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a b s t r a c t

Stress relaxation is one of the defined tests to characterize the viscoelastic properties of food and agricul-
tural materials. Stress relaxation data are very important because they provide useful and valuable infor-
mation such as fruit firmness and ripening, food processing and predicting changes in the material during
mechanical loading. Viscoelastic behavior of some varieties of pomegranate that are cultivated in Iran has
been studied in current research. For this purpose, stress relaxation test was conducted with three cul-
tivars of pomegranate (Ardestani, Shishekap and Malas) for three sizes (small, medium and large). In this
article the potential of artificial neural network (ANN) technique is evaluated as an alternative method for
Maxwell model to predict the viscoelastic behavior of pomegranate. Neural stress relaxation models were
constructed to describe stress relaxation behavior of pomegranate with respect to time. The neural mod-
els were built based upon relaxation time as input network and stress relaxation as output network. The
results revealed that both ANN model and Maxwell model have high capability of producing accurate and
reliable predictions for stress.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Most of the biological and solid foods behave as viscoelastic
materials when they are exposed to small or intermediate levels
of deformation. The mechanical response of viscoelastic materials
is time-dependent; it depends on not only the current loading level
but also the rate and/or history of loading (Kilcast, 2004).

In order to study viscoelastic behavior of food, scientists have
utilized the knowledge of rheology which is the science of the
deformation and flow of the matter. They have established the rhe-
ological modeling of these materials to characterize them and pre-
dict their behavior under various conditions of stress or strain.
These viscoelastic models contain different combinations of Hook-
ean solid elements (springs) and Newtonian fluid elements (dash-
pots), and show complex behavior of various food materials (Rao
et al., 2005).

One of the defined tests to characterize the viscoelastic proper-
ties of food materials is the stress relaxation in which a constant
strain is applied and the stress required to maintain the deforma-
tion is measured as a function of time. Stress relaxation data are
very important because they provide useful and valuable informa-
tion such as fruit firmness (Blahovec, 1996), food acceptability,
food processing, and handling (Bourne, 2002), fruit ripening (Has-
san et al., 2005), checking phenomenon (Kim and Okos, 1999), stal-

ing of cereal products (Limanond et al., 2002) and predicting
changes in the material during mechanical harvesting or handling
(Rao et al., 2005).

Hassan et al. (2005) studied the viscoelastic nature of eight date
cultivars at their khalal (balah) and rutab stages of maturity by
estimating their relaxation parameters from experimental stress
relaxation data. Three popular stress relaxation models, namely
the generalized Maxwell, Nussinovitch, and Peleg were fitted to
experimental data. They pointed out that all three models were va-
lid for quantifying the relaxation behavior of dates; however, the
generalized Maxwell was the best in predicting experimental data.
Del Nobile et al. (2007) chose five different food matrices including
agar gel, meat, ripened cheese, ‘mozzarella’ cheese and white pan
bread. Results showed that the proposed relaxation model per-
fectly fitted the experimental data. Moreover, they found a sub-
stantial difference between the relaxation times distribution
curves of the investigated bulky and spongy foods.

Artificial neural networks (ANNs) are being used in a wide vari-
ety of applications, including apple bruise prediction (Zarifneshat
et al., 2012), prediction of mechanical properties of cumin seed
(Saiedirad and Mirsalehi, 2010), fruit grading (Al-Ohali, 2010; Ef-
fendi et al., 2010) and modeling of apple drying process (Khoshhal
et al., 2010). Recently, several researchers suggested that the impli-
cit constitutive modeling based on artificial neural networks can be
used as alternative to traditional explicit constitutive modeling
(Daoheng et al., 2000; Huber and Tsakmakis, 2001; Zhang and
Friedrich, 2003; Al-Haik et al., 2004; Al-Haik et al., 2006). However,
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all cases were mentioned for the industrial materials. No items
were found in the interpretation of viscoelastic behavior of agricul-
ture crops using artificial neural networks.

The main advantages of using neural networks are learning di-
rectly from examples without attempting to estimate the statisti-
cal parameters. More generally, there is no need for firm
assumptions about the statistical distributions of the inputs and
generating any continuous nonlinear function of input (universal
approximating). (Vakil-Baghmisheh, 2002; Gupta et al., 2003;
Rohani et al., 2011; Zarifneshat et al., 2012). Because of these
unique characteristics, it also can be employed for prediction of
stress relaxation.

The main objective of this study was to develop pomegranate
stress relaxation prediction models. The specific objectives were:
(1) to investigate the effectiveness of ANN for predicting pome-
granate stress relaxation; (2) select optimum ANN parameters for
accurate prediction pomegranate stress relaxation; (3) compare
the performance of generalized Maxwell model with ANN model-
ing predicting of pomegranate tress relaxation.

2. Materials and methods

2.1. Sample preparation

The experiment was conducted at Khorasan Razavi Agricultural
and Natural Resources Research Centre, Mashhad (Northeast of
Iran). For current research, three pomegranate cultivars including:
Ardestani, Shishekap and Malaswere selected. Some properties of
pomegranate cultivars obtained by sixty replicates are presented
in Table 1. Fruits were hand harvested in October 2010 from an
experimental orchard and stored for 24 h at 20 �C and 60% relative
humidity.

2.2. Stress relaxation test

All stress relaxation tests were carried out by means of Texture
Analyzer (CNS Farnell, Model: QTS 25, Hertfordshire, UK) equipped
with a 150 mm diameter cylindrical flat disk. Fruits were exposed
under uniaxial compression at crosshead speed of 30 mm min�1

while the stem-calyx axis was horizontal. The compressive strain
imposed on samples was 8%. When the desired strain was reached,
the disk plunger was held for 60 s (Blahovec, 1996) and stress re-
quired to maintain the deformation was observed as a function
of time. Texture analyzer software (TexturePro v2.0, Hertfordshire,
UK) collected data and transferred to a computer. All experiments
have been carried out in twenty replicates at room temperature
(ASAE, 1999).

2.3. Maxwell model

The model most often used to represent stress relaxation
behavior of food materials is Maxwell model consisting of a finite
number of Maxwell elements (a Hookean spring and a Newtonian
dashpot in series) in parallel with each other. In order to consider
the equilibrium stress of viscoelastic materials, a spring is added in
parallel with the other Maxwell elements. This modified model,

which is called generalized Maxwell model, can better describe
the stress relaxation of viscoelastic materials since the imposed
stress is not alleviated after long periods of time (Mohsenin,
1970). If a generalized Maxwell model is subjected to a fixed strain,
the total stress of the system is the sum of the stresses in each
Maxwell element that has a different relaxation time (Steffe,
1996). The mathematical representation of this model is as
follows:

rðtÞ ¼ rð0Þ þ
Xn

i¼1

Ci exp
�t
si

� �
ð1Þ

where r(t) is the magnitude of stress at time t, r(0) represents the
residual stress, and ci and si are the constants of the ith observation.
MATLAB (2010) software (Curve Fitting Toolbox 3.0) was utilized to
calculate the constants of Maxwell model.

2.4. Data preprocessing

Based on these available data, the time (t) was selected as var-
iable input. The stress (Mpa) was selected as variable output. Prior
to any ANN training process with the trend free data, the data must
be normalized over the range of [0, 1]. This is necessary for the
neurons’ transfer functions, because a sigmoid function is calcu-
lated and consequently these can only be performed over a limited
range of values. If the data used with an ANN are not scaled to an
appropriate range, the network will not converge on training or it
will not produce meaningful results. The method of normalization
involves mapping the data nonlinear over a specified range, where-
by each value of a variable x is transformed as follows

xn ¼
logðxÞ � logðxminÞ

logðxmaxÞ � logðxminÞ
� ðrmax � rminÞ þ rmin ð2Þ

where x is the original data, xn the normalized input or output val-
ues, xmax and xmin, are the maximum and minimum values of the
concerned variable, respectively. rmax and rmin correspond to the de-
sired values of the transformed variable range. A range of 0.1–0.9 is
appropriate for the transformation of the variable onto the sensitive
range of the sigmoid transfer function.

The data were shuffled and split into two subsets: a training
set and a test set. The splitting of samples plays an important
role in the evaluation of an ANN performance. The training set
is used to estimate model parameters and the test set is used
to check the generalization ability of the model. The training
set should be a representative of the whole population of input
samples. In this study, the training set and the test set includes
1121 patterns (70% of total patterns) and 480 patterns (30% of
total patterns), respectively. There is no acceptable generalized
rule to determine the size of training data for a suitable training;
however, the training sample should cover all spectrums of the
data available (Neuro Dimensions Inc., 2002). However, by add-
ing new data to the training samples, the network then can be
retrained.

2.5. The multilayer perceptron neural network

Among various ANN models, Multilayer Perceptron (MLP) has
maximum practical importance. MLP is a feed-forward layered net-
work with one input layer, one output layer, and some hidden lay-
ers. Fig. 1 shows a MLP with one hidden layer. Every node
computes a weighted sum of its inputs and passes the sum through
a soft nonlinearity. The soft nonlinearity or activity function of
neurons should be non-decreasing and differentiable. The most
popular function is unipolar sigmoid (Rohani et al., 2011):

f ðhÞ ¼ 1
1þ e�h

ð3Þ

Table 1
Properties of pomegranate cultivars.

Cultivar Weight mean
(g)

Density mean
(g/cc)

Geometrical diameter
mean (mm)

Ardestani 298.56 0.92 78.75
Shishekap 217.01 1.29 74.95
Malase 250.29 1.2 76.29
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The network will answer through the vector Zq in its output by
inserting Xq as input vector (for q = 1,. . .,Q). The aim is to adapt the
parameters of the network in order to bring the actual output Zq

close to corresponding desired output dq (for q = 1,. . .,Q). The most
popular method of MLP training is the back-propagation algorithm,
and in literatures there exist many variants of this algorithm.

This algorithm is based on minimization of a suitable error cost
function. In this study, two variants of MLP training algorithm, i.e.
basic back-propagation (BB) and back-propagation with declining
learning-rate factor (BDLRF) where employed. The advantages of
the BDLRF training algorithm over BB are: faster convergence, low-
er training time and also it eases the process of parameter adjust-
ing by decreasing the sensitivity to the parameters’ values (Vakil-
Baghmisheh and Pavešic, 2001; Rohani et al., 2011; Rohani and
Makarian, 2011; Zarifneshat et al., 2012). A computer code was
also developed in MATLAB software to implement these ANN
models.

2.5.1. BDLRF algorithm
In this algorithm the total sum-squared error (TSSE) is consid-

ered as the cost function and can be calculated as

TSSE ¼
X

q

Eq ð4Þ

Eq ¼
X

k

ðdq
k � zq

kÞ
2

forðq ¼ 1; . . . ;QÞ ð5Þ

where dq
k and zq

k are the kth components of desired and actual out-
put vectors of the qth input, respectively. Network learning happens
in two phases: forward pass and backward pass. In forward pass an
input vector is inserted to the network and the network outputs are
computed by proceeding forward through the network, layer by
layer:

netj ¼
X

i

xiwij

yj ¼ 1
1þe�netj

8><
>: ; j ¼ 1; . . . ; l2 ð6Þ

netk ¼
X

j

yjujk

zk ¼ 1
1þe�netk

8><
>: ; k ¼ 1; . . . ; l3 ð7Þ

where wij is the connection weight between nodes i and j, and ujk is
the connection weight between nodes j and k; wij and ujk are set to
small random values [�0.25, 0.25]; l2 and l3 are the number of neu-
rons in the hidden and output layers. In backward pass the error
gradients versus weight values, i.e. @E

@wij
(for i = 1, . . ., l1, j = 1, . . ., l2)

and @E
@ujk

(for j = 1, . . ., l2, k = 1, . . ., l3), are computed layer by layer
starting from the output layer and proceeding backwards. The con-
nection weights between nodes of different layers are updated
using the following equations:

ujkðnþ 1Þ ¼ ujkðnÞ � g� @E
@ujk
þ aðujkðnÞ � ujkðn� 1ÞÞ ð8Þ

wijðnþ 1Þ ¼ wijðnÞ � g� @E
@wij

þ aðwijðnÞ �wijðn� 1ÞÞ ð9Þ

where g is the learning rate adjusted between 0 and 1, a is the
momentum factor at interval [0, 1]. Momentum factor is used to
speed up the convergence. The decision to stop training is based
on some test results of the network, which is carried out every N
epoch after TSSE becomes smaller than a threshold value. The num-
ber of input and output nodes is determined by functional require-
ments of the ANN.

This training algorithm is started with a relatively constant
large step size of learning rate g and momentum term a. Before
destabilizing the network or when the convergence is slowed
down, for every T epoch (3 6 T 6 5) these values are decreased
monotonically by means of arithmetic progression, until they reach
to x% (equals to 5) of their initial values. g (and similarly a) was de-
creased using the following equations:

m ¼ Q � n1

T
ð10Þ

gn ¼ g� þ ng�
x� 1

m
ð11Þ

where m,n1, gn and g� are the total number of arithmetic progres-
sion terms, the start point of BDLRF, the learning rate in nth term
of arithmetic progression, and the initial learning rate, respectively.
The details could be seen in Vakil-Baghmisheh and Pavešic (2003).

2.6. Performance evaluation criteria

Four criteria were used to evaluate the performance of model.
They were mean absolute percentage error (MAPE), root mean-
squared error (RMSE), TSSE and the coefficient of determination
of the linear regression line between the predicted values from
the MLP model and the actual output (R2).They are defined as
follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

Pm
i¼1ðdji � pjiÞ

2

nm

s
ð12Þ

R2 ¼
ð
Pn

j¼1ðdj � �dÞðpj � �pÞÞ2Pn
j¼1ðdj � �dÞ2 :

Pn
j¼1ðpj � �pÞ2

ð13Þ

TSSE ¼
Xn

j¼1

ðdj � pjÞ
2 ð14Þ

MAPE ¼ 1
nm

Xn

j¼1

Xm

i¼1

dji � pji

dji

����
����� 100 ð15Þ

where dji is the ith component of the desired (actual) output for the
jth pattern; pji is the ith component of the predicted (fitted) output
produced by the network for the jth pattern; �d and �p are the average
of the desired output and predicted output, respectively; n and m
are the number of patterns and the number of variable outputs,
respectively. A model with the smallest RMSE, TSSE, MAPE and
the largest R2 is considered to be the best.

3. Results and discussion

Neural networks were developed in order to establish the rela-
tionship between stress and time (Fig. 2).

Fig. 1. Configuration of the MLP with one hidden layer (Vakil-Baghmisheh, 2002).
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3.1. MLP topology (number of neurons in the hidden layer)

Based on universal approximation theorem, a neural network
with a single hidden layer and sufficiently a large number of neu-
rons can well approximate any arbitrary continuous function (Hay-
kin, 1994). Therefore, the ANNs designed in this study are
equipped with a single hidden layer. Determination of the number
of neurons in the hidden layer is rather an art than science, because
it may vary depending on the specific problem under study. In this
study, the optimal number of neurons in the hidden layer was se-
lected using a trial-and-error method and keeping the learning
rate, momentum term and epoch size constant (g = 0.4, a = 0.8
and epoch = 100,000). The process was repeated several times,
one for each set of data. MLP model with 5 neurons in the hidden
layer seems to be appropriate for modeling stress.

3.2. Learning rate and momentum term

In order to speed up convergence, an extra term called momen-
tum (a) is used to the weights update (Vakil-Baghmisheh, 2002;
Gupta et al., 2003; Rohani et al., 2011). The learning rate and
momentum factors are only used in the learning process, so the cri-
teria used to optimize them are based on the learning error and the
iteration number. When the optimal topology of the neural net-
work was found, the learning rate (g) and momentum term (a)
was also optimized throughout a trial–error method. The learning
rate and momentum factors have interactive impacts on network
training. This makes parameter tuning a difficult task where
momentum term is added. It is observed that the error value is in-

creased and the convergence speed of the learning process is de-
creased when the momentum term is zero or close to 1. The
results also revealed that the convergence could be faster with a
relatively larger learning rate (close to 1). However, with a very
high learning rate, the neural network will not converge to its true
optimum and the learning process will be instable. It is also evi-
dent that, the convergence speed of the learning process was im-
proved through an appropriate choice of parameters g and a. In
order to improve the behavior of MLP during training, and due to
simplicity of adjusting process of network parameters, we used
BDLRF algorithm. The results obtained by BDLRF have shown that
the best performance of MLP was obtained via a constant momen-
tum term equals to 0.95. The results also conforms the findings of
Rohani et al. (2011).

Therefore, when the convergence was slowed down, a point
was chosen and g was only decreased using Eq. (11). Table 2 shows
the parameters of optimum BDLRF-MLP. For the selected topology,
several learning processes were performed with different coeffi-
cients, ranged from 0.5 to 0.99 and 0.5 to 0.99 for learning rate
and momentum term, respectively.

3.3. Statistical analysis

3.3.1. Training phase
During training phase the network used the training set. Train-

ing was continued until a steady state was reached. Some statisti-
cal properties of the sample data used for training process and the

Fig. 2. Diagram of multilayer neural network (including input and output) used in
the prediction of stress.

Table 2
Optimum parameters of neural network (BDLRF-MLP).

Parameters of neural network

Data set The start
point
of BDLRF

First
phase

Second
phase

Epoch Topology

Cultivar Size H a g a

Ardestani Large 100 0.8 0.95 0.04 0.95 5000 2-5-1
Small &
medium

1000 0.8 0.95 0.04 0.95 5000 2-5-1

Shishekap Large 1000 0.8 0.95 0.04 0.95 15,000 2-5-1
Medium 1000 0.9 0.95 0.05 0.95 15,000 2-5-1
Small 1000 0.8 0.95 0.04 0.95 10,000 2-5-1

Malas Large 1000 0.8 0.95 0.04 0.95 10,000 2-5-1
Small &
medium

1000 0.8 0.95 0.04 0.95 5000 2-5-1

Table 3
Statistical variables of desired and predicted values in training phase (BDLRF-MLP).

Data set Values Statistical values

Cultivar Size Average Standard deviation Minimum Maximum Kurtosis Skewness Sum

Ardestani Large Desired 0.076 0.005 0.071 0.099 6.359 1.708 84.723
Predicted 0.076 0.005 0.71 0.097 6.240 1.698 84.723

Medium Desired 0.079 0.006 0.073 0.110 7.829 1.934 88.297
Predicted 0.079 0.005 0.074 0.110 7.857 1.941 88.300

Small Desired 0.114 0.007 0.107 0.159 9.979 2.237 127.526
Predicted 0.114 0.007 0.107 0.159 10.010 2.240 127.527

Shishekap Large Desired 0.099 0.007 0.092 0.137 8.481 2.062 111.358
Predicted 0.099 0.007 0.093 0.137 8.445 2.060 111.358

Medium Desired 0.093 0.006 0.087 0.125 7.612 1.895 104.689
Predicted 0.093 0.006 0.087 0.123 7.546 1.888 104.689

Small Desired 0.140 0.009 0.131 0.188 7.123 1.802 157.064
Predicted 0.140 0.009 0.131 0.188 7.035 1.795 157.064

Malas Large Desired 0.057 0.004 0.053 0.075 5.877 1.598 64.213
Predicted 0.057 0.004 0.053 0.074 5.866 1.593 64.211

Medium Desired 0.059 0.004 0.055 0.081 6.390 1.646 66.165
Predicted 0.059 0.004 0.055 0.081 6.397 1.651 66.166

Small Desired 0.067 0.005 0.062 0.091 7.393 1.884 74.670
Predicted 0.067 0.005 0.062 0.091 7.341 1.889 74.674
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prediction values associated with different training algorithms are
shown in Table 3. Considering the average values of standard devi-
ation, kurtosis, skewnese and sum, it can be deduced that the val-
ues and the distribution of real and predicted data are analogous.
Accordingly, the neural networks have been learned the training
set very well, hence the training phase has been completed.

3.3.2. Test phase
In test phase, we used the selected topology with the previously

adjusted weights. The objective of this step was to test the network
generalization property and to evaluate the competence of the

trained network. Therefore, the network was evaluated by data,
outside the training set. Table 4 shows some statistical properties
of the data used in test phase and the corresponding prediction
values. Although these data are completely new for the MLP model,
it can be seen that the differences of statistical values between the
measured and predicted data in test phase negligible, hence it can
be deduced that both series are similar. The predicted values were
very close to the desired values and were evenly distributed
throughout the entire range.

From statistical point of view, both desired and predicted test
data have been analyzed to determine whether there are statisti-
cally significant differences between them. The null hypothesis as-
sumes that statistical parameters of both series are equal. P value
was used to check each hypothesis. Its threshold value was 0.05.
If p value is greater than the threshold, the null hypothesis is then
fulfilled. To check the differences between the data series, different
tests were performed and p value was calculated for each case. The
results are shown in Table 5. The so called t-test was used to com-
pare the means of both series. It was also assumed that the vari-
ance of both samples could be considered equal. The obtained p

Table 4
Statistical variables of desired and predicted values in test phase (BDLRF-MLP).

Data set Values Statistical values

Cultivar Size Average Standard deviation Minimum Maximum Kurtosis Skewness Sum

Ardestani Large Desired 0.076 0.005 0.071 0.097 5.334 1.599 36.359
Predicted 0.076 0.005 0.71 0.096 5.458 1.618 36.359

Medium Desired 0.079 0.006 0.073 0.112 8.781 2.207 37.940
Predicted 0.079 0.006 0.074 0.115 9.419 2.283 37.939

Small Desired 0.115 0.008 0.107 0.158 9.165 2.194 55.012
Predicted 0.115 0.008 0.107 0.157 9.180 2.186 54.995

Shishekap Large Desired 0.100 0.007 0.092 0.135 8.085 2.001 47.834
Predicted 0.100 0.007 0.093 0.133 7.917 1.983 47.847

Medium Desired 0.094 0.007 0.087 0.129 8.605 2.189 44.949
Predicted 0.094 0.007 0.087 0.126 8.142 2.139 44.934

Small Desired 0.141 0.010 0.131 0.189 6.469 1.754 67.861
Predicted 0.141 0.010 0.131 0.184 6.196 1.714 67.866

Malas Large Desired 0.057 0.004 0.053 0.075 6.819 1.722 27.376
Predicted 0.057 0.004 0.05 0.075 6.646 1.688 27.368

Medium Desired 0.059 0.004 0.055 0.079 6.067 1.598 28.427
Predicted 0.059 0.004 0.055 0.079 6.159 1.608 28.428

Small Desired 0.066 0.005 0.062 0.089 8.068 2.002 31.917
Predicted 0.066 0.005 0.062 0.089 8.349 2.053 31.917

Table 5
Statistical comparisons of desired and predicted data and the corresponding p values
in test phase.

Data set Analysis types

Cultivar Size Comparisons
of means

Comparisons of
variances

Comparisons of
distribution

Ardestani Large 0.996 1.000 0.335
Medium 0.998 0.931 0.791
Small 0.944 0.781 0.839

Shishekap Large 0.953 0.951 0.685
Medium 0.944 0.877 0.378
Small 0.987 0.828 0.630

Malas Large 0.941 0.876 0.791
Medium 0.996 0.952 0.949
Small 0.986 0.916 0.791

Table 6
The constants of generalized Maxwell model for three pomegranate cultivars.

Data set r0 C1 C2 s1 (s) s2 (s) R2 TSSE

Cultivar Size

Ardestani Large 0.069 0.015 0.012 23.68 2.02 0.998 0.0001
Medium 0.072 0.016 0.019 23.58 1.72 0.996 0.0002
Small 0.105 0.021 0.029 26.29 1.54 0.996 0.0003

Shishekap Large 0.089 0.019 0.025 31.73 1.90 0.997 0.0002
Medium 0.084 0.018 0.022 34.51 2.12 0.997 0.0002
Small 0.125 0.029 0.029 37.15 2.38 0.997 0.0004

Malas Large 0.052 0.010 0.012 1.85 28.86 0.998 0.0000
Medium 0.052 0.012 0.013 1.95 33.71 0.998 0.0000
Small 0.060 0.015 0.013 2.04 30.42 0.997 0.0001

Table 7
Performances of two generalized Maxwell model and MLP model in prediction of
stress.

Data set Model type Performance criterion

Cultivar Size MAPE (%) RMSE(MPa3)

Ardestani Large MLP 0.2222 0.0002
Maxwell 0.2193 0.0002

Medium MLP 0.2435 0.0003
Maxwell 0.2414 0.0003

Small MLP 0.2423 0.0005
Maxwell 0.2277 0.0005

Shishekap Large MLP 0.2558 0.0004
Maxwell 0.2644 0.0004

Medium MLP 0.2582 0.0004
Maxwell 0.2624 0.0004

Small MLP 0.2193 0.0005
Maxwell 0.1983 0.0005

Malas Large MLP 0.2313 0.0002
Maxwell 0.1982 0.0002

Medium MLP 0.1595 0.0001
Maxwell 0.1711 0.0002

Small MLP 0.2717 0.0003
Maxwell 0.2211 0.0003
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values were greater than the threshold, hence the null hypothesis
cannot be rejected in all cases (p > 0.94). The variance was ana-
lyzed using the F-test. Here, a normal distribution of samples
was assumed. Again, the p values confirm the null hypothesis in
all cases (p > 0.78). Finally, the Kolmogorov–Smirnov test also con-
firmed the null hypothesis. From statistical point of view, both de-
sired and predicted test data have a similar distribution (p > 0.33).

3.4. Generalized Maxwell model

In order to find the optimum number of the adjustable model
parameters, preliminary statistical tests were utilized. Peleg
(1979) pointed out that the number of terms for food materials
is usually 2–3 which can be varied independently and need to be
compared simultaneously among samples. Consequently, the com-
parison of more number of terms is difficult so it should be kept to
a minimum (Peleg, 1979; Bellido and Hatcher, 2009a). The results
revealed that two terms is the proper for the current research be-
cause it had the higher R2, RMSE and MAPE.

Table 6 presents the results of the fitting analysis to data for the
generalized Maxwell model using MATLAB curve fitting toolbox. It

can be seen that the generalized Maxwell model could properly
predict the stress relaxation behavior of the pomegranate. The cor-
relation coefficient (R2) of the Maxwell model for all pomegranate
cultivars was larger than 0.99 and TSSE ranged from 0.0000 to
0.0004.

3.5. Comparison of generalized Maxwell model and MLP model

The performances of the two generalized Maxwell model and
MLP model are shown in Table 7. For this specific case study, the
comparison of results reveals that both models are capable of gen-
erating the accurate estimations within the preset range. It can be
seen that MAPE and RMSE values resulted by generalized Maxwell
model are approximately equal to MLP model. Because the MLP
model and Maxwell model had a very low amount of MAPE and
RMSE, it can be concluded that both models have high capable of
producing the accurate predictions for stress.

The analysis of statistical associated with MLP network employ-
ing the BDLRF training algorithm and generalized Maxwell model
for prediction of stress shown in Table 8. The p values confirm
the null hypothesis in all cases (p > 0.053), except in four cases

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Predicted values of MLP model and generalized Maxwell model versus measured values of stress forpomegranate cultivars. (a) Large Ardestani. (b) Medium Ardestani.
(c) Small Ardestani. (d) Large Shishekap. (e) MmediumShishekap and (f) Small Shishekap. (g) Large Malas. (h) Medium Malas and (i) Small Malas.
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including comparisons of distribution. Therefore, from statistical
point of view, both measured and predicted stress has a similar
means, variances and distribution for both of methods.

The plots of predicted stress against measured stress are de-
picted in Fig. 3.The results reveal a very good agreement between
the predicted and the measured values of stress (R2 > 0.99). Also,
these figures reveal that the stress predictions from Maxwell mod-
el were as good as fit to measured stress in comparison to MLP
model stress prediction. Comparisons of measured versus pre-
dicted stress for MLP model resulted in a least squares linear
regression lines with slopes (approximately equal to 1) and y-
intercepts (approximately equal to 0) almost equal to Maxwell
model.

4. Conclusions

This article focused on the application of MLPNN to predict vis-
coelastic behavior of pomegranate. To show the applicability and
superiority of the proposed approach, the measured data of pome-
granate stress test were used. To improve the output, the data were
first preprocessed. MLP network was used and applied with the
time as variable input. The network trained by BDLRF learning
algorithm. Statistical comparisons of measured and predicted test
data were applied to the selected ANN. From statistical analysis,
it was found that at 95% confidence level (with p-values greater
than 0.9) both measured and predicted test data are similar. After
testing all possible networks with the test data sets, it has been
demonstrated that MLP network with 2-5-1 instruction had the
best output for stress model. It is also found that neural network
is particularly suitable for learning nonlinear functional relation-
ships which are not known or cannot be specified.

Because the ANN does not assume any fixed form of depen-
dency in between the output and input values, unlike the regres-
sion methods, it seems to be more successful in the application
under consideration. It could be said that the neural network pro-
vides a practical solution to the problem of estimating stress in a
fast, yet accurate and objective way. It is hoped that the analysis
conducted in this article can provide reference for the choice of
ANN in such area. Additional research on ANNs is required to make

use of these networks more appealing and user-friendly to predic-
tion of fruit stress applications.
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Table 8
Statistical comparisons of desired and predicted data and the corresponding p values.

Data set Model
type

Analysis types

Comparisons
of means

Comparisons
of variances

Comparisons
of
distribution

Ardestani Large MLP 0.996 0.964 0.053
Maxwell 1.000 0.965 0.058

Medium MLP 0.993 0.999 0.129
Maxwell 0.979 0.952 0.035⁄

Small MLP 0.970 0.813 0.151
Maxwell 0.921 0.944 0.032⁄

Shishekap Large MLP 0.974 0.934 0.083
Maxwell 0.998 0.950 0.003⁄

Medium MLP 0.965 0.876 0.035⁄

Maxwell 0.996 0.940 0.043
Small MLP 0.992 0.856 0.129

Maxwell 0.997 0.943 0.177

Malas Large MLP 0.963 0.931 0.223
Maxwell 0.901 0.644 0.436

Medium MLP 0.993 0.953 0.317
Maxwell 1.000 0.974 0.410

Small MLP 0.995 0.878 0.277
Maxwell 1.000 0.947 0.753
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