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SOLVABILITY OF FREE PRODUCTS, CAYLEY GRAPHS AND
COMPLEXES

H. MIREBRAHIMI∗ AND F. GHANEI

Abstract. In this paper, we verify the solvability of free product of finite cyclic

groups with topological methods. We use Cayley graphs and Everitt methods to con-

struct suitable 2-complexes corresponding to the presentations of groups and their

commutator subgroups. In particular, using these methods, we prove that the com-

mutator subgroup of Zm ∗ Zn is free of rank (m− 1)(n− 1) for all m,n ≥ 2.

1. Introduction

This paper is based on combinatorial algebraic topology. We use topological inter-

pretations of groups [2], whose main objects are combinatorial 2-complexes. In sections

2, 3, 4 and 5 we give some preliminaries from [2], [3], and [4]. First we study the

topology of 2-complexes. In section 3 and 4, we define the fundamental groups of these

complexes and deduce their presentations using topological figures of their complexes.

In section 5, we introduce the coverings of complexes, and we apply them to construct

suitable complexes corresponding to several subgroups.

Using these topological preliminaries, we present our main results in section 6. In

section 6, we recall some notes about solvable groups and then, using algebraic topol-

ogy, we prove that the commutator subgroup of free product of two finite cyclic groups

is free, specially we compute its rank. From this fact, we conclude that free product
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of two finite cyclic groups is solvable, if and only if each of its factors is of order 2. Of

course, the fact is proved by group theoretical methods [1].

2. The topology of complexes

Here we give some preliminaries from [2], [3] and [4]. Also, the figures of sections

2 and 3, are from [2]. combinatorial 2-complex K is made up of three sets VK , EK

and FK (vertices, edges and faces), together with maps that describe how the pieces fit

together. We have s, t : EK −→ VK and −1 : EK −→ EK so that −1 assigns each edge

to another, called its inverse, and s, t assign start and terminal vertices to e.

These maps satisfy e−1 ̸= e, (e−1)−1 = e, s(e−1) = t(e) and t(e−1) = s(e). The vertex

and edge sets together with these maps form a directed graph called the 1 − skeleton

K1 of K.(the vertices alone form 0− skeleton K0).

A path w in K is a sequence of edges eε11 · · · eεkk , εi = ±1 with t(eεii ) = s(e
εi+1

i+1 ). This

path is closed if s(w) = t(w), which s(w) = s(eε11 ) and t(w) = t(eεkk ).

A 2-complex is connected if there is a path between any two of its vertices.

Two paths w1 and w2 are cyclic permutations of each other if w1 = eε11 · · · eεkk , then

w2 = e
εj
j · · · eεkk eε11 · · · eεj−1

j−1 for some k. A cycle in the 1− skeleton is a set consisting of

a path and all of its cyclic permutations.

Finally, to define faces we consider the following maps that say how the faces are

glued onto the 1− skeleton, −1 : FK −→ FK and ∂ : FK −→ cycles which must satisfy

f−1 ̸= f , (f−1)−1 = f and w ∈ ∂(f) if and only if w−1 ∈ ∂(f−1).

A map p : K1 −→ K2 between 2-complexes assigns to each vertex of K1 a vertex of

K2, to each edge of K1 an edge or vertex of K2, and to each face of K1 a face, path or
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vertex of K2 with p(e−1) = p(e)−1, p(f−1) = p(f)−1.

This map is dimension preserving if p : VK1 −→ VK2 , p : EK1 −→ EK2 and p :

FK1 −→ FK2 .

A map is an isomorphism if it preserves dimension and is bijection on the vertex,

edge and face sets.

3. Fundamental groups of complexes

Two paths w1 and w2 are homotopic (w1 ∼h w2) if and only if there is a finite

sequence of these two moves taking one path to the other; the first inserts or deletes a

spur: an edge /inverse edge pair of the form ee−1 or e−1e.

The second inserts or deletes the boundary of a face: a w ∈ ∂(f) for some face f of

K with s(w) = t(w) = t(eεii ) = s(e
εi+1

i+1 ).

If w1 and w2 are paths in a 2-complex K with t(w1) = s(w2), then let w1w2 be the

path obtained by juxtaposing these two, by traversing the edges of w1 and then the

edges of w2.
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In particular, if w1 ∼h w′
1 and w2 ∼h w′

2 then w1w2 ∼h w′
1w

′
2. So we can extend a

product on the homotopy classes of paths in K, if [w1]h and [w2]h are two such, where

t(w1) = s(w2), then [w1]h[w2]h := [w1w2]h.

To get a group from homotopy classes of paths, we need to ensure we can always

multiply paths. Let K be a 2-complex and fix a vertex v. Let π1(K, v) be the set of all

homotopy classes of closed paths with start and terminal vertex v. π1(K, v) together

with product [w1]h[w2]h = [w1w2]h forms a group with identity [v]h and inverse element

[w]−1
h = [w−1]h.

A 2-complex K is called a tree if and only if the face set of K is empty and π1(K) is

the trivial group.

4. Complexes and presentations

First we obtain a group presentation for the fundamental group π1(K) of a complex

K. Let K be a connected 2-complex and v a vertex of K. Let T be a connected tree

that contains all the vertices of K. Choose an edge eα from each edge or its inverse in

K1\T . Then there are unique paths wα, wα without spurs in T , such that wα connects v

to the start vertex of eα and wα connects v to the terminal vertex. Let xα = wαeαwα
−1,

a loop based at v, and X = {xα | eα ∈ K1 \ T}. Choose fβ from each face or its

inverse in K. Let ∂(fβ) = eε1α1
· · · eεkαk

be the boundary label after the edges that are

contained in the tree T have been removed. Take wβ = xε1
α1

· · · xεk
αk
, a word in X ∪X−1

and R = {wβ | fβ is a face}.

Theorem 4.1. [2] ⟨X;R⟩ is a presentation for the fundamental group of K.

Corollary 4.2. [2] Suppose that K is a graph (FK is empty), then we can find such a

presentation for π1(K) with |EK | − |VK |+ 1 = 1− χ(K) generators and no relation.

Now we want to obtain a 2-complex from a group presentation. Let ⟨X;R⟩ be a

presentation for a group G. Define a 2-complex K = K⟨X;R⟩ with a single vertex

v. For each x ∈ X take an e±1
x ∈ EK and for each w ∈ R an f±1

w ∈ FK . We have

s(e±1
x ) = t(e±1

x ) = v, ∂(fw) is cyclic permutation of eε1xα1
· · · eεkxαk

, if w = xε1
α1

· · · xεk
αk
.
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Theorem 4.3. [2] ⟨X;R⟩ is a presentation for π1(K⟨X;R⟩, v).

Corollary 4.4. [2] A group is free if and only if it is the fundamental group of a graph.

5. Covering of complexes and Cayley graphs

A map p : K̃ −→ K of 2-complexes is a covering if and only if

1. p preserves dimension;

2. If p : ṽ −→ v then p is a bijection from the set of edges in K̃ with initial vertex ṽ to

the set of edges in K with initial vertex v;

3. For any face f and any vertex v of K, we introduce m(f, v) to be the number of

times that v appears in the boundary of f . Then for any ṽ with p(ṽ) = v, we have∑
p(f̃)=f m(f̃ , ṽ) = m(f, v).

Theorem 5.1. [2] (Subgroup Theorem)

1. Let p : K̃ −→ K be a covering, then p∗ : π1(K̃, ṽ) −→ π1(K, v) is injective.

2. Let K be a 2-complex and H a subgroup of π1(K, v), then there is a connected

2-complex K̃ and a covering p : K̃ −→ K with H ∼= π1(K̃, ṽ), where p(ṽ) = v.

For a complex K, a covering p : K̃ −→ K is universal if and only if for any other

covering p′ : K ′ −→ K there is a covering q : K̃ −→ K ′ such that p′q = p. In particular,

given G = ⟨X,R⟩, the universal cover of the presentation 2-complex K⟨X;R⟩ is called
Cayley complex of G with respect to ⟨X,R⟩.
The 1-skeleton of the Cayley complex is the Cayley graph for G with respect to the

generators X. A 1-complex K is the Cayley graph of G with respect to ⟨X⟩ if and only

if there is a covering K −→ K⟨X⟩ and a bijection f : K0 −→ G such that if e ∈ C is

an edge with initial vertex v and terminal vertex u, and p(e) = xi, then f(u) = f(v)xi

in G.

Theorem 5.2. [2] Let p : K̃ −→ K⟨X;R⟩ be a regular covering of the presentation

2-complex for ⟨X;R⟩, G = ⟨X,R⟩ and H = p∗(π1(K̃, ṽ)). Then the 1-skeleton of K̃ is

the Cayley graph for G/H with respect to the generators ⟨Hx⟩x∈X .

6. Main results

Recall that a group G is solvable if and only if there is a sequence of subgroups

{1} = N0 ◁ ... ◁Nk = G, whose all factor groups Ni/Ni−1 are abelian for (i=1,2,...,k)

[5].
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The n-th derived subgroup of G is defined to be G(n) = (G(n−1))′, where G(1) is equal

to the commutator subgroup of G, G′ = [G,G].

In particular, there is a theorem asserting that a group G is solvable, if and only if

G(n) = 1, for some n [5].

Here is an application of the above notes, specially Theorem 4.2.

Theorem 6.1. [2] The free product Z2 ∗ Z2 is solvable.

Also, there is a question from [2], asking about the solvability of Zm ∗Zn, in general.

To answer this problem, another question arises as whether we can extend the methods

of [2] to compute the commutator subgroup of Zm ∗Zn (m,n ≥ 2). From group theory,

we know that the commutator subgroup of Zm ∗ Zn is free for all (m,n ≥ 2). But we

want to prove this fact by topological tools. In particular, we compute the rank of this

free group and finally answer the question.

Theorem 6.2. The commutator subgroup of Zm ∗ Zn is free of rank (m− 1)(n− 1).

Proof. First, we consider the 2-complexK corresponding toG = Zm∗Zn
∼= ⟨x, y; xm, yn⟩.

To compute the commutator subgroup [G,G], we need to obtain the 2-complex cor-

responding to [G,G]. For this, we consider the Cayley graph for G/[G,G] ∼= Zm×Zn
∼=

⟨x, y; xm, yn, [x, y]⟩, constructed as follows:
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By theorem 4.2, this graph is the 1-skeleton of regular cover K̃ of K, corresponding

to [G,G] (K̃ is a 2-complex with π1(K̃) ∼= [G,G]). As we see, there are mn vertices

in this graph and so in K̃, so the fiber of each face of K must contain mn faces in K̃.

Hence, for any closed path with label xm (or with label yn) in K̃, consider m faces (or

n faces) in K̃, with boundaries xm (or yn). Therefore we are finished in constructing

the 2-complex K̃. To obtain a presentation for π1(K̃) ∼= [G,G], fix the vertex v = (0, 0)

and consider he maximal tree T of K̃,

Using the first paragraph of section 4 (theorem 4.1), we obtain 2mn − (mn − 1) =

mn+1 elements corresponding to edges of K1 \ T , generate π1(K̃). these elements are

categorized as follows:

1) The elements corresponding to edges x (from (m− 1, j) to (0, j), 0 ≤ j ≤ n− 1),

which are of the form xj = yjxm−1xy−j = 1 ( wα = yjxm−1, wα = yj).

2) The elements corresponding to edges y (from (i, j − 1) to (i, j), 1 ≤ i ≤ m − 1,

1 ≤ j ≤ n− 1), which are of the form yij = yj−1xiyx−iy−j ( wα = yj−1xi, wα = yjxi).

3) The elements corresponding to edges y (from (i, n − 1) to (i, 0), 0 ≤ i ≤ m − 1)

which are also of the form yi = yn−1xiyx−i ( wα = yn−1xi, wα = xi ). Using the relation

yn = 1 or equivalently y−1 = yn−1, we have yi = yn−1xiy−(n−1)x−i = yi1yi2...yi(n−1).

Finally, as we see, the elements of type (1) are all trivial, and the elements of type (3)

are obtained by the elements of type (2). So the presentation of π1(K̃) has (m−1)(n−1)

generators {yij} which are all the elements of type (2). In particular, there is no relation

between these elements. In fact, as we see, non of the subsets of yij’s is boundary of

any face of the complex K̃. So we have π1(K̃) = ⟨yij(1 ≤ i ≤ m−1, 1 ≤ j ≤ n−1);∅⟩.
It says that π1(K̃) ∼= [G,G] is free of rank (m− 1)(n− 1). □

Corollary 6.3. For any m,n ≥ 2, Zm ∗ Zn is solvable if and only if m = n = 2.
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Proof. If m = n = 2, by Theorem 5.2, the commutator subgroup of Z2 ∗ Z2 is free of

rank 1. So we have the sequence 1 ◁ Z ◁ Z2 ∗ Z2 with factors Z and Z2 × Z2. Hence,

Z2 ∗ Z2 is solvable. If m and n are given so that m + n ≥ 5, by previous theorem, the

commutator subgroup of Zm ∗ Zn is free of rank (m− 1)(n− 1) ≥ 2. Thus, by the fact

that the commutator subgroup of any free group of rank k ≥ 2 is free with infinite rank

[2], Gi ̸= 1 for all i ≥ 1. Therefore in this case, Zm ∗ Zn is not solvable. □
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