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Abstract 
In this paper, a numerical model is developed which can 
predict behavior of non-Newtonian fluids. These kinds 
of fluids have complex rheology and simulation of their 
behavior has always been a challenge. The present study 
concentrates on a special type of non-Newtonian fluids 
called viscoplastic. To investigate their behavior a 
numerical model is developed in which the free surface 
is determined by volume-of-fluid method. To validate 
the model, flow properties of Herschel-Bulkley are 
modeled and compared with the experimental results 
reported in the literature. Afterwards, filling of a 2D 
cavity with Bingham fluid is simulated. Models which 
are used for Herschel-Bulkley and Bingham fluids are 
Herschel-Bulkley and Papanastasiou models, 
respectively. Five flow patterns are observed by 
changing the Reynolds and Bingham numbers of the 
flow. It is shown that formation of voids which 
undesirably occurs during the filling process can be 
eliminated by controlling the flow velocity. The 
obtained results well agree with those reported in the 
literature. 
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Introduction 
Non-Newtonian fluids have complex rheology and it is 
not possible to explain their behavior by means of 
Newtonian fluid models. They have wide applications in 
industrial processes one of which is injection molding. 
Injection molding is an important process in industry 
because of its ability to make products in small and 
large sizes by using polymer melts, suspensions and 
semi-solid metals [1,2]. Four steps for this process are: 
preprocessing, filling, solidification and part ejection. 
Obviously, filling is the most important step because it 
determines defects and quality of the final part and most 
problems occur in this step. 
Most of previous studies have focused on 3D injection 
molding [3,4,5] but a few of them have considered 
complex properties of fluids in the process. Viscoplastic 
fluids are classified in two groups; Bingham and 
Herschel-Bulkley which are considered as fluids in 
injection molding in the literature.  Alexandrou et al. [6] 
estimated properties of semi-solid metals as Herschel-
Bulkley and examined their behavior while filling 2D 
and 3D cavities. They studied the effect of temperature 
and other fluid properties on the time of filling in 1999. 
In 2001, by changing flow parameters, different flow 
patterns were obtained for Bingham fluid when it fills a 

2D cavity [1]. Irregularities that result toothpaste effect 
were modeled for Herschel-Bulkley in 2003 [7]. Rudert 
et al. [2] studied filling a 3D cavity by viscoplastic fluid, 
experimentally and theoretically. Roberts et al. [8] 
investigated the profile of jet while impinging the 
surface of the shear thinning fluid. 
The goal of the present study is to develop a numerical 
model which simulates non-Newtonian fluid flow. In 
particular Bingham and Herschel-Bulkley are 
investigated and results are presented for Bingham fluid 
in injection molding. 
 
Mathematical Model 
Governing Equations 
Governing equations are continuity and momentum 
equations as following: 

)1(  

)2( 

where , ρ, ,  and  are velocity vector, fluid density, 
stress tensor, gravity and body forces, respectively. 
Viscosity of non-Newtonian fluid is not constant and it 
is a function of shear rate. There are different models 
for Bingham fluid; the most popular one of which is 
Bingham model. This model is defined as below [9,10]: 

 
(3)  

 
Where τ is viscous stress tensor, µ is effective viscosity 
or viscosity of the deformed material,  and  are 
respectively yield stress of non-Newtonian fluid and 
rate of strain tensor defined as [2]: 

(4)  

(5)  

Equation 3 characterizes two different flow regimes: 
when  the material behaves as a rigid solid, when 

 it flows and its apparent viscosity will be: 

(6)  
 

Using the Bingham model makes some difficulties, one 
of which is infinite apparent viscosity at vanishing shear 
rates. To overcome this problem another model is used 
which called Papanastasiou and defined as below [11]: 
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(7)  

 
where m is a parameter which has dimension of time 
and it controls the exponential rise at low strain rate. In 
Papanastasiou model for , apparent viscosity will 
be  which is finite. Based on 
equation7, the parameter m has dimension of time and 
the value of m is considered 200 in this study. More 
discussions about m and its effect on the results can be 
found in previous studies [12,13]. 
For Herschel-Bulkley fluid the shear stress versus shear 
rate relationship is reasonably well described by the 
Herschel-Bulkley model [14]: 

(8)   
where  is the yield stress (dynamic), k is the 
consistency and n is the flow index.  
 
Numerical Model 
The developed numerical model is capable to simulate 
incompressible two phase flow of Bingham and 
Herschel-Bulkley fluids. Convective, gravity and body 
force terms are calculated explicitly. If we use explicit 
method to calculate viscous term, because of high 
viscosity in solution domain, time step will be decreased 
and governing equations will need long time to be 
solved. Therefore an implicit method developed by 
Mirzaii and Passandideh-Fard [15] is used for solving 
the viscous term. 
To determine the location of liquid interface, volume of 
fluid (VOF) method is applied in which by using a 
scalar parameter (f), the interface is captured. The 
function f is defined as: 

 
)9(  

 
In fact, value of f shows the fraction of liquid volume in 
every computational cell. This value is not used in 
momentum equation directly, but it affects density and 
viscosity. 

(10)   

(11)  

Values of f move in solution domain according to the 
following equation: 

(12) 
 

Two considered fluids are air and non-Newtonian fluids.  
 
Validation of the Numerical Code 
Two non-Newtonian fluids are simulated; Herschel-
Bulkley and Bingham. For Bingham fluid, results are 
compared with those obtained by Alexandrou et al. [1] 
in the next section. For Herschel-Bulkley, results are 
compared with experimental and analytical results 
which have been obtained by Sutalo et al. [14]. The 
flow of Herschel-Bulkley fluid down an inclined plane 
is simulated. Inclined angle is 45º and properties of fluid 
which is 0.15 wt.% Ultrez 10 solution, are listed in 

Table 1. Our results show that the thickness of film 
layer for flow rate = 56.5 L.min-1at 100 mm distance 
from the plate tip agrees with those reported in previous 
studies [14]. The film layer thickness obtained by the 
present study is 20 mm as shown in the last image of 
Figure 1. 
 

Table 1: Ultrez 10 solution 0.15 wt.% properties 

Material τy (Pa) k (Pa.sn) n ρ (kg/m3) 

0.15 wt.% 
Ultrez 10 
solution 

4.12 13.75 0.412 1000 

 

Liquid Inletg

45⁰

(a)

 
t=0.025 s 

(b)

 
t=0.11 s 

 

(c)

Figure 1: results obtained in the present study for the flow of 
Ultrez 10 solution 0.15 wt.% down an inclined plane 
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Table 2 shows the results of the present study and those 
obtained by Sutalo et al. [14]. 
 
Table 2. Film layer thickness for Ultrez 10 solution 0.15 wt.% 
obtained in the present study and reported by Sutalo et al. [14] 

 
Numerical 
results of 

the present 
study 

Analytical 
result 

reported by 
Sutalo et 
al. [14] 

Experimental 
measurement 
reported by 
Sutalo et al. 

[14] 
Distance 

from Plate 
tip (mm) 

100 100 100 

Film 
thickness 

(mm) 
20 19.2 19.5-20 

 
Results and Discussion 
A 2D cavity as shown in Figure 2 is investigated. Jet 
velocity V is constant and it fills the cavity from the top 
of the mold. No-slip condition is applied to the right and 
bottom boundaries. There is symmetric boundary for 
symmetric axis of the mold. We have considered the 
effect of air in the cavity. Results are obtained for half 
of domain. 

Symmetric 
Boundary

Air Vent

Nozzle Wall

2 cm

7.8 cm

No-Slip 
Boundary

Jet
Inlet

 
Figure 2: Geometry of 2D cavity, sizes and boundary 

conditions 

By changing τ0, µ and V in the governing equation for 
viscosity of Bingham fluid, the flow pattern in die 
filling step of injection molding will change and five 
different flow patterns will be obtained which are 
mound filling, transition filling, disk filling, bubble 
filling and shell filling. Previous studies show that these 
flow patterns depend on two non-dimensional numbers 
which are Reynolds and Bingham numbers and defined 
as below for Bingham fluid: 

(13)  
 

where ρ, V, H, µ and τ0 are respectively density, jet 
velocity, jet diameter, effective viscosity and yield 
stress.  
For Herschel-Bulkley Reynolds and Bingham numbers 
are as following: 

(14)  
 

where k and n are respectively consistency and flow 
index. The parameter k or consistency is a coefficient in 
power-law model which has a dimension of [M.Tn-2/L]. 
Results which are shown in Figure 4 to Figure 8 are 
obtained for properties of Bingham fluid in Table 3. 
The parameter t* in the figures which is called non-
dimensional time is defined as following: 

(15)        ,      t*  
t is the time for each step,  is characteristic time and H 
and V are respectively diameter and velocity of the jet. 
Choosing of properties is based on obtaining five 
different flow patterns. Reynolds and Bingham numbers 
are also mentioned in Table 3. In all the results, jet inlet 
velocity is considered 1 m/s and density is 2500 kg/m3. 
Results are mesh- independent. Mesh size is considered 
30×168 and Figure 3 shows the appropriate mesh size. 
In Figure 3 the vertical axis indicates fluid height for 
disk filling flow pattern at t*=25. 
 
Table 3: Reynolds number, Bingham number, yield stress and 

effective viscosity for obtained results 

Figure8  Figure7  Figure6  Figure5  Figure4   

1000  50  50  12.5  1  Re 

50  200  10  9.35  0.001  Bi 

125  10000  500  1870  2.5  (Pa) 

0.05  1  1  4  50  (Pa.s)µ  
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Figure 3: Fluid height inside the cavity in different mesh sizes 

at t*=25 

Mound filling is shown in Figure 4. When the liquid jet 
strikes the bottom of cavity it does not split into two 
parts and central column of liquid grows slowly. This 
kind of filling is obtained in low Reynolds numbers. 
Mound filling produces parts without gas-induced 
porosity but low production rate makes it undesirable. 
Figure 5 shows transition filling. In this kind of flow 
pattern liquid jet starts to grow from the bottom of 
cavity and after receiving the top of cavity, a bubble 
develops and air will trap in the middle of mold. 
Another kind of filling which is shown in Figure 6 is 
called disk filling. This kind of flow pattern is desirable 
because there are no voids and porosity at final part. 
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When jet strikes the end of cavity it splits into two parts 
and develops as a disk during filling step. 
Bubble filling is shown in Figure 7. This kind of flow 
pattern is so different from Newtonian flow patterns and 
the most important reason is yield stress. When the jet 
hits the end of cavity it does not split and liquid column 
starts to grow and after a while a bubble develops at the 
entry. In previous studies [7] it is obtained that bubble 
pattern leads to unstable jet behavior and forms 
toothpaste effect while the other patterns are stable and 
most of transition cases leads to stable jet profiles. This 
indicates that bubble filling is a critical pattern and it 
makes instabilities. 
 

t*=50  t*=40  t*=30  t*=20  
Figure 4: Mound filling, Re=1, Bi=0.001 

t*=50  t*=40  t*=30  t*=20  
Figure 5: Transition filling, Re=12.5, Bi=9.35 

t*=50  t*=40  t*=30  t*=20  
Figure 6: Disk filling, Re=50, Bi=10 

t*=40  t*=30  t*=20  t*=15  
Figure 7: Bubble filling, Re=50, Bi=200 

Shell filling is shown in Figure 8. Jet strikes the bottom 
of cavity and it splits into two layers along the right and 
left walls. This kind of filling is undesirable because of 
entrapped gas within the piece. 
 

t*=25  t*=20  t*=15  t*=10 
Figure 8: Shell filling, Re=1000, Bi=50 

Obtained results well agree with those reported in 
previous experimental and numerical studies [1,2]. For 
Bingham fluid, results are compared with those reported 
by Alexandrou et al. [1]. For a special kind of flow 
pattern, Bubble filling, in which properties are defined 
in Figure 9, results are shown. In Figure 9 the first row 
indicates bubble filling reported in the previous study 
[1] and the second row shows results of the present 
study.  
 

        

    
t*=45  t*=35  t*=25  t*=15 

Figure 9: Results obtained in the present study (second row) as 
compared to the results reported in the literature [1] (first row) 

τ0=10000(Pa) and µ=1(Pa.s) 

For a constant Reynolds number, with changing 
Bingham number, results which are reported in Table 4 
obtained. These results show the importance of non-
Newtonian fluid yield stress which can make bubble 
filling and cause instabilities. 
 

Table 4. Flow patterns by changing Bi when Re is constant 
Re=50 Re=50 Re=50 
Bi=10 Bi=45 Bi=200 

Disk filling Transition filling Bubble filling 

Figure 10 shows the stream lines and velocity vectors 
for disk filling. As shown in the figure, air leaves the 
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cavity through the vents which are on the upper side of 
the mold. 

 
Figure 10: stream lines on the right and velocity vectors on the 

left 

Conclusions 
A numerical model is developed which can predict 
behavior of non-Newtonian fluids. First, the flow of 
Herschel-Bulkley down an inclined plane is compared 
with experimental and analytical results. Second, five 
different flow patterns in injection molding are obtained 
for Bingham fluid. By analyzing the results it is found 
that the main reason for some flow patterns like bubble 
and transition filling is the yield stress of non-
Newtonian fluid. On the other hand, the filling pattern 
determines the final part quality; therefore more studies 
about filling step and controlling the process parameters 
like jet velocity can lead to an optimum process with 
high quality products. 
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