalized Coordinate 
K  = SBIC Parameter 
P = Pressure 
NN = Artificial Neural Network 
  = Dynamic Viscosity 
N = Iteration Number 
M = Iteration Number 
dv = Displacement due to new Velocity  
Re = Reynolds Number 
SIMPLE = Semi-Implicit Method For Pressure – 

Linked Equation 
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