A remark on the capability of finite p-groups

Mohsen Parvizi ${ }^{1, *}$, Peyman Niroomand ${ }^{2}$
${ }^{1}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran.
${ }^{2}$ School of Mathematics and Computer Science, Damghan University, Damghan, Iran.

Abstract. In this paper, we classify all capable finite p-groups of order p^{n} with derived subgroup of order p and G / G^{\prime} elementary abelian of rank $n-1$.

Keywords: Finite p-groups; Capable groups; Schur multiplier.
Mathematics Subject Classification 2010: 20F99.

1 Motivation

The concept of capability was appeared in works of P. Hall in classifying groups into isoclinism classes. It was important for him to decide when for a group G, there exists a group H with $G \cong H / Z(H)$. Hall and Senior [5] called such groups capable. The problem of finding capable groups, or determining necessary and sufficient conditions for a group or a class of groups to be capable, is therefore worthy enough to be considered. Several works had been done on this topic. For instance in [2] capable groups in the class of the direct sums of cyclic groups are completely determined. As a result, all finitely generated abelian groups which are capable were classified. For nonabelian groups the class of nilpotent groups is a suitable candidate to study. The reason is the variety of tools which can be used for nilpotent groups. Ellis in [4] proved that a finite nilpotent group is capable if and only if all of its Sylow p-subgroups are capable. This suggest to study the class of p-groups. In [8] and [9] the capability of 2 -generator 2 -groups is considered. In this paper we study the capability of p-groups with derived subgroups of order p and elementary abelianizations. It is known that in the case $\left|G^{\prime}\right|=p$, capability of G implies $[G: Z(G)]=p^{2}$ (see [6]). We will prove this result in a different way in the special case for which G / G^{\prime} is elementary abelian p-group after Theorem 3.2.

[^0]http://www.i-asr.com/Journals/jarpm/ 91 ©2013 Institute of Advanced Scientific Research

2 Preliminaries

This section contains definitions, notations and theorems which are used in main results. We assume that the notion of Schur multiplier, which is denoted by $\mathcal{M}(G)$ for a group G is known, also we use the notion of epicenter and exterior center of a group without defining them. Epicenter of a group G which is denoted by $Z^{*}(G)$, was introduced by Beyl, Felgner, and Schmid in [3]. They showed a necessary and sufficient condition for a group G to be capable is $Z^{*}(G)=1$. The following theorems are used in the rest.

Theorem 2.1. (See [7, Theorem 2.5.10]) Let G be a finite group and N be a central subgroup of G. Then $N \subseteq Z^{*}(G)$ if and only if the natural map $\mathcal{M}(G) \longrightarrow \mathcal{M}(G / N)$ is injective.

Theorem 2.2. (See [7, Theorem 2.2.10]) Let A and B be finite groups then

$$
\mathcal{M}(A \times B) \cong \mathcal{M}(A) \times \mathcal{M}(B) \times \frac{A}{A^{\prime}} \otimes \frac{B}{B^{\prime}}
$$

Theorem 2.3. (See [7, Theorem 2.5.6 (i)]) Let G be a finite group and N be a central subgroup of G. Then the following sequence is exact

$$
\mathcal{M}(G) \longrightarrow \mathcal{M}\left(\frac{G}{N}\right) \longrightarrow N \cap G^{\prime} \longrightarrow 1
$$

The following lemma is a conclusion of Theorem 2.3 and used in the proof of the main theorem.

Lemma 2.4. Let G be a finite p-group and $N \subseteq Z(G) \cap G^{\prime}$ be a subgroup of order p. If $|\mathcal{M}(G / N)|=p|\mathcal{M}(G)|$ then $N \subseteq Z^{*}(G)$.

Proof. Using Theorems 2.1 and 2.3 it is enough to show that $\mathcal{M}(G) \longrightarrow \mathcal{M}(G / N)$ has trivial kernel. Let α and β denote the homomorphisms $\mathcal{M}(G) \longrightarrow \mathcal{M}(G / N)$ and $\mathcal{M}(G / N) \longrightarrow N \cap G^{\prime}$, respectively. Since $|N|=p$, we have \mid Ker $\beta|=|\mathcal{M}(G / N)| / p$ which is equal to $|\mathcal{M}(G)|$. Now Theorem 2.3 implies Ker $\alpha=1$ as required.

The following lemma is a consequence of [7, Corollary 2.5.3], in where $\phi(G)$ denotes the Frattini subgroup.

Lemma 2.5. Let G be a finite p-group then

$$
\left|\mathcal{M}\left(\frac{G}{\phi(G)}\right)\right| \leq|\mathcal{M}(G)|\left|G^{\prime}\right|
$$

3 Main results

Let G be a group of order p^{n} and G^{\prime}, the derived subgroup of G is of order p, and G / G^{\prime} is elementary abelian. It is easy to see that in this case $\exp (G) \leq p^{2}$. Although the capability of all extra special p-groups was considered in [3], so all the groups we consider
are not extra special. By [10, Lemma 2.1] we have $G=H \cdot Z(G)$ (the central product of H and $Z(G)$) in which H is an extra-special p-group. We know that $G^{\prime} \subseteq Z(G)$ and G^{\prime} is cyclic of order p, so G^{\prime} may be a direct summand of $Z(G)$. The following theorem gives the structure of G depending on the way G^{\prime} is embedded in $Z(G)$. We consider only groups with noncyclic centers, the groups with cyclic centers are considered in Theorem 3.4.

Theorem 3.1. Let $|G|=p^{n}$ and $Z(G)$ is not cyclic then
(i) if for some $K, Z(G)=G^{\prime} \times K$ then $G=H \times K$;
(ii) if G^{\prime} is not a direct summand of $Z(G)$ then $G=\left(H \cdot \mathbb{Z}_{p^{2}}\right) \times K$ in which $Z(G)=$ $\mathbb{Z}_{p^{2}} \times K$ and $G^{\prime} \subseteq \mathbb{Z}_{p^{2}}$.

Proof. (i) Since $G=H \cdot Z(G)$ and $H \cap Z(G)=G^{\prime}$, so $G=H \times K$.
(ii) The proof is similar to the pervious part.

We state the main theorem of this paper as follows:
Theorem 3.2. Let $G=H \cdot Z(G)$ be a p-group of order p^{n} with derived subgroup of order p and G / G^{\prime} elementary abelian of order p^{n-1}, then G is capable if and only if H is capable and G^{\prime} is a direct summand of $Z(G)$.

Remark 3.3. The above theorem shows that if G is a finite p-group with G^{\prime} of order p and elementary abelian abelianization, The capability of G implies $[G: Z(G)]=p^{2}$. So in this case the result of Beyl and Tappe which was mentioned by Isaacs [6] can be proved in a quite different way.

The proof of the Main Theorem is partitioned into some cases as follows. In the rest we assume that G is of order p^{n} and G / G^{\prime} is elementary abelian of order p^{n-1}.

Theorem 3.4. Let G be a p-group of order p^{n} with derived subgroup of order p and G / G^{\prime} elementary abelian of order p^{n-1}. If $Z(G)$ is cyclic, then G is not capable.

Proof. Since G / G^{\prime} is an elementary abelian p-group, we have $\phi(G)=G^{\prime}$. Now using Lemma 2.5 and Main Theorems of $[10,11]$, we have

$$
p^{\frac{1}{2}(n-1)(n-2)-1} \leq|\mathcal{M}(G)| \leq p^{\frac{1}{2}(n-1)(n-2)+1} .
$$

Again using Main Theorems of $[10,11]$, we deduce that

$$
|\mathcal{M}(G)|=p^{\frac{1}{2}(n-1)(n-2)-1}
$$

so the following sequence is exact

$$
1 \longrightarrow \mathcal{M}(G) \longrightarrow \mathcal{M}\left(\frac{G}{G^{\prime}}\right) \longrightarrow G^{\prime} \longrightarrow 1
$$

which implies $G^{\prime} \subseteq Z^{*}(G)$.

In the following theorem we consider the groups satisfying in the condition in part (i) of Theorem 3.1.

Theorem 3.5. Let $G=H \times K$ where K is the complement of G^{\prime} in $Z(G)$. Then G is capable if and only if H is capable.

Proof. We have $Z^{*}(G) \subseteq G^{\prime}=H^{\prime}$.
If H is capable, for $p \neq 2, H$ is the extra-special p-group of order p^{3} and exponent p and that $|\mathcal{M}(H)|=p^{2}$. We do the job by proving $H^{\prime} \nsubseteq Z^{*}(G)$. To do this we use Theorems 2.1 and 2.3. The sequence

$$
\mathcal{M}(G) \longrightarrow \mathcal{M}\left(\frac{G}{H^{\prime}}\right) \longrightarrow H^{\prime} \longrightarrow 1
$$

is exact, but by Theorem 2.2 we have $|\mathcal{M}(G)|=p\left|\mathcal{M}\left(G / H^{\prime}\right)\right|$ so

$$
1 \neq\left|\operatorname{Ker}\left(\mathcal{M}(G) \longrightarrow \mathcal{M}\left(G / H^{\prime}\right)\right)\right|
$$

and the result holds. For $p=2, H$ is isomorphic to the dihedral group of order 8 , and a similar technique shows the result.

If H is not capable, it can be either an extra-special p-group of order p^{3} and exponent p^{2}, or an extra-special p-group of order $p^{2 m+1}$ with $m>1$ which multipliers are trivial and of order $p^{2 m^{2}-m-1}$, respectively. For H of order p^{3} a similar argument to that of the first case shows that

$$
\mathcal{M}(G) \longrightarrow \mathcal{M}\left(\frac{G}{H^{\prime}}\right)
$$

is injective and so $H^{\prime} \subseteq Z^{*}(G)$. On the other hand if H is of order $p^{2 m+1}$ for $m>1$, using Theorem 2.2 the following sequence is exact.

$$
1 \longrightarrow \mathcal{M}(G) \longrightarrow \mathcal{M}\left(\frac{G}{H^{\prime}}\right) \longrightarrow H^{\prime} \longrightarrow 1
$$

Therefore G is not capable.

Now the only case which needs to be discussed is the groups satisfying in the condition in part (ii) of Theorem 3.1.

Theorem 3.6. Let G be a p-group of order p^{n} with derived subgroup of order p and G / G^{\prime} elementary abelian of order p^{n-1} with noncyclic $Z(G)$ and G^{\prime} is not a direct summand of $Z(G)$, then G is not capable.

Proof. In this case we have $G=H \cdot \mathbb{Z}_{p^{2}} \times K$ where H is an extra special p-group of order $p^{2 m+1}$ and K is elementary abelian of order $p^{n-2 m-2}$. By Theorem 2.4, it is enough to show that $\left|\mathcal{M}\left(G /\left(H \cdot \mathbb{Z}_{p^{2}}\right)^{\prime}\right)\right|=p|\mathcal{M}(G)|$. Using Theorem 2.2 we have $\mathcal{M}(G)=\mathcal{M}\left(H \cdot \mathbb{Z}_{p^{2}}\right) \times \mathcal{M}(K) \times\left(H \cdot \mathbb{Z}_{p^{2}} \otimes K\right)$. But $\left|\mathcal{M}\left(H \cdot \mathbb{Z}_{p^{2}}\right)\right|=p^{\frac{1}{2}(2 m)(2 m+1)}$ due to Theorem 3.4, $|\mathcal{M}(K)|=p^{\frac{1}{2}(n-2 m-2)(n-2 m-3)}$ and $\left|H \cdot \mathbb{Z}_{p^{2}} \otimes K\right|=p^{(2 m+1)(n-2 m-2)}$. After some computations we have $|\mathcal{M}(G)|=p^{\frac{1}{2}(n-1)(n-2)-1}$. On the other hand $\mid \mathcal{M}(G /(H$. $\left.\left.\mathbb{Z}_{p^{2}}\right)^{\prime}\right) \left\lvert\,=p^{\frac{1}{2}(n-1)(n-2)}\right.$, so the result follows.

References

[1] M.R. Bacon, L.-C. Kappe. On capable p-groups of nilpotency class two. Ill. J. Math., 2003, 47: 49-62.
[2] R. Baer. Groups with preassigned central and central quotient group. Trans. Amer. Math. Soc., 1938, 44: 387-412, doi: 10.1090/S0002-9947-1938-1501973-3.
[3] F.R. Beyl, U. Felgner, and P. Schmid. On groups occurring as center factor groups. J. Algebra, 1979, 61: 161-177, doi: 10.1016/0021-8693(79)90311-9.
[4] G. Ellis. Tensor products and q-cross modules. J. Lond. Math. Soc., 1995, 51(2): 241 - 258, doi: $10.1112 / \mathrm{jlms} / 51.2 .243$.
[5] M. Hall, Jr., J.K. Senior. The Groups of Order $2^{n}(n \leq 6)$. Macmillan Co., New York, 1964.
[6] M.I. Isaacs. Derived subgroups and centers of capable groups. Proc. Amer. Math. Soc., 2001, 129: 2853-2859.
[7] G. Karpilovsky. The Schur multiplier. London Math. Soc. Monogr., (N.S.) 2, 1987.
[8] A. Magidin. Capable 2-generator 2-groups of class two. Comm. Algebra, 2006, 34: 2183 2193, doi: 10.1080/00927870600549717.
[9] A. Magidin, R.F. Morse. Certain homological functors of 2-generator p-group of class 2. Contemp. Math., 2010, 511: 127-166.
[10] P. Niroomand. On the order of Schur multiplier of non-abelian p-groups. J. Algebra, 2009, 322: 4479-4482, doi: 10.1016/j.jalgebra.2009.09.030.
[11] P. Niroomand. A note on the Schur multiplier of groups of prime power order. Ric. Mat., 2012, 61(2): 341-346, doi: 10.1007/s11587-012-0134-4.
[12] P. Niroomand, R. Rezaei, F.G. Russo. Commuting powers and exterior degree of finite groups. J. Korean Math. Soc., 2012, 49: 855-865, doi: 10.4134/JKMS.2012.49.4.855.
[13] P. Niroomand, F.G. Russo. An improvement of a bound of Green. J. Algebra Appl., 2012, 11(6): 1250116 (11 pages), doi: 10.1142/S0219498812501162.

[^0]: ${ }^{*}$ Correspondence to: Mohsen Parvizi, Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran. Email: parvizi@math.um.ac.ir
 ${ }^{\dagger}$ Received: 28 November 2012, revised: 22 February 2013, accepted: 6 May 2013.

