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Abstract: Five dimensional Einstein gravity vacuum solutions in general fall into two

classes of black rings with horizon topology S2×S1, and black holes with horizon topology

S3. These solutions are specified by their mass and two spins. There are “overlapping”

regions of this parameter space where one has extremal rings and holes of the same spins.

We show that for such regions the hole has generically a larger entropy than the ring,

and likewise, the central charge of the proposed chiral 2d CFT dual to the hole is larger

than that of the ring. For special places of this overlapping region where one of the spins

tends to zero, the entropies of the extremal ring and hole also tend to zero and essentially

become equal. In this case we are dealing with Extremal Vanishing Horizon (EVH) black

holes or rings. The near horizon geometry of the near-EVH hole and rings both contain

locally AdS3 throats, providing a basis for the EVH/CFT proposal, a 2d CFT description

of the low energy excitations of EVH hole or ring. We argue how the near-EVH hole and

near-EVH ring can be distinguished from this dual 2d CFT viewpoint: the hole is a thermal

state with zero temperature in the left sector and finite temperature in the right, while the

ring is a generic state in the ground state (of the CFT on the plane) in the left sector and

a thermal state in the right. The latter is part of the Hilbert space of the 2d CFT obtained

in the Discrete Light Cone Quantization (DLCQ).
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1 Introduction

A black hole is a stationary geometry which is generically specified by a smooth, non-

degenerate, codimension two compact surface, the Killing horizon, the normal to which is

a null Killing vector field. The Killing horizon depending on the gravity theory to which

black hole is a solution, can have different topologies. In particular, for vacuum Einstein

gravity with asymptotic flat black holes there are theorems which restrict horizon topology:

in four dimensions we have the famous no hair theorem, stating that the horizon topology

can only be S2 [1]. In five dimension, the no-hair theorem does not hold; here black hole

solutions form a three parameter family specified by (M,Jφ, Jψ), corresponding to mass

and two spins. There are regions on this parameter space where we can have black hole

solutions with S3 horizon topology [2] as well as black ring solutions with S2 × S1 horizon

topology [3–5]. Explicitly, and as has been depicted in figure 2 and will be discussed in

more detail in section 4, there is a region in the margins of the parameter space of black ring

where ring and hole solutions overlap. This region denoted by the circle on the right-top

of figure 2, is where we can have extremal rings and hole with equal mass and spins. This

is the “collapsing” region [6] in the ring/hole parameter space.

In view of these possibilities one may ask several interesting questions, e.g. is it pos-

sible to have a (dynamical) topology change or if the hole and the ring can both form in

a gravitational collapse process? One may then ask which one is the preferred outcome

or which one is the more stable solution. Here we take on the latter question. As we will
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show for generic values of angular momenta in this overlapping region the black hole solu-

tion has a larger entropy than the ring (with the same angular momenta) and the hole is

then expected to be a more stable configuration. There is, however, a specific limit in this

“collapsing region” where the ring and the hole also have equal entropy, in the vanishing

entropy (finite mass) limit. In this limit the entropy cannot be used to distinguish a ring

from a hole. So the question is how one can differentiate between the two in the vanishing

entropy limit from the near horizon data?

To address such questions one may use “dual CFT” description of black holes, when

applicable. For the class of asymptotic flat 5d vacuum Einstein gravity solutions which

we will be considering in this paper, there are proposals for dual CFTs for extremal black

holes and rings [7, 8].1 For generic, finite entropy (extremal) case we show that the central

charge of the chiral 2d CFT dual to the black hole is larger than that of the ring, while

the vanishing entropy case is a bit different.

Dealing with vanishing entropy limit in the first sight may seem an obstacle in using

the CFT dual description for the question of ring/hole distinction. In fact, quite on the

contrary, being around an Extremal Vanishing Horizon (EVH) black hole/ring provides

a better ground for studying this problem. There is the EVH/CFT proposal [11] which

associates a dual 2d CFT description for a generic near-EVH excitation of a given EVH

black hole and this is to be contrasted with the Kerr/CFT proposal [12, 13] according

which the dual description of a generic extremal black hole/ring is a “chiral 2d CFT”. The

latter has much less dynamical content than a 2d CFT and may be related to it through

the discrete light-cone quantization (DLCQ) [14].

For several different examples of EVH black holes considered [15–22], although unique-

ness theorems are still missing, it has been observed that one generically finds a locally

AdS3 space in the near horizon limit [23]. Despite the fact that this AdS3 happens to

be a pinching orbifold of AdS3 [24], it can be used to propose the EVH/CFT, a 2d CFT

description dual to the near-EVH excitations [11, 21, 22]. In this work we first review and

discuss EVH black holes in the family of 5d Myers-Perry (MP) black holes and show that

EVH MP black holes show a similar behavior. For near-EVH MP black holes this pinching

AdS3 turns into a pinching BTZ geometry. In particular, for extremal near-EVH MP black

holes we find an extremal BTZ in the near horizon geometry.

Next, we consider EVH black rings and their near horizon geometry. We show that

the near horizon geometry of (near) EVH black ring again contains a locally AdS3 space,

a (pinching) self-dual AdS3 orbifold [24]. That is, for a given near-EVH geometry with

the same spins and mass, the distinction between black ring or black hole can already be

distinguished from the near horizon geometry: the former has an extremal BTZ while the

latter has a self-dual AdS3 orbifold in the near horizon geometry.

We may then use this distinction to argue how the dual CFT can distinguish between a

hole and a ring: as has been discussed in [14, 24], a generic extremal BTZ corresponds to a

thermal state of the 2d CFT with vanishing temperature, say in a left moving sector, and a

1In this work we will be dealing with extremal vacuum 5d Einstein solutions. Similar question, microstate

counting of black rings and comparing it with black holes have also been discussed in the context of D1-D5-P

system e.g. in [9, 10].
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finite temperature in the right moving one. Whereas, the self-dual orbifold corresponds to a

non-thermal ground state in the left, and a thermal state on right sector [14]. The above fact

about 2d CFTs leads to the proposal that the ring-hole transition is like a thermalization

process in (the left moving sector of) the dual CFT. Here bring some preliminary evidence

in support of this proposal, while it is desirable to explore it in further detail.

This paper is organized as follows. In section 2, we review and discuss 5d Myers-Perry

(MP) black holes, their extremal and EVH limits and the corresponding near horizon

geometries. In section 3, we review and discuss 5d black “balanced” rings and discuss in

some detail the special places of their parameter space, in particular the near-EVH ring. In

section 4, we review dual chiral 2d CFT description for generic extremal rings or holes and

provide a dual 2d CFT description for the near-EVH black holes and near-EVH black rings.

We discuss how the dual CFT can distinguish the ring from hole. In section 5, we make some

concluding remarks and discuss some interesting open questions. In particular we briefly

comment on the near-EVH “unbalanced” ring case and how it fits into our 2d CFT picture.

2 Myers-Perry black holes and their EVH limit

In this section we review and study some facts about 5d Myers-Perry (MP) black holes.

We focus on two special cases and their near horizon limits, the extremal MP which will

be discussed in section 2.1 and EVH and near-EVH MP, discussed in section 2.2.

In the most general form 5d MP black holes form a three parameter family of vacuum

Einstein gravity solutions with metric [2, 25]

ds2=−∆

ρ2
(
dt− a sin2 θdφ− b cos2 θdψ

)2
+
ρ2dr2

∆
+ ρ2dθ2 +

sin2 θ

ρ2
(
a dt−

(
r2 + a2

)
dφ
)2

+
cos2θ

ρ2
(
b dt−

(
r2+b2

)
dψ
)2

+
1

r2ρ2
(
ab dt−b

(
r2+a2

)
sin2θdφ−a

(
r2+b2

)
cos2θdψ

)2
, (2.1)

where 3πM
4G5

is the (ADM) mass of the black hole, a and b are two rotation parameters and

∆ =
1

r2
(r2 + a2)(r2 + b2)− 2M, ρ2 = r2 + a2 cos2 θ + b2 sin2 θ . (2.2)

The location of horizons can be found by solving ∆ = 0 equation; so the outer and inner

horizons lie at

r± =

√√√√M − a2

2
− b2

2
±

√(
M − 1

2
(a− b)2

)(
M − 1

2
(a+ b)2

)
. (2.3)

The horizon (which is a Killing horizon at r = r+) is parameterized by θ ∈ [0, π/2] and

φ, ψ ∈ [0, 2π] and its topology is S3.

The Hawking temperature, Bekenstein-Hawking entropy, angular momenta and angu-

lar velocities at the horizon of this black hole are given by

TH =
r4+ − a2b2

2πr+(r2+ + a2)(r2+ + b2)
, SBH =

π2(r2+ + a2)(r2+ + b2)

2G5r+
, (2.4)

Jφ =
πMa

2G5
, Jψ =

πMb

2G5
; Ωφ =

a

r2+ + a2
, Ωψ =

b

r2+ + b2
. (2.5)
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2.1 Extremal MP black holes

Extremality occurs when TH = 0, i.e. when

r2+ = r2− = ab , M =
1

2
(a+ b)2 . (2.6)

Extremal MP black holes, as depicted in figure 1, are specified by a paraboloid in (M,a, b)

space. The Bekenstein-Hawking entropy for extremal black holes is then given as

SBH =
π2

2G5

√
ab(a+ b)2 . (2.7)

The near horizon geometry of extremal MP black hole may be obtained through the

following ε→ 0 limit [26, 27]

t→ (a+ b)2

4

t̂

ε
, r →

√
ab+ εr̂ , φ→ φ̂+

t

a+ b
, ψ → ψ̂ +

t

a+ b
, (2.8)

while keeping the hatted coordinates fixed. Applying the above one finds

ds2 = ρ20

(
− r̂2

4
dt̂2 +

dr̂2

4r̂2

)
+ ρ20dθ

2 +
2M

ρ20

[
a2 sin2 θ

(
dφ̂+ kφ̂r̂dt̂

)2
+b2 cos2 θ

(
dψ̂ + kψ̂ r̂dt̂

)2
+ab

(
sin2 θ(dφ̂+ kφ̂r̂dt̂) + cos2 θ(dψ̂ + kψ̂ r̂dt̂)

)2 ]
, (2.9)

where

ρ20 = ab+ a2 cos2 θ + b2 sin2 θ, kφ̂ =
1

2

√
b

a
, kψ̂ =

1

2

√
a

b
. (2.10)

As in general 5d near horizon extremal geometries [28] , (2.9) has SL(2, R)×U(1)φ×U(1)ψ
isometry. Moreover, one can readily show that the volume of constant r, t surfaces is equal

to 4SHG5.

2.2 EVH MP black holes

Extremal Vanishing Horizon (EVH) black holes are in general defined as black holes with

TH = 0, AH = 0 , (2.11)

where AH is the horizon area and vanishing of AH and TH in the “near-EVH” region should

happen such that [11]

TH → 0, AH → 0 , AH/TH = finite. (2.12)

Moreover, vanishing of horizon area should be a result of having a vanishing one-cycle on

the horizon [23]. The solutions to (2.11), if exist, in general define a codimension two (or

in some cases larger) subspace in the parameter space. Eq. (2.12) and the vanishing one-

cycle condition on the horizon may then be used to argue that in the near horizon limit of

EVH black holes one expects to find an AdS3, instead of the usual AdS2 factor of extremal

black holes [28], where the AdS3 is formed from combination of the AdS2 factor and the

– 4 –
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Figure 1. The three dimensional parameter space of 5d MP black holes. Since only the relative sign

of a and b parameters appears in the metric, we have depicted the parameter space in a ≥ 0 region,

while b can be a generic real number. The M = a = b = 0 is excluded because it does not correspond

to a black hole (it is just 5d flat space). The two dimensional paraboloid surface corresponds to

extremal black holes and the two thick black lines on it to EVH black holes. The extremal surface

is a codimension one surface in this parameter space and the EVH lines, a codimension two surface.

vanishing one-cycle which were on the horizon [23]. This expectation has been checked for

several EVH examples [11], while still a general theorem on this is still missing.

Let us now investigate the EVH black holes in the 5d MP family [21]. Eq. (2.11) has

the following solution

M =
1

2
(a+ b)2 , a b = 0 . (2.13)

Since we want to remain with a black hole solution of non-zero mass, the above has two

solutions, a = 0, b 6= 0 or a 6= 0, b = 0, while the a = b = 0 solution should be excluded.

That is, single-spin 5d MP black holes are EVH black holes. The parameter space for these

solutions has been depicted in figure 1. Since the parameter space is symmetric with respect

to a↔ b exchange, without loss of generality hereafter we restrict ourselves to a = 0 case.

We now analyze the near horizon geometry of an EVH (single rotation) MP black

hole (2.1) with a = 0. Let us start with the metric of the EVH MP black hole:

ds2 = −r
2 − b2 cos2 θ

r2 + b2 sin2 θ
dt2 + (r2 + b2 sin2 θ)

(
dr2

r2
+ dθ2

)
+ r2 sin2 θdφ2

+
(r2 + b2)2 − r2b2 cos2 θ

r2 + b2 sin2 θ
cos2 θdψ2 − 2b3 cos2 θ

r2 + b2 sin2 θ
dtdψ . (2.14)

Performing the coordinate transformations

r̃ = r ε , t̃ = t/ε , φ̃ = φ/ε , ψ̃ → ψ + t/b , (2.15)

and taking the limit ε→ 0, we obtain the following near horizon metric [21, 26]

ds2 = sin2 θ

(
− r̃

2

b2
dt2 +

b2

r̃2
dr̃2 + r̃2dφ̃2

)
+ b2(sin2 θ dθ2 + cot2 θ dψ̃2) . (2.16)

– 5 –



J
H
E
P
1
0
(
2
0
1
3
)
1
9
4

One should note that, as in other EVH cases studied in the literature, the AdS3 factor

appearing in the near horizon geometry is a pinching AdS3 [11], that is φ̃ ∈ [0, 2πε]. Using

a reduction ansatz as [21]

ds2 = sin2 θgµνdx
µdxν + b2(sin2 θ dθ2 + cot2 θ dψ̃2) , (2.17)

the 5d Einstein-Hilbert action reduces to a 3d AdS3 Einstein gravity with AdS3 radius `

and 3d Newton constant G3:

` = b , G3 =
G5

πb2
. (2.18)

2.3 The near-EVH limit

As depicted in figure 1, one can move away from the EVH line in two directions transverse to

the line. Again as is seen from the figure, one may move away from the EVH line while still

remaining inside the extremal surface, or can move transverse to it, leaving the extremal

surface. That is, near-EVH “excitations” can be extremal or non-extremal. The allowed

region for near-EVH parameter space is the one satisfying (2.12). To see where on (M,a, b)

space it corresponds to, following [22], let us parameterize the near-EVH deviations as

a = δa , b = b0 + δb , M =
b20
2

+ (δM + b0δb) . (2.19)

TH ∼ SBH ∼ ε is achieved if r± ∼ ε implying that δa ∼ ε2 , δM ∼ ε2 so we choose

δM = mε2 , a = âε2 . (2.20)

(Recalling (2.19) and the extremality bound for MP black hole we learn that m ≥ 0 and

in our conventions we have chosen â ≥ 0.)

We now combine the above near-EVH parametrization with near horizon limit scalings

of (2.15) to obtain the near horizon near-EVH geometry. We choose ε to parameterize both

of the deviations from EVH and the near horizon. In the near horizon limit r = r̂ ε, the

above scaling leads to

∆ =
ε2

r̂2`2
(
r̂4 − 2 r̂2m+ b20 â

2
)

= ε2∆̂ , (2.21)

where ` = b0 is the AdS3 radius. The near horizon of the near-EVH solution can be

obtained by inserting

r = r̂ ε , t = t̂/ε , φ = φ̂/ε , ∆ = ε2∆̂ , ψ → ψ̂ + t/b , (2.22)

and (2.19) in the metric (2.1) and taking ε→ 0 limit. The result is

ds2 = sin2 θ

[
−∆̂ dt̂2 +

dr̂2

∆̂
+ r̂2

(
dφ̂− â

r̂2
dt̂

)2
]

+ `2(sin2 θ dθ2 + cot2 θ dψ̂2) . (2.23)

As we see in the near-EVH case the pinching AdS3 part of the near horizon geometry has

turned into a pinching BTZ black hole. If we ignore the pinching for the moment and use

– 6 –
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the usual formulas for mass and angular momentum of the BTZ, they are2

MBTZ =
1

4`2G3

r̂2+ + r̂2−
2

=
πm

4G5
, JBTZ =

r+r−
4`G3

=
πâb20
4G5

, (2.24)

where we have used the fact that r̂± are roots of ∆̂ = 0 and (2.18). One may also compare

the temperature and entropy of the BTZ black hole obtained in the near horizon limit and

those of the original near-EVH MP black hole:

TMP =
r̂2+ − r̂2−
2πr̂+`2

= TBTZε , SMP =
π2r̂+b

2
0

2G5
ε =

(2πε)r̂+
4G3

= SBTZ .

One can also show that Ωφ = â
r̂2+

= r̂−
`r+

= ΩBTZ where ΩBTZ is the horizon angular velocity

of the BTZ black hole and that

JBTZε
2 = Jφ , 2MBTZε

2 =
πM

2G5
− ΩψJψ + ΩφJφ .

This is in line with the discussions of [22, 23].

3 Vanishing horizon limit of (balanced) rotating black ring

In this section we investigate the EVH conditions for neutral double rotating black ring

(DRBR) [4] and discuss its near-EVH limit. DRBR is a stationary solution of 5d vacuum

Einstein gravity with horizon topology S1×S2 and admits extremal limit. In the following,

along with most of the black ring literature in particular [3, 5], unlike [4], we use ψ to denote

the ring direction of and φ parameterizes the angle in the S2. The metric is

ds2 = −H(ŷ, x)

H(x, ŷ)
(dt̂+Ω(x, ŷ))2− F (x, ŷ)

H(ŷ, x)
dψ̂2 − 2

J(x, ŷ)

H(ŷ, x)
dφ̂ dψ̂

+
F (ŷ, x)

H(ŷ, x)
dφ̂2 +

2k2H(x, ŷ)

(x−ŷ)2(1−ν)2

(
dx2

G(x)
− dŷ2

G(ŷ)

)
, (3.1)

where the range of coordinates are restricted to, −1 ≤ x ≤ 1, −∞ < ŷ < −1 and φ, ψ ∈
[0, 2π]. The functions in the above metric are defined as follows

G(x)=(1−x2)(1+λx+νx2) ,

H(x, ŷ)=1+λ2−ν2+2λν(1−x2)ŷ+2xλ(1−ŷ2ν2)+x2ŷ2ν(1−λ2−ν2) ,

Ω(x, ŷ)=
−2kλ

(
(1 + ν)2−λ2

) 1
2

H(ŷ, x)

(
ν

1
2 ŷ(1− x2)dφ

+
1+ŷ

1−λ+ν
(1 + λ− ν + ν(1− λ− ν)ŷx2 + 2νx(1− ŷ))dψ),

J(x, ŷ)=
2k2(1− x2)(1− ŷ2)λν

1
2

(x− ŷ)(1− ν)2
(1 + λ2 − ν2 + 2(x+ ŷ)λν − xŷν(1− λ2 − ν2)) ,

2For vanishing â and m we remain on the EVH line and it does not correspond to a deviation from

EVH. This is made explicit noting that neither of the charges of the near horizon BTZ geometry do not

depend on δb.

– 7 –
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F (x, ŷ)=
2k2

(x−ŷ)2(1−ν)2

(
G(x)(1−ŷ2)

(
((1−ν)2−λ2)(1+ν)+ŷλ(1−λ2+2ν−3ν2)

)
+G(ŷ)(2λ2+xλ((1−ν)2+λ2) + x2

(
(1−ν)2−λ2

)
(1+ν)

+x3λ(1−λ2−3ν2+2ν3)−x4(1−ν)ν(λ2+ν2−1))
)
. (3.2)

The above constitutes a three parameter family of solution, parameterized by k, λ and ν;

the latter two are dimensionless and k is of dimension of length and is proportional to the

radius of the ring direction. Ranges of these parameters are

k > 0 , 0 ≤ ν < 1 , 2
√
ν ≤ λ < 1 + ν . (3.3)

Horizon (larger root of G(y)) is located at

yh =
−λ+

√
λ2 − 4ν

2ν
. (3.4)

The entropy, Hawking temperature, angular velocities, angular momenta and mass of this

solution are given by [6]

SBH =
A

4G5
=

8π2k3 λ(1 + ν + λ)

G5(1− ν)2(y−1
h − yh)

, TH =
(y−1
h − yh)(1− ν)

√
λ2 − 4ν

8π k λ(1 + ν + λ)
,

Jψ =
2πk3λ

√
(1 + ν)2 − λ2

(
ν2+ (λ− 6) ν + λ+ 1

)
G5 (1− ν)2 (1 + ν − λ)2

, Ωψ =
1

2k

√
1 + ν − λ
1 + ν + λ

,

Jφ =
4π λ

√
ν k3

√
(1 + ν)2−λ2

G5 (1− ν)2 (1 + ν − λ)
, Ωφ =

λ(1 + ν)− (1− ν)
√
λ2 − 4ν

4k λ
√
ν

√
1 + ν − λ
1 + ν + λ

,

M =
3

2
(THSBH + JφΩφ + ΩψJψ) =

3π k2λ

G5(1 + ν − λ)
. (3.5)

3.1 Parameter space of the ring

Similar to the case of MP black hole, there is a three dimensional parameter space for

DRBR characterized by (k , λ , ν). Ignoring k direction, this parameter space is depicted in

figure 2. Each point inside this figure corresponds to a generic black ring with three inde-

pendent conserved charges, two spins and the mass. We now concentrate on the boundaries

of the parameter space. For a thorough analysis of possible interesting curves inside the

allowed region see [5, 6].

Extremal ring, ν = λ2

4
curve. From (3.5) we see that temperature vanishes on this

curve, so this is the location of the extremal ring. The near horizon geometry of the

extremal black rings can be obtained using the coordinates transformation [8, 29]

ŷ→ −2

λ
+ εy, t̂→ 16 k

(λ− 2)2
t

ε
, φ̂→φ+

(λ− 2)(λ2+ 4)

8λ k (λ+ 2)
t̂, ψ̂→ψ+

(λ− 2)

2k(λ+ 2)
t̂ , (3.6)

and taking the ε→ 0 limit. The result is

ds2 =
16k2Γ(x)

(λ− 2)2

(
− y2dt2 +

dy2

y2

)
+

8λ2k2H(x)

(λx+ 2)4(1− x2)(4− λ2)
dx2 (3.7)

+4
k2(2 + λ)2

(2− λ)2
dψ2 +

32λ2k2(1− x2)
H(x)(4− λ2)

(
dφ− ydt+

(4 + 8λ+ λ2)

4λ
dψ

)2

,

– 8 –
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Figure 2. Parameter space of doubly rotating ring (the k direction is suppressed). Extremal

solutions lies on the parabola; the dashed line is not in the parameter space of rings; the line ν = 0

present Emparan-Reall singly rotating black ring (E-R) and λ , ν → 0 corner is the region of boosted

Kerr strings (BS).

H(x) =
(
λ2 + 4

) (
1 + x2

)
+ 8λx , Γ(x) =

λ2H(x)

2 (2 + λx)2 (2 + λ)2
. (3.8)

It is interesting to note that the ring direction ψ has a constant radius and the geometry

takes form of the 4d metric times S1. To see this more clearly, one may perform the

coordinate change from φ to ϕ = φ + (4+8λ+λ2)
4λ ψ, while the circle S1 is parameterized by

ψ. This is the same geometry that one would find in the near horizon limit of an extremal

boosted Kerr string [29]. One may readily check that the area of constant y, t surface

(where the horizon of the original extremal black ring was located) is

AH =
32k3λ2

(2− λ)2
· (2π)2

∫ 1

−1

dx

(2 + λx)2
=

64λ2

2 + λ

k3

(2− λ)3
· (2π)2 . (3.9)

The λ = 1 + ν line. This line is not formally in the parameter space of the ring,

nonetheless, one may study λ → 1 + ν limit. Here we briefly mention the behavior of

charges and thermodynamical parameters. One can readily check using (3.5) that in the

limit 1+ν−λ = λ̂ε2 and k = k̂ε , ε→ 0, the massM and Jψ remain finite while Jφ ∼ ε2 → 0.

The angular velocities Ωφ and Ωψ also remain finite. The entropy S and temperature T both

go to zero (as ε) such that S/T remains finite (and Jφ ∼ T 2
H → 0). This limit seems to be

an interesting one since it formally falls into our definition of EVH rings. We also note that

except for the ν = 0 case where we recover the single rotating ER ring [3], the λ = 1+ν does

not correspond to a ring. We will make more comments on this in the discussion section.

The ν = 0 line. On this line the φ-angular momentum Jφ vanishes while the other

charges and thermodynamical parameters remain finite. On this line we hence recover

single-rotating ring of Emparan-Reall [3].

The λ , ν → 0 corner. In the λ = ν = 0 point the ring degenerates and one can show

that there is a particular λ, ν → 0 limit where the ring degenerates to boosted Kerr string

– 9 –
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solution [30]. Explicitly, consider the following scaling

ν =
a2∗λ

2

4
, M̂ =

λk√
2
, ν → 0 , 0 ≤ a∗ ≤ 1 , (3.10)

while keeping M̂, a∗ fixed. (The range for a∗ is deduced from (3.3).) By inserting the above

scaling together with coordinate scaling [30]

ŷ = −
√

2 k

r
, x = cos θ , ψ̂ = − z√

2 k
, (3.11)

into the metric of DRBR, one can obtain boosted string solutions as

ds2=−
(

1− 2M̂rcosh2 σ

ρ2

)
dt2+

2M̂rsinh 2σ

ρ2
dtdz+

(
1+

2M̂r sinh2 σ

ρ2

)
dz2+

ρ2

∆
dr2+ρ2dθ2

+

(
r2+a2

)2−∆a2 sin2θ

ρ2
sin2θdφ2− 4M̂rcoshσ

ρ2
a sin2θdtdφ− 4M̂rsinhσ

ρ2
a sin2θdzdφ,(3.12)

where σ is boost parameter, a = M̂a∗ is rotation parameter of Kerr and ρ2 = r2 +

a2 cos2 θ, ∆ = r2 − 2M̂r + a2. The special cases of a∗ = 0, a∗ = 1 respectively correspond

to boosted Schwarzschild string and extremal boosted Kerr string.

The “collapsing point” λ = 2, ν = 1 [6]. This is the upper end point on the extremal

DRBR and is not strictly speaking in the parameter space of the ring (cf.(3.3)). This is a

singular point at which the entropy vanishes, so in our terminology, if the condition (2.12)

is also satisfied, this can be an EVH point. At this point one of the angular momenta Jφ
vanishes and the ring becomes an extremal single rotating ring, which according to the anal-

ysis of [3] does not exist; this is “collapsing point” in the parameter space of the rings [6].

Nonetheless, one may study approaching this point from inside the DRBR allowed region.

Recalling (3.3) and demanding the mass M to remain finite one can take the following limit:

ν = 1− ρ , λ = 2− ρ− δ , 0 < δ ≤ ρ2/4 , ρ, δ → 0 , (3.13)

or more explicitly, we keep σ, M̃ ,

σ =
1 + ν − λ
(1− ν)2

, M̃ =
8k2

1 + ν − λ
, (3.14)

fixed as we take ν → 1, λ→ 2 limit. Note that 0 < σ ≤ 1/4.

It has been shown in [6] that if we focus onto to a region on the geometry close to

x = −1, y = −1 we find an extremal MP black hole. Explicitly, consider

x = −1 +
16
√
ak3 cos2 θ

(a+ b)3/2(r2 − ab)
, ŷ = −1− 16

√
ak3 sin2 θ

(a+ b)3/2(r2 − ab)
, (3.15)

The rotation parameters a, b are

a =
√

2M̃σ , b =
√

2M̃(1− σ) . (3.16)
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Next recall that with the above expansion the horizon is located at

yh ' −1− σ(1− ν) . (3.17)

Therefore, with (3.15) we are cutting the geometry close to its horizon, while (3.15) is not

a near horizon limit. The coordinate transformation and limit (3.15) also cuts a part of

the “collapsing” horizon of the ring and completes it such that its topology becomes S3. In

this region the metric takes exactly the form of an extremal MP black hole with the above

mentioned parameters [6]. This transformation, as discussed in [6] is designed such that it

maps an extremal ring of mass M and angular momenta Jφ, Jψ to an extremal MP black

hole of the same mass and angular momenta (therefore the corresponding horizon angular

velocities are also equal). Nonetheless, they do not have equal horizon area or entropy.

That is, (3.15) and (3.14) change the entropy, and as we will show below, enhance it.

To this end, we start from (3.5) and evaluate the entropy and temperature of the ring

in the collapsing limit:

Sring =
π2M̃

√
2M̃

2G5
·
√
σ(1 +

√
1− 4σ) , TH =

1

8π
√
M̃

√
2σ(1− 4σ)

1 +
√

1− 4σ
(1− ν)2 → 0 .

(3.18)

On the other hand one may compute the entropy of the extremal MP with the same mass

and angular momenta, i.e. evaluating (2.7) at (3.16) to obtain

Shole =
π2M̃

√
2M̃

2G5
· 2
√
σ(1− σ) . (3.19)

As we see the hole has bigger entropy than the corresponding ring. In fact regardless

of the value of angular momenta, one can show that Sring < Shole ≤
√

3Sring. In other

words, (3.15) maps the system of black ring to a black hole of the same quantum numbers

but with larger entropy, both at zero temperature. Therefore, the hole is a more stable

configuration than the ring and one would expect quantum mechanical tunneling from the

ring to the hole configuration.

We note that as the above analysis clearly indicates, it is not possible to approach to

the vanishing horizon point λ = 2, ν = 1 while keeping mass M and S/T finite; in this

case, regardless of the value of σ (even if we considered σ → 0 limit), T/S ∼ (1− ν)2 → 0.

This is forced on us by the range of parameters and (3.13).

One may ask if taking the above collapsing limit and the near horizon limit commute.

That is, do we get the same geometry if we took the λ→ 2 limit over the near horizon limit

of generic extremal ring (3.7), and when we took the near horizon geometry of extremal

MP?3 The latter has been presented in (2.9) and the former may be obtained upon the

3Recall that as discussed above there is a coordinate transformation and a limit which involves cutting

the horizon and completing it into a surface of topology S3 and hence brings the ring geometry in the

λ→ 2, ν → 1 to that of extremal MP black hole. This procedure changes the entropy and hence one would

not expect the two limits commute. Nonetheless, it is worth seeing this explicitly at the level of metric too.
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parameter and coordinate transformations:

2k

2− λ
= k̃ ≡

√
M̃

8
, x = −1 +

2− λ
2

tan2 θ

2
, θ ∈ [0, π − (2− λ)] , 2− λ→ 0 ,

(3.20)

yielding

ds2 = k̃2
[

1 + cos2 θ

2

(
− y2dt2 +

dy2

y2

)
+

1 + cos2 θ

2
dθ2 +

2 sin2 θ

1 + cos2 θ
(dϕ− ydt)2 + 16dψ2

]
,

(3.21)

where ϕ = φ + 3ψ, ϕ,ψ ∈ [0, 2π] and θ ∈ [0, π]. This geometry is basically the same as

NHEK×S1 (where NHEK stands for near horizon extremal Kerr [12]). One may readily

see that the area of constant y, t part of this geometry is equal to 4 · 2π · 4πk̃3 which is

the same as (3.9).

Metric (3.21) should be compared with b = 3a case in (2.9), where k̃ = a. This is due

to the fact that we have set ν = λ2/4 which corresponds to σ = 1/4. As we see the limits

do not commute and this geometry is not the near horizon extremal MP (2.9). Moreover,

as is seen from (3.18) and (3.19), entropies do not equal either: Shole =
√

3Sring.

3.2 EVH and near-EVH rings

The analysis of previous subsection reveals that the only possibility of finding an EVH ring

is around λ = 2, ν = 1 point. To this end, let us consider the following generic scaling

ν = 1− ν̂ε , λ = 1 + ν − λ̂ε2(1+α) , k = k̂ε1+α , (3.22)

where α ≥ 0 (coming from the range of parameters (3.13)) and the scaling of k is fixed

by demanding having a finite mass M . In the notation of previous subsection σ ∼ ε2α.

Therefore, the α = 0 case reproduces a finite entropy black ring. To get a vanishing

horizon limit we need to take α > 0. Moreover, for the α > 0 EVH case, as can be readily

seen from (3.18) and (3.19), the hole and ring will have similar entropy. That is, in the

near-EVH limit ring and hole cannot be distinguished by their entropy;4 in this case,

SBH =
π2M̃

√
2M̃λ̂

G5ν̂
εα , TH ∼ ε2+α ,

and hence T/S ∼ ε2 independently of the value of α. This means that the above expansion

does not allow non-extremal excitations of the “EVH ring”. This is in contrast with the

generic near-EVH MP black hole and the key difference between the two cases.5

One may now take the near horizon, near-EVH ring. For the latter we use (3.22) and

choose α = 1. (This choice of α is made to match with parametrization used in section 2.3.)

4Note that the “extremal ring” case with strict ν = λ2/4 corresponds to σ = 1/4 case and hence

metric (3.7) or (3.21) does not correspond to an EVH ring.
5We comment that the above analysis has been carried out for balanced rotating ring. As has been

discussed in [6, 31, 32] it is possible to get a generic non-extremal MP black hole if one considered unbalanced

ring. We will discuss this further in the discussion section.
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In this case using transformations (3.15), the solution goes to an extremal MP black hole

with near horizon metric in the form of (2.9). On the other hand as it is mentioned above,

by the choice of α = 1, horizon area and the rotation parameter a of MP black hole tend to

zero; so the near horizon, near-EVH limit can be obtained by considering an infinitesimal

value for the rotation parameter a. The result is

ds2=sin2 θ

[
− r2

4b2
dt2+b2

dr2

4r2
+p+

2
(
dφ+

1

2 p+ b
rdt

)2]
+b2

(
sin2 θ dθ2+cot2 θdψ2

)
, (3.23)

in the above t = t̂
b , r̂ = r and p+ =

√
ab. This is a self-dual AdS3 orbifold with radius

b [24] with infinitesimal light-cone momentum p+/b.

4 Dual CFT descriptions of extremal rings and holes

We showed in the last section that around the λ = 2, ν = 1 corner of the black ring pa-

rameter space, the ring geometry collapses into an extremal MP black hole with the same

mass and angular momenta, while the hole generically has a larger entropy than the cor-

responding ring. The two entropies, however, match in the “EVH” limit of both ring and

hole. In this section we argue how these facts can be seen from the proposed dual 2d CFT

descriptions of the extremal black hole and extremal black ring, a la Kerr/CFT [12, 13],

and for the near-EVH hole and ring from the EVH/CFT proposal [11].

4.1 Kerr/CFT description of extremal black ring and MP black hole

Kerr/CFT description of extremal MP black hole. There are two chiral 2d CFT

descriptions associated with generic extremal near horizon MP black hole (2.9), one asso-

ciated with the ring direction ψ and the other with the φ direction [7]. The corresponding

central charges may be computed using usual Kerr/CFT techniques [7, 13]

cφ =
3π

2G5
(a+ b)2 b = 6Jψ , cψ =

3π

2G5
(a+ b)2 a = 6Jφ . (4.1)

The black hole corresponds to thermal states in these chiral 2d CFTs at temperatures

Tφ =
1

2πkφ
=

1

π

√
a

b
, Tψ =

1

2πkψ
=

1

π

√
b

a
, (4.2)

and the entropy is given by the Cardy formula

SBH =
π2

3
cφTφ =

π2

3
cψTψ . (4.3)

Kerr/CFT description of extremal black ring. It is shown that [8, 29] extremal

black ring also admits Kerr/CFT description, that is the CFT description associated with

geometry (3.7). Unlike the MP black hole case, however, there is no 2d CFT associated

with the ring direction ψ and we only have a single chiral 2d CFT description associated

with the φ direction. This latter may also be seen from the form of the near horizon
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extremal ring metric (3.7) where the geometry is of the form NHEK×S1 and the circle is

the ring direction ψ.6 The central charge of this 2d CFT is given by

ĉφ =
384π λ2k3

G5 (2 + λ) (2− λ)3
= 12Jφ , (4.4)

which produces the entropy AH
4G5

(cf. (3.9)) for the CFT at temperature Tφ = 1
2π .

Extremal hole vs extremal ring. As discussed, in the λ → 2 limit we have a config-

uration of extremal black ring and an extremal black hole of the same mass and spin (this

happens for Jψ = 3Jφ, G5M
3
phys. = 27πJ2

φ/2) but with the hole having a larger entropy (by

a factor of
√

3) than the ring. In this case the two φ and ψ CFTs of the hole have central

charges and temperatures as

cφ = 18Jφ , Tφ =

√
3

3π
; cψ = 6Jφ , Tψ =

√
3

π
; Shole = 2π

√
3Jφ , (4.5)

while in the extremal ring case, the central charge and temperature of the dual chiral 2d

CFT is

ĉφ = 12Jφ , Tφ =
1

2π
, Sring = 2πJφ . (4.6)

As we see neither of the hole CFTs actually match that of the ring. This means that the

ring and the hole are basically two different states in two distinct 2d chiral CFTs. It is

interesting to note that the hole CFT has a larger central charge.

4.2 EVH hole/ring, and their dual CFT description

As discussed in section 2, in the near horizon limit of an EVH MP black hole we find a

pinching AdS3 with radius `3 = b and the effective 3d Newton constant G3 = G5
πb2

. Based

on this AdS3 factor the EVH/CFT proposal was stated in [11, 21]: low energy excitations

around an EVH black hole are described by a dual 2d CFT at the Brown-Hennueax central

charge [35]. Ignoring the pinching for the moment, the Brown-Hennueax central charge of

the 2d CFT associated with the AdS3 factor is

cB.H. =
3`3
2G3

=
3π

2G5
b3 = cφ , (4.7)

where cφ is the expression for the Kerr/CFT central charge (4.1) for the EVH case of a = 0.

In the EVH case the other central charge cψ vanishes.

In the near-EVH case, with a ∼ σ � 1 either of the ring and the hole correspond to a

specific state in the 2d CFT associated with the pinching AdS3. One should note that, as

discussed, one cannot have non-extremal excitations of the ring while as near horizon near-

EVH geometry (2.23) clearly shows, an EVH MP black hole admits generic non-extremal

excitation. Therefore, to compare the two cases with the same quantum numbers one

6The ψ direction does not contribute to the entropy via Kerr/CFT. This fact has been noted previously

in [33, 34]. The picture provided in these works is that the other “chiral” sector of the presumed 2d CFT not

appearing in the chiral CFT, is put to the ground state and is responsible for supporting the ring direction.

This picture resembles, but not exactly the same as, what we advocate for the near-EVH ring in section 4.2.
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should focus on the extremal excitations of the EVH MP black hole. Both of these states

have the same entropy, S = 2πb3
√
σ/G5. However, as the near horizon geometries show,

for the hole (2.23) we are dealing with extremal BTZ and for the ring (3.23) with a self-dual

AdS3 orbifold. So, the 2d CFT distinction between the hole and the ring lies within the

2d CFT distinction of an extremal BTZ from a self-dual orbifold. As discussed in [14],

the former corresponds to the thermal state |TL = 0〉
⊗
|TR〉, where |T 〉 is a thermal state

at temperature T , while the latter (the self-dual orbifold) corresponds to |c/24〉
⊗
|TR〉,

where |c/24〉 is the ground state of the 2d CFT on the plane and has energy c/24 above

the vacuum of the 2d CFT on the cylinder.

To summarize this section, we discussed that as we approach the EVH point one of

the CFT’s (ψ-CFT) of the Kerr/CFT duals of extremal MP hole (cf. section 4.1) becomes

singular as its central charge goes to zero, while another possibility opens up: the other

chiral sector of the φ direction becomes dynamically available for the hole case; giving rise

to the 2d CFT proposed in the EVH/CFT. This latter, however, does not happen for the

ring and we still remain with one chiral sector (of the φ-CFT) which may now be viewed

as the chiral CFT obtained through DLCQ of the 2d CFT appearing in the EVH/CFT.

One may then ask if it is possible to use EVH/CFT to understand the Kerr/CFT

descriptions for generic extremal ring or hole, by viewing them as large excitations above

the EVH geometry. As the corresponding near horizon geometries also indicate, the lat-

ter seems not possible. This is due to the fact that in taking the near-EVH limit we have

already restricted ourselves to certain low energy excitations above the EVH point which ex-

cludes excitations with finite entropy, like those appearing in a generic extremal hole or ring.

5 Discussion

In this work, with the goal of giving a 2d CFT dual distinction of extremal black holes

from extremal black rings, we first made a thorough review of 5d MP black holes and 5d

black rings and their extremal and EVH limits. As we discussed there are regions of the

parameter space of the ring, where it can be mapped to an extremal MP black hole. We

hence focused on this region where there are dual CFT proposals for both the ring and

the hole. As we discussed despite having the same mass and angular momenta, the ring

and the hole do not generically have the same entropy; the geometry with larger entropy

is the hole. In the dual CFT descriptions of the hole and the ring, this showed itself in the

fact that the Kerr/CFT central charges (and temperatures) of the chiral 2d CFTs dual to

the hole and the ring are different. That is, the ring and the hole are two thermal states

in two completely distinct chiral 2d CFTs. Nonetheless, there are “non-generic” points in

the overlapping region of hole/ring parameter space, the EVH region, where the ring and

the hole of equal spins and angular momenta have equal entropy. For these cases, the hole

and the ring correspond to two different states in the same 2d CFT, the one appearing in

the EVH/CFT proposal. Of course, the chiral 2d CFT of the proposed Kerr/CFT in the

near-EVH limit reduces to a chiral sector of this 2d CFT. In this way one can distinguish

a near-EVH hole from a near-EVH ring in the dual EVH/CFT along the lines of [14].
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In this work we mainly focused on how one can distinguish hole from rings of the same

quantum numbers. However, as we discussed the hole has a larger entropy than the ring.

It is interesting to study if and how the ring to hole transition/tunneling can take place

and how this will appear in the dual CFT pictures. In the near-EVH case, the hole to

ring transition corresponds to the DLCQ procedure [14] and the reverse, the ring to hole

transition should appear as a “thermalization in the ground state”, i.e. replacing the |c/24〉
ground state with a thermal state at zero temperature. It is desirable to study this latter

in more detail.

As mentioned in section 3.1, the λ = 1 + ν line in the parameter space of the ring is a

singular region. Nonetheless, in the λ→ 1 + ν limit we find rings of finite mass and single

spin with vanishing entropy and temperature while S/T remains finite. This region seems

to be falling into our definition of EVH black holes. It is desirable to study this region

of the ring parameter space in more detail and see if one can find dual CFT descriptions

for. This problem is seemingly related to a more general class of black ring solutions, the

unbalanced rings where the centrifugal force on the ring is not balanced by its self-gravity.

The unbalanced ring solutions form a four parameter family and one can recover the doubly

rotating (balanced) ring we considered here as a spacial limit of them [31, 32]. We expect

that the λ = 1 + ν line should correspond to a particular single spin family of unbalanced

rings. A detailed analysis of this latter is postponed to upcoming publications.
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