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Abstract 

In this paper, a two-dimensional numerical model is 

developed to study liquid sloshing in containers in 

presence of liquid free surface deformation, liquid 

viscosity and surface tension. The model is validated by 
a comparison between the computational and 

theoretical/experimental results for time-dependent 

linear/angular acceleration sloshing scenarios. The 

governing equations for the 2D incompressible fluid 

flow are continuity and Navier-Stokes equations along 

with an equation for the free surface advection. The 

deformation of the liquid-gas interface is modeled using 

the Volume-of-Fluid (VOF) method. The fluid flow 

equations describing the fluid sloshing in the container 

and the dynamic equation which describes the 

movement of the container are solved separately in two 

coupled programs. In each time step of computations, 
the outputs of the fluid program (forces and torque) are 

obtained and used as inputs for the dynamic program. 

The forces and torque are applied to the body of the 

container resulting in translational and rotational 

accelerations which are then used as inputs to the fluid 

program. The model is also used to simulate the 

movement of the liquid container in a general case 

where a complete interaction between liquid and solid 

body of the container exits and the container has both 

linear and rotational accelerations.  

 
Keywords: liquid sloshing-numerical simulation-

Volume of Fluid 

 

Introduction 

The sloshing phenomenon occurs in many applications, 

such as, propellant tank in aerospace devices and LNG 

(liquid natural gas) cargos in the ship industry. When an 

external transient or steady force acts on a fluid, the 

liquid is driven from equilibrium state. In this condition, 

the free surface of the liquid moves and the liquid splash 

on the container walls. In many cases, these forces 
affect the maneuver of the vehicle. The influence of 

sloshing liquid may hamper critical maneuvers in space, 

such as the docking of liquid-cargo vehicles or the 

pointing of observational satellites. Several serious 

problems with sloshing liquid in a spacecraft have been 

reported over the years. For example, during the last 

seconds of the first lunar landing [1], or another 

example is the NEAR (Near Earth Asteroid 

Rendezvous) mission to the asteroid Eros in 1998 [2]. 

During an orbital correction, the spacecraft experienced 

an unexpected motion; fuel slosh was identified as the 

probable cause [2]. 

     The Marker-and-Cell (MAC) method is the „father‟ 

of all free-surface flow methods [3]; it makes the use of 

mass-less particles to keep track of the liquid region. 
Accuracy requires a considerable number of particles 

per grid cell, making the method computationally 

expensive, especially in 3D. A cheaper way is to apply 

only surface markers [4], but now splitting and merging 

of the surface are difficult to handle. The MAC follow-

up is the volume-of-fluid (VOF) method introduced by 

Hirt and Nichols [5]. Here a discrete indicator (or color) 

function is used that corresponds to the cell volume 

occupied by fluid. This method was improved 

considerably by Young [6] who modeled the free 

surface by Piecewise Linear Interface construction 

(PLIC) Algorithms. 
     Sloshing phenomenon in a rectangular tank has been 

intensively studied in the last few decades. Many 

researchers have devoted their efforts to study sloshing 

analytically based on potential flow theory. For 

example, Faltinsen [7] derived a linear analytical 

solution for liquid sloshing in a horizontally excited 2D 

rectangular tan; this solution has been widely used in 

the validation of numerical models. Recently, Faltinsen 

et al. [8] and Faltinsen and Timokha [9] developed a 

multimodal approach to describe the non-linear sloshing 

in a rectangular tank with a finite water depth. Later, 
Hill [10] analyzed the transient behavior of the 

resonated waves by relaxing many of the assumptions 

adopted in the previous studies. However, these 

theoretical analyses are not valid for viscous and 

turbulent flows, therefore, the overturning and breaking 

waves during violent liquid sloshing cannot be 

described. On the other hand, laboratory measurements 

of wave height and hydrodynamic pressure have been 

reported by Verhagen and Wijingaarden [11], Okamoto 

and Kawahara [12, 13], and Akyildiz and U¨nal [14]. 

These measurements are very useful for validating 
theoretical solution and numerical results. 

     The numerical modeling is one of the viable methods 

in studying nonlinear free-surface wave and estimating 

the magnitude and location of the impulsive pressure 

acting on the tank walls. Nowadays, it is not 

extraordinary to use numerical methods for simulation 

of the nonlinear waves interacting with the structure like 

Mo and Liu [15] and Seung-Hee Lee et al. [16]. Shao et 

al. [17] used the SPH (Smoothed particle 

hydrodynamics) method for simulating the liquid 

sloshing. Accordingly, numerical methods can be 
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employed in sloshing analyses to reduce the number of 

required experiments. 

The above-mentioned studies considered a one-way 

interaction between liquid and solid body; i.e., the solid-

body movement was enforced in the simulations. 

Veldman [6] was the first who considered a two-way 

liquid/solid interaction model to study the sloshing 

phenomenon. In his model, however, the gas phase was 

not considered in the solution. 
     In the previous studies some assumptions such as 

two-phase flow and violent sloshing moving and liquid 

effect on solid body weren‟t considered. In this paper, a 

two-dimensional numerical model is developed to study 

liquid sloshing in containers in presence of liquid free 

surface deformation, liquid viscosity and surface tension 

and those assumptions are considered. The model is 

validated by a comparison between the computational 

and theoretical/experimental results for time-dependent 

linear/angular acceleration sloshing scenarios. The 

deformation of the liquid-gas interface is modeled using 

the Volume-of-Fluid (VOF) method. The model is also 
used to simulate the movement of the liquid container in 

a general case where a complete interaction between 

liquid and solid body of the container exits and the 

container has both linear and rotational accelerations. 

 

Mathematical Model 

Fluid dynamics 

The governing equations are the unsteady, 

incompressible, continuity and Navier–Stokes 

equations. The fluid motion is described by means of 

the conservation of mass [6]: 

  0                                                                              (1)V 

and conservation of momentum: 

   
  1

    (      (2)B v

V
V V p V F F

t





        



where  V  denotes the velocity of the fluid relative to the 

tank, p the pressure,   and   the fluid density and 

viscosity, respectively. The vectors 
BF and 

vF  

represent the external body force and a virtual body 

force induced by the motion of the tank. In the Volume 

of Fluid (VOF) method, the free surface deformation is 

characterized by means of a scalar function, f, whose 

value is set based on the volume fraction of a cell 

occupied by liquid. The equation governing f is: 

  0                                                  (3)
Df f

V f
Dt t


   


 

This equation along with the Young PLIC algorithm [6] 
is used to track the location of the interface. For 

boundary conditions, the usual no-slip condition for 

viscous flow is applied at the tank wall. More details of 

the model are given elsewhere [18]. 

 

Solid-body dynamics 

The model for solid-body motion consists of an 

equation for linear momentum [17]. 

 s s ss Bs sm q m rm Rr m F                     (4) 

and an equation for angular momentum 

 s ss s s s Bm q I I mr rT F                         (5) 

In these equations, q  (linear acceleration) and   

(angular acceleration) are unknown variables. The mass 

of the solid body is denoted by
sm ; further, 

sI  is the 

moment of inertia tensor and r  is the center of mass of 
the solid. The last terms in Equations 4 and 5 represent 

the force and torque due to an external body force such 

as gravity. Finally,  R and T  are, respectively, the force 

and torque that the fluid, via pressure and viscous 

effects, exerts on the boundaries of the solid body.  R  

and  T  are defined as: 

3( ).
V

R pI V nds


                                               (6) 

3( ( )).
V

T r pI V nds


                                        (7) 

     Here, 
3I is the 3 3  identity matrix and n the 

outward pointing normal to the boundary of volume 

V  of the solid body. 

 

Virtual body force method 

In order to couple the fluid dynamics and solid-body 

dynamics, the motion of the fluid in presence of the 

solid body movement has to be modeled. Here, the fluid 
velocity is considered in two reference frames: the 

velocity *V  of a fluid particle with respect to an inertial 

reference frame and the velocity V  of the same liquid 

particle with respect to a moving reference frame. The 

relation between *V  and V  is given by 

 
*

2
DV DV

q r r V
Dt Dt

                      (8) 

where
dq

q q
dt

     is the acceleration of the moving 

origin with respect to the origin of the inertial reference 

frame;  ,   and r are the angular acceleration 

,angular velocity and the position vector of the liquid 

particle respectively and they are in the moving 
reference frame. The third and fifth terms in the right-

hand side of Equation 8 represent the centrifugal and 

Coriolis accelerations respectively. Now, the Navier-

stokes equations become: 

  
* 1

 B

DV
p V F

Dt



                               (9) 

Alternatively, using Equation 9: 

  
1

 B v

DV
p V F F

Dt



                        (10) 

where 

  2VF q r r V                                 (11) 

       Equation 10 has a form similar to Equation 2 

(meaning that in the numerical model for the liquid 

dynamics only small changes are required). Using 

Newton's third law, the extra term 
vF  in Equation 10 

can be seen as acceleration due to a virtual body force. 

Instead of actually moving the solid body in the 
numerical model, the fluid is subjected to an 

acceleration (equal in magnitude and opposite in sign) 

to account for the solid-body motion. Considering 
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Equations 10 and divergence theorem, Equations 6 and 

7 will transform into: 

  
V

B v

V

R p V dV

DV
F F dV

Dt





    

 
    

 

                                 (12) 

   
V

B v

V

T r p V dV

DV
r F F dV

Dt





     

 
     

 

                            (13)      

Direct time integration of Equations 4 and 5 would 

result in a method that is not stable for arbitrary 

liquid/solid mass ratios. Thus, the system for the solid-

body dynamics is rewritten first. Veldman [17] 

introduced a new coupling method that is 
computationally stable. In his model, Equations 4 and 5 

are rewritten as: 

 

2 B s B

V

mq mr mr

DV
u F dV m F

Dt

  

 

     

 
     

 

                     (14) 

 

2 B s B

V

m qr I I

DV
r u F d rV m F

Dt

  

 

    

 
       
 

            (15) 

     In these equations S Lm m m   is the total mass 

and 
S LI I I  the moment-of-inertia tensor of the 

coupled system. The centre of mass of the coupled 

system is denoted by 

s lS lm r m
r

m

r
                                                       (16) 

     An important difference between the left hand sides 

of Eqs. 4 and 14 (and similarly between Eqs. 5 and 15) 

is the distribution of the solid-body mass and the liquid 

mass over the left-hand side and right-hand side of the 

equations. 

 

Numerical Method 

VOF algorithm 

The finite difference discretisation of the governing 

equation follows the Euler forward scheme in a 

staggered grid [19]. 
1

11
( )

1 1

n n
n n

n

n
n

Bn n

V V
V V p

t

F

 


 




    

  

                       (17) 

     In the above equation, all terms except for pressure 

are computed explicitly. The velocity field is calculated 

according to a two-step projection method as follows.  

First, an intermediate velocityV   is obtained, 

1 1
( )

n
n

n
n n

Bn n

V
V V

V
F

t


  


               (18) 

     The CSF method is used to model surface tension as 

a body force BF  that acts only on interfacial cells. In 

the second step, the intermediate velocity is projected to 

a divergence free velocity field: 

1
11
 

n
n

n

n

V
p

t

V

 




                                           (19) 

     The continuity equation is also satisfied for the 

velocity field at the new time step: 
1 0  nV                                                               (20) 

Solid dynamic system 

In this section, the discretization of Equations 14 and 15 

is discussed in more detail. The temporal discretization 

of the equations for linear momentum (Equation 14) and 

angular momentum (Equation 15) is straight forward. 

Both 
dq

dt
and

d

dt


 are discretized at the new time level 

(indicated by superscript 1n  ). The linear and angular 

velocities are discretized at the old time level (indicated 

by a superscript n). Since the model for the solid-body 

dynamics is applied after the model for the liquid 
dynamics has been completed (in the same time step), 

all the quantities from the liquid model carry a 

superscript n+1.  

1 1
1

n n
n ndq d

m m Ф
dt d

r
t

 
                               (21.a) 

1 1
1 1  

n n
n n ndq d

mr I
dt dt




 
                             (21.b) 

where 

 1

1
1

n n n n n n

n
n

s B

V

Ф m q m

dV m F

r  








     

  

                     (22) 

1 1

1
1

( )n n n n n n n

n
n

s B

V

m q I

d

r

V m F

   



 




  



  

 
                    (23) 

In these equations  
1

1
1 12

n
n

n n n

B

DV
V F

Dt





                             (24) 

     In order to solve the system of Equations 21, in 

matrix form the 3 3 linear system (21) for the unknown 

vectors

1n
dq

dt



 
 
 

 and 

1n
d

dt




 
 
 

 reads 

0 /

0 /   

/

y x x

x y y

y x zz z z

m mr dq dt Ф

m mr dq dt Ф

mr mr I d dt 

     
    

    
         

             (25) 

In this equation, the superscripts have been dropped (it 

is clear that the matrix and the right-hand side vector are 

evaluated at time level n, while the unknown vector 

contains quantities at time level 1n  ). By solving the 

system of Equations 25, the 

accelerations , ,
yx

dqdq d

dt dt dt

 
 
 

  are obtained at the new 

time level. After calculating accelerations, the velocities 

and container displacement are obtained. 
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Results and Discussion 

Model Validation 

In order to validate the model in simulating liquid 
sloshing, first, a few test cases are considered for which 

analytical or experimental results are available. These 

cases include: oscillating tank ,container under linear 

acceleration and rotating tank. 

As a first test case In order to evaluate the performance 
of the model in simulating free surface flows under time 

dependant acceleration , a test case was considered and 

the results were compared with available experimental 

data. A rectangular tank of 0.4 m wide and 0.2 m high, 

filled with 60 percent of water (0.12 m high) , was 

forced to oscillate from left to right. The water began to 

move in an oscillatory manner before impacting the top 
wall. Experimental free surface shapes [20] are 

available prior to the first impact on the top wall (Figure 

1). The tank was moved in a horizontal plane as 

follows: 

   0 1 22 (2 )x t A sin f t sin f t                             

(26) 

0 1 21.50.007 95 ,  8 , 1.307 A f Hm z f Hz      

       As can be seen in Figure 1 computed free surface 

shapes are in good agreement with those obtained from 

experiments (black dots) [20]. However, at t=1.23s it 

can be seen small differences between numerical results 

and experimental data for the free surface shape. This 

difference can be attributed to the 2D modeling instead 

of the real 3D nature of sloshing phenomenon. 

Furthermore, for this simulation it was considered an 

equilibrium contact angle on the container walls 

whereas in reality the contact angle must be dynamic. 

 

 

 

 
Fig. 1: A comparison between numerical (grey area) and 

experimental (black dots) free surface shape [20]. 

 

As a second test case, a container under linear 

acceleration considered and the results were compared 

with available theoretical data. A 25×25 centimeters 

rectangular container was considered and this allows for 

approximately 62.5 liters fuel. The container was almost 

25% (15.6 liters) filled with fuel and It was assumed 

that the vehicle was at rest at time equal zero then it 

started to move along the x-direction with a constant 

acceleration equal to 4.5 2/m s . The fuel inside the 

container was assumed to have the property of water. 

The liquid was deviated from equilibrium state and 
moved and clashed with the wall of the container. After 

a while, the liquid neared a stable condition at a certain 

angel. In this study, we compare the results of this 

simulation with the available theoretical data. Based on 

the theory, the free surface of liquid must be 

perpendicular to the pressure gradient and is thus tilted 

at a downward angle   such that: 

arctan x

y

a

a g


 
  

  

                                                  (27) 

      Where
xa , 

ya and g are uniform acceleration in x 

and y-direction and gravity acceleration respectively. In 

this study the free surface tilts at an angle of 24.64 deg, 

regardless of the shape of the container. In Figure 2, the 

free surface deformation is shown at different times. In 

this figure, the theoretical tilt angle is represented with a 

dash line. As can be seen, computed free surface shapes 
at the steady state condition (t=10s) are in good 

agreement with those obtained from Equation 27 (dash 

line). 

 

 

 
Figure 2: Liquid sloshing in a container that undergoes a 

linear acceleration equal to 4.5m/s2 in the x direction. 

 

As third test case in order to validate the numerical 

model for rotational motion and the effects of 

centrifugal force, a square container with 100mm side 
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was considered. The container was filled up to 15mm of 

water. It was assumed that the container was at rest at 

equal zero and after a very short time it starts to rotate 

around left bottom corner (Figure 3) with a constant 

angular velocity equal to . In this case the 
gravity force was not considered, thus there was not any 

linear acceleration. Because of the centrifugal force 

reaction, the fluid particles moved to furthest location 

from the rotating origin with acceleration equal to . 
The steady shape of liquid is the arc of the circle such 

that the radius of the circle can be obtained 
theoretically. Figure 3 show the result of this 

investigation. In this Figure the dash circle line indicates 

the theoretical free surface. As can be seen the steady 

shape of liquid free surface has good agreement with 

theoretical circle line. 

       As seen in these three cases, the results show that 

this method has a rational validation with 

theoretical/experimental results, thus it can be used for 

more complex cases such as rolling tank and ferris 

wheel motion. 

 

 

 

 
Figure 3: Liquid sloshing in the container under the 

centrifugal force reaction. 

 

Rolling tank 

Having validated the model for linear and angular 

motions separately, a test case is considered for which 

the combination of both motions exists. In this 

simulation, a square container 100mm in side is filled 

partially with water up to 15 mm from the bottom as 

seen in Figure 4. The container is then forced to roll 

clockwise on its sides (see Figure 4) such that the center 

of the container has a  rad/s uniform angular velocity. 
The free surface deformation in this complex motion is 

illustrated at Figure 4. 

  
 

      

 

 

 

 

 
Figure 4: Liquid sloshing in the rolling  container  

 

       As can be seen the gravity force act as a damping 
force in sloshing phenomena that caused the bulk of the 

fluid always be at the bottom of the container. 
 

Ferris wheel motion  

The final case considered in this paper is that of a ferris 

wheel motion where a complete fluid/solid interaction 

exists. This case includes the time dependent linear 

acceleration in both x and y directions. Because of the 

solid-liquid interaction, the container is allowed to 

rotate freely. A square container, 100mm in side and 

filled 25% with a square shape water portion, is hanged 
from the top corner at time t=0 as shown in Figure 5. 

This corner is pined to the circumference of a wheel 

with 200mm in radius. At t=0, the pin point start to 

rotate around the center of the circle with a constant 

angular velocity (π rad/s). The bulk of the liquid clashes 

with the container walls where it exchanges forces with 

the solid container. As a result the container rotates 

around the pin point freely. Also in order to show the 

solid-liquid interaction, the low weight container was 

selected (0.004kg).  
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Figure 5: Liquid sloshing in container under the ferris 

wheel motion 

 

As can be seen in Figure 5 the container experienced the 

rotating movement.  

 

Conclusions 

In this study, we have developed a computational model 
that can simulate liquid sloshing in 2D containers and 

fuel tanks with angular and translational movement 

including linear/angular acceleration. The code can be 

used for determining the forces and torques that are 

exerted to the structure of the vessels or the containers 

due to the sloshing waves.  The model was validated by 

a comparison between the computational and theoritical 
results and timed dependent acceleration. The 

deformation of the liquid-gas interface is modeled using 

the Volume-of-Fluid (VOF) method. Finally,the liquid 

intercation on sloid body was investigated and thus this 

code was developed and used for any movement.  
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