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Abstract The solutions to H∞ and H2 optimization problems of a variant dynamic vibration absorber (DVA)
applied to suppress vibration in beam structures are derived analytically. The H∞ optimum parameters such as
tuning frequency and damping ratios are expressed based on fixed-point theory to minimize the resonant vibra-
tion amplitude, as well as, the H2 optimum parameters to minimize the total vibration energy or the mean square
motion of a beam under random force excitation as analytical formulas. The reduction in maximum amplitude
responses and mean square motion of a beam using the traditional vibration absorber is compared with the
proposed dynamic absorber. Numerical results show the non-traditional DVA under optimum conditions has
better vibration suppression performance on beam structures than the traditional design of DVA. Furthermore,
comparing H∞ and H2 optimization procedures shows that for a beam under random force excitation, use of
H2 optimum parameters resulting in smaller mean square motion than the other optimization.

Keywords Dynamic vibration absorber · Passive vibration control · Harmonic excitation · Random excitation ·
Beam structures

1 Introduction

Dynamic vibration absorbers (DVA) or tuned mass dampers (TMD) are a well-established passive vibration
control devices which when tuned correctly and attached properly could suppress vibration of structures in a
good manner. These absorbers have wide application in different fields such as mechanical, civil and aerospace
structures due to unique specifications such as easy-to-maintain, uncomplicated design, high reliability and
excellent performance.

The first DVA invented by Frahm [1] in 1911 had no damper, and it was useful just in the range of
frequencies close to the natural frequency of the DVA. Ormondroyd and Den Hartog [2] pointed out that
damping element could widen the frequency band of the DVA’s efficient operation and had an optimum value;
they used damping element and spring in a parallel manner ;this configuration is known as traditional DVA
here, Fig. 1b. Arrangement of mass, spring and damper besides frequency and damping ratios of DVA plays
an important role in the performance of the absorbers. As a result, several optimization criteria and various
configurations are proposed to have better vibration suppression performance. In the following, briefly review
H2 and H∞ optimizations which are two most useful approaches in finding optimum parameters.
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Fig. 1 a Non-traditional DVA, b traditional DVA

H∞ optimization:
Ormondroyd and Den Hartog [2] indicated that the damping of the DVA had an optimum value for the

minimization of the amplitude response of system in 1928; such optimization criterion is known as H∞
optimization and is based on fixed-point theory which is the first method in DVA optimization. The objective
is to minimize the maximum amplitude response of the primary system.

H2 optimization:
This optimization criterion was proposed by Crandall and Mark [3] in 1963. The objective is to reduce

the total vibration energy of the system over all frequencies. In this optimization criterion, the area under the
frequency response curve of the system is minimized.

Some approximations were taken in Den Hartog and Ormondroyd optimization [2], but Nishihara and
Asami [4] found the closed-form solution to the exact optimization of dynamic vibration absorbers and showed
the both optimum parameters were very close to the exact values; they also derived the analytical solutions
to H∞ and H2 optimization problems of DVAs attached to damped linear systems [5]. Eliot et al. [6] found
the optimum parameters such that either the kinetic energy of the host structure is minimized or the power
dissipation within the absorber is maximized, and Tigli [7] studied the optimum design of dynamic vibration
absorbers (DVAs) installed on linear damped systems that are subjected to random loads. According to the
role of these absorbers in vibration control of sdof systems, substantial research work has been done to
derive optimum parameters of DVAs on multi-degree-of-freedom (mdof) or continuous systems. Ozer and
Royston [8] extended Den Hartog’s vibration absorber technique to multi-degree-of-freedom systems. Rice
[9] used SIMPLEX nonlinear optimization to determine the H∞ optimum parameters of a DVA applied for
suppressing the vibration of a beam. Hadi and Arfiadi [10] reported the use of a genetic algorithm to solve
optimum tuning for mdof systems numerically. Wong et al. [11] proposed a new dynamic vibration absorber
combining a translational-type absorber and a rotational-type absorber and used finite element analysis to
evaluate the performance of proposed absorber mounted on beam. Cheung and Wong [12] established a theory
for describing the excitation–response relation leading to the H∞ and H2 optimum tuning of the DVA attached
onto a plate structure. They derived optimum tunings such as tuning frequency and damping ratios of the
absorber and also the position of the absorber on the vibrating structure in order to minimize vibrational
displacement, velocity and acceleration.

As mentioned before, the configuration of absorbers affect its performance. In the last few years, several
non-traditional configurations of dynamic vibration absorbers reported to improve the performance of the
absorbers. Some examples of non-traditional DVAs are series TMDs [13], parallel multiple TMDs [14] and
multi-degree-of-freedom TMDs [15]. A variant design of the damped dynamic vibration absorber as shown
in Fig. 1a was proposed by Ren [16], and Liu [17] recently which provide a feasible substitute for some
applications. Sometimes a damper is too massive to be attached like traditional DVA, and this variant design
offers a solution; moreover, analytical derivation of the optimum parameters for minimizing the resonant
vibration of sdof systems under various excitations such as force [16–18] or ground motion [19] was studied
in this case which showed it provides greater vibration suppression than ordinary absorber. Chitba et al.
[20] proposed an optimal design for supplementing flexible structures with a set of absorbers and piezoelectric
devices for vibration confinement and energy harvesting. They considered two possible configurations for each
of the additional piezoelectric devices, either embedded between the structure and the absorbers or between
the ground and absorbers; they found that the second configuration yields faster extraction of vibration energy,
so using this configuration lead us to achieve vibration suppression and energy harvesting together. It has been
shown that the non-traditional absorber which optimized by H∞ procedure can result in a more reduction in
the vibration amplitude of the sdof systems than the ordinary one. In 2011, Cheung and Wong [21] proposed
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Optimum design of dynamic vibration absorbers for a beam 1775

Fig. 2 Cantilever beam with a DVA under external force

H2 optimization of this kind of DVAs for vibration control of sdof systems. Furthermore, they suggested new
procedure for the H∞ optimization and new optimum parameters derived which resulted in lower maximum
amplitude responses [22].

In this article, the H∞ optimum parameters such as tuning frequency and damping ratios of proposed
absorber and also the position of the absorber for minimizing the maximum amplitude response of the beam
have been derived analytically, as well as, the H2 optimum parameters for minimizing mean square motion.
According to the author’s knowledge, no research has been reported on this topic. It is proven by numeri-
cal simulations that these optimized non-traditional DVAs have better operation in vibration control of beam
structures than the ordinary one, Furthermore, the effect of mass ratio, DVA position, kind of DVA and opti-
mization procedure is studied which improves our approach in selecting appropriate absorber and optimization
procedure in different situations.

2 Frequency response function of the beam with non-traditional DVA

The beam is considered as an Euler–Bernoulli beam, and the dynamic response of the beam is due to the
dominant mode only, i.e., single-mode response only, and the responses of other modes may be ignored. The
modes can also be well separated. The equation of motion due to external distributed force p(t)g(x) where p(t)
is a function of time, g(x) is a deterministic function of x and a point force f (t) generated by non-traditional
DVA located at x = x0 as shown in Fig. 2 may be written as

ρ A
∂2w

∂t2 + E I
∂4w

∂x4 = p(t)g(x) + f (t)δ(x − x0) (1)

the length of the beam is L , mass per unit length ρ A, bending stiffness EI. The boundary conditions are any
combination of pinned, clamped or free supports.

The methodology followed here is based on reference [12] but with a different model. The solution to
Eq. (1) can be expanded in a Fourier series written as

w(x, t) =
∞∑

i=1

qi (t)ϕi (x) (2)

where ϕi (x) is the eigenfunction of the beam without absorber.
The spatial part of the forcing function g(x) and the Dirac delta function δ(x − x0) can be expanded

similarly as, respectively

g(x) =
∞∑

i=1

aiϕi (x) (3)

and

δ(x − x0) =
∞∑

i=1

biϕi (x) (4)
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1776 B. Noori, A. Farshidianfar

where the Fourier coefficients are

ai = 1

L

L∫

0

g(x)ϕi (x)dx and bi = ϕi (x0)

L
(5)

Substituting Fourier series expansion of forcing, Dirac delta functions and Eq. (2) into Eq. (1) and taking
Laplace transformation on the resulting equation with respect to time, an algebraic equation achieved as

ρ As2 Qi (s) + E Iβ4
i Qi (s) = ai P(s) + bi F(s) (6)

where βi is the eigenvalues of the beam.
By putting Eq. 6 in Laplace transformation of Eq. 2 with respect to time, the s-domain motion of any point

on the beam could be written as

W (x, s) =
∞∑

i=1

ai P(s) + bi F(s)

ρ As2 + E Iβ4
i

ϕi (x) (7)

The force due to DVA applied to beam at the attachment point could be written as

F(s) = − k
(
cs + ms2

)

ms2 + cs + k
W (x0, s) (8)

Eliminating function F(s) in Eq. (7) by use of Eq. (8) result in

W (x, s) =
∞∑

i=1

ai P(s) − bi
k
(
cs+ms2)

ms2+cs+k
W (x0, s)

ρ As2 + E Iβ4
i

ϕi (x) (9)

Putting x = x0 in Eq. (7) result in the s-domain motion of the beam at the DVA attachment point

W (x0, s) =
∑∞

i=1
ai ϕi (x0)P(s)
ρ As2+E Iβ4

i

1 + k(cs+ms2)
ms2+cs+k

∑∞
i=1

bi ϕi (x0)

ρ As2+E Iβ4
i

(10)

Substituting the s-domain motion of the beam at the DVA attachment point in Eq. (9), the s-domain motion of
any point of the beam could be written as

W (x, s)

P(s)
=

∞∑

i=1

ai − bi

∑∞
i=1

ai ϕi (x0)

ρ As2+E Iβ4
i

k(cs+ms2)
ms2+cs+k

+∑∞
i=1

bi ϕi (x0)

ρ As2+E Iβ4
i

ρ As2 + E Iβ4
i

ϕi (x) (11)

This equation could be simplified by representing mass, damping, stiffness and natural frequencies of the
non-traditional DVA and the beam parameters in non-dimensional forms

μ = m

M
, ζa = c

2
√

mk
, ωa = √

k/m, γ = ωa

ωn
, γi = ωi

ωn
, λ = ω

ωn
(12)

where μ is the mass ratio between the absorber mass and the beam mass, ζa is damping ratio of the absorber,
ωa is the natural frequency of the absorber, γ is the ratio between the absorber frequency and a reference
natural frequency of the beam, γi is the non-dimensional natural frequency of the beam referred to ωn and λ
is the normalized frequency.

Using the above non-dimensional parameters in Eq. (11) and replacing s by jω, the frequency response
function of the beam can be obtained as

W (x, λ)

P(λ)
= 1

ρ Aω2
n

∞∑

i=1

ai − bi

μL
∑∞

i=1
ai ϕi (x0)

γ 2
i −λ2

− 2ζa jγ λ+γ 2−λ2

γ 2(2ζa jγ λ−λ2)
+μL

∑∞
i=1

bi ϕi (x0)

γ 2
i −λ2

γ 2
i − λ2

ϕi (x) (13)

The frequency and damping ratio of the absorber besides the mass ratio and the position of the absorber are
parameters which affected the performance of DVA in minimizing the vibration of the primary system. In the
following, H∞ and H2 optimizations are used to find the optimum parameters analytically.
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3 H∞ optimization: minimizing the vibration at a point on the beam

As mentioned before, the natural frequency of the beam considered being well separated, so in the vicinity of
the nth natural frequency, the modal displacement response could approximate by i = n and ignoring other
modes in Eq. (13)

W (x, λ)

P(λ)
= 1

ρ Aω2
n

an − bn
μL

anϕn (x0)

1−λ2

− 2 jζaγ λ+γ 2−λ2

γ 2(2 jζaγ λ−λ2)
+μL

bnϕn (x0)

1−λ2

1 − λ2 ϕn(x) (14)

Frequency response function could be simplified by defining an equivalent mass ratio ε,

W (x, λ)

P(λ)
= anϕn(x)

ρ Aω2
n

(
γ 2 − λ2

) + (2 jζaγ λ)
[(

1 − λ2
) (

γ 2 − λ2
) − εγ 2λ2

] + [
2 jζaγ λ

(
1 − λ2 + εγ 2

)] , ε = μϕ2
n(x0) (15)

It may be rewritten as

W (x, λ)

P(λ)
= anϕn(x)

ρ Aω2
n

G(λ) (16)

where

G(λ) =
(
γ 2 − λ2

) + (2 jζaγ λ)
[(

1 − λ2
) (

γ 2 − λ2
) − εγ 2λ2

] + [
2 jζaγ λ

(
1 − λ2 + εγ 2

)] (17)

In considering H∞ optimization for specific point, the objective is to minimize the maximum vibration ampli-
tude response of the primary system at point x .

max

(∣∣∣∣∣
W

(
x, λ, γH∞, ζH∞

)

P(λ)

∣∣∣∣∣

)
= min

(
max
γ,ζa

∣∣∣∣
W (x, λ)

P(λ)

∣∣∣∣

)
(18)

The modal displacement consists of a constant term, anϕn(x)

ρ Aω2
n

which is independent of optimum parameters, so

the objective function is changed to Eq. (19) and we just need to optimized G(λ) which is equivalent to the
amplitude ratio as derived and optimized by Ren [16] in the sdof system attached to a non-traditional DVA if
the term ε is replaced by the mass ratio μ.

max

(∣∣∣∣∣
W

(
x, λ, γH∞, ζH∞

)

P(λ)

∣∣∣∣∣

)
= anϕn(x)

ρ Aω2
n

max

( ∣∣G(λ, γH∞, ζH∞)
∣∣
)

(19a)

H∞ optimization can be derived based on the fixed-point theory that expresses in the frequency response
spectrum there are three points that their amplitudes are independent of damping ratio. G(λ)is calculated
according to Eq. (17) with three damping ratios, and the results are shown in Fig. 3. It can be observed that
there are intersecting points O, a and b which are independent of the damping of the absorber.

At any damping ratio, the frequency response must include these three fixed points O, a and b. So the H∞
optimum condition of the DVA may be expressed as

max
(∣∣G

(
λ, γH∞, ζH∞

)∣∣) = min

(
max
γ,ζa

(
|G(λa)| , |G(λb)| , |G(λ0)|

))
(19b)

In the other words, regardless of damping, we tune the frequency ratio such a way that the fixed points have
minimum amplitude. In the next step, we determine the absorber damping such a way that fixed point becomes
the peaks of the response. In order to find the tuning frequency, the heights of the fixed points are calculated
at different values of γ and the results are plotted in Fig. 4.

By comparing the height of the fixed points at different values of γ Fig. 5 may be found which consist of
local and global minimums that are shown by points A and C , respectively.

Point A is the local minimum of the graph and that is the case which two fixed points have the same
amplitude; Ren [16] found the local optimum tuning frequency of the absorber by using this equalization, and

Author's personal copy



1778 B. Noori, A. Farshidianfar

0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

Dimensionless Frequency

A
m

pl
itu

de
 o

f 
FR

F
Absorber Damping Ratio=0
Absorber Damping Ratio=0.5
Absorber Damping Ratio=0.2

a

O

b

Fig. 3 Amplitude of G(λ) at ε = 0.15 and γ = 1

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Tuning Frequency

1

H
ei

gh
t o

f 
Fi

xe
d-

Po
in

ts

Height of Fixed-Point a
Height of Fixed-Point b
Height of Fixed-Point O

Fig. 4 The height of the fixed points versus tuning frequency γ at ε = 0.15

Fig. 5 Max {|G(λa)| , |G(λb)| , |G(λ0)|} versus γ at ε = 0.15

then, the local optimum absorber damping was determined such a way that the fixed point become the peaks of
the response. These optimum parameters set known as the first set in the following. Recently, Cheung and Wong
[22] used point C which is the global minimum of the graph; they presented a set of global optimum parameters
by using the same procedure. In other words, at first they put the height of the fixed point equal to one, they
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Table 1 The H∞ optimum tuning at a point x in the beam

First set Second set Third set

Tuning ratio 1√
1−ε

√(√
2+√

ε
)
+

(
1−√

2ε
)

√
ε(1−ε)

√
2(1−ε)

ε

Damping ratio
√

3ε
8(1−0.5ε)

√
1−2γ 2(1−ε)+γ 4(1+ε+ε2)−(1−γ 2(1−ε))

√
1−2(1−ε)γ 2+(1+ε2)γ 4

4γ 2(1+γ 2+εγ 2−
√

1−2(1−ε)γ 2+(1+ε2)γ 4)

Height of fixed points anϕn(x)

ρ Aω2
n

(1 − ε)

√
2
ε

anϕn (x)

ρ Aω2
n

2
1−γ 2+εγ 2+

√
1−2(1−ε)γ 2+(1+ε2)γ 4

found the optimum tuning frequency, and then, zero derivation assumption was used which makes the fixed
point peak of the response. In this way, the global optimum damping ratio was derived. These global optimum
parameters known as the Third set in the following. However, γC may be too high to be applied in practice, by
assuming the practical constraints, and they may consider a practical range of the optimum tuning frequency
parameter of non-traditional DVA such as point B [22]. The optimum parameters derived by using point B is
known as the second set in this article, and these parameters can be found by using the above procedure.

The optimum parameters of the non-traditional DVA attached to the beam are derived and listed in Table 1.
is the damping ratio, and γH∞ is tuning frequency of H∞ optimization related to non-traditional DVA attached
on the beam.

The optimum frequency and damping ratio of the non-traditional DVA on the beam structure are derived
analytically. Now that is time to find the optimum mass ratio and position of the absorber on beam structures.
The amplitude of G(λ) is calculated for different equivalent mass ratios or ε in Fig. 6.

As mentioned before in Eq. (15), the equivalent mass ratio consists of two terms, the mass ratio and the
eigenfunction of the beams at the attachment point. As you can see in the Fig. 6, by increasing the equivalent
mass ratio, the absorber becomes more effective, so the optimum location for DVA is the location which makes
the eigenfunction maximum or equal to one, and the mass ratio has to be considered as high as possible.

4 H∞ optimization–minimizing the root mean square motion over whole domain of the beam

The root mean square motion over the whole domain of the beam structure may be written as

L∫

0

(
W (x, λ)

P(λ)

)2

dx =
L∫

0

(
1

ρ Aω2
n

)2

⎛

⎜⎜⎜⎜⎜⎜⎝

∞∑

i=1

ai − bi

μL
∑∞

i=1
ai ϕi (x0)

γ 2
i −λ2

− 2ζa jγ λ+γ 2−λ2

γ 2(2ζa jγ λ−λ2)
+μL

∑∞
i=1

bi ϕi (x0)

γ 2
i −λ2

γ 2
i − λ2

ϕi (x)

⎞

⎟⎟⎟⎟⎟⎟⎠

2

dx (20)

Only the eigenfunction of the beam depends on x , so Eq. (20) could be simplified as

L∫

0

(
W (x, λ)

P(λ)

)2

dx =
(

1

ρ Aω2
n

)2 L∫

0

⎛

⎜⎜⎜⎜⎜⎜⎝

∞∑

i=1

ai − bi

μL
∑∞

i=1
ai ϕi (x0)P(s)

γ 2
i −λ2

− 2ζa jγ λ+γ 2−λ2

γ 2(2ζa jγ λ−λ2)
+μL

∑∞
i=1

bi ϕi (x0)

γ 2
i −λ2

γ 2
i − λ2

ϕi (x)

⎞

⎟⎟⎟⎟⎟⎟⎠

2

dx (21)

According to orthogonality relations of the eigenfunctions and well-separated natural frequencies assumption,
the mean square motion is simplified as

L∫

0

(
W (x, λ)

P(λ)

)2

dx =

⎛

⎜⎜⎜⎜⎝

√
L

ρ Aω2
n

an − bn
μL

anϕn (x0)

1−λ2

− 2 jζaγ λ+γ 2−λ2

γ 2(2 jζaγ λ−λ2)
+μL

bnϕn (x0)

1−λ2

1 − λ2

⎞

⎟⎟⎟⎟⎠

2

(22)
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Fig. 6 Amplitude of G(λ) at different equivalent mass ratios

Consequently,
√√√√√

L∫

0

(
W (x, λ)

P(λ)

)2

dx = an
√

L

ρ Aω2
n

(
γ 2 − λ2

) + (2 jζaγ λ)
[(

1 − λ2
) (

γ 2 − λ2
) − εγ 2λ2

] + [
2 jζaγ λ

(
1 − λ2 + εγ 2

)] (23)

In the previous section, we optimized dynamic vibration absorber to minimize the vibration of a point, and now
we are going to minimize the root mean square motion over the whole domain of the beam. By considering
H∞ optimization, the objective function may be defined as

max

⎛

⎜⎝

∣∣∣∣∣∣∣

√√√√√
L∫

0

(
W

(
x, λ, γH∞, ζH∞

)

P(λ)

)2

dx

∣∣∣∣∣∣∣

⎞

⎟⎠ = min

⎛

⎜⎝max
γ,ζa

∣∣∣∣∣∣∣

√√√√√
L∫

0

(
W (x, λ)

P(λ)

)2

dx

∣∣∣∣∣∣∣

⎞

⎟⎠ (24a)

It is noted that only the function G(λ) which is defined in Eq. (17) is needed to be considered in the optimization
because of the constant term, so the objective function can be rewritten as

max

⎛

⎜⎝

∣∣∣∣∣∣∣

√√√√√
L∫

0

(
W

(
x, λ, γH∞, ζH∞

)

P(λ)

)2

dx

∣∣∣∣∣∣∣

⎞

⎟⎠ = an
√

L

ρ Aω2
n

min

(
max
γ,ζa

|G(λ)|
)

(24b)

Therefore, applying the fixed-point theory, the optimum parameters can be found in the same way as in the
case of sdof. The outcomes for tuning ratio and damping ratio are the same as those achieved for a point, but√

L is replaced by ϕn(x) in the height of fixed points.

5 H2 optimization: minimizing the area under the frequency response curve of the beam

In considering H2 optimization, the objective is to minimize the total vibration energy of the system over all
frequencies and the performance index can be defined as

min
γ.ζa

(
E

[
w2(x, t)

])
(25)

The mean square motion, E
[
w2(x, t)

]
, of the stationary response can be obtained when the spectral density,

Sw(ω), of the response is known, according to the following formulae

Sw(ω) =
∣∣∣∣
W (x, ω)

P(ω)

∣∣∣∣
2

SP(ω) (26)
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So, the mean square motion can be written in terms of the input mean square spectral density as

E
[
w2(x, t)

] =
+∞∫

−∞

∣∣∣∣
W (x, ω)

P(ω)

∣∣∣∣
2

SP(ω)dω (27)

If the input spectrum assumed to be ideally white, i.e., SP(ω) = S0, a constant for all frequencies, the integral
of Eq. (27) can be reduced to

E
[
w2(x, t)

] = S0

+∞∫

−∞

∣∣∣∣
W (x, ω)

P(ω)

∣∣∣∣
2

dω (28)

Consequently, the non-dimensional mean square motion can be defined as

E
[
w2(x, t)

] = ωn S0

2π

+∞∫

−∞

∣∣∣∣
anϕn(x)

ρ Aω2
n

G(λ)

∣∣∣∣
2

dλ (29)

As anϕn(x)

ρ Aω2
n

is a constant term, only ωn S0
2π

∫ +∞
−∞ |G(λ)|2 dλ, need to be considered in optimization, which is equal

to mean square motion of variant design of DVA attached to sdof system [14], Therefore, the optimum DVA
parameters can be found in the same way as in the case of the sdof system if the term ε replaced by the mass
ratio μ [21]. By using the formula of Gradshteyn and Ryzhik [21], the mean square motion of the beam may
be defined as

E
[
w2(x, t)

] = ωn S0

4εζγ

(
anϕn(x)

ρ Aω2
n

)2 [
1 + ε + 4ζ 2 − 2

γ 2 + 1

γ 4

]
(30)

If ∂
∂γ

E
[
w2(x, t)

] = ∂
∂ζa

E
[
w2(x, t)

] = 0, the system has optimum tuning conditions. In the other words, the
vanishing of the both derivatives results in optimum conditions. The derivatives of Eq. (30) are

∂

∂γ
E

[
w2(x, t)

] = ωn S0

4μζaγ 6

(
anϕn(x)

ρ Aω2
n

)2 [
γ 4 + (

3ε + 12ζ 2
a − 6

)
γ 2 + 5

] = 0 (31)

∂

∂ζa
E

[
w2(x, t)

] = − ωn S0

4μζ 2
a γ 5

(
anϕn(x)

ρ Aω2
n

)2 [
γ 4 + (

ε − 4ζ 2
a − 2

)
γ 2 + 1

] = 0 (32)

Solving Eqs. (31) and (32) leads to the optimum damping ratio written as

ζH2 optimization =
√

γ 4 + (ε − 2) γ 2 + 1

4γ 2 (33)

and the local minimum of tuning ratios written as

γH2-local optimization = 1

2

√
6 − 3ε −

√
(6 − 3ε)2 − 32 (34)

No global optimum tuning frequency exists in the proposed absorber, and it is advised that a high tuning
frequency ratio be used. Furthermore, using of equivalent mass ratio, less than 0.1144, the frequency ratio

more than 0.5
√

6 − 3ε −
√

(6 − 3ε)2 − 32 needed; otherwise, contrary results will be achieved. The best
value of damping ratio after selecting the tuning frequency ratio may be found by using Eq. (33).
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Fig. 7 Schematic model which used in numerical test

6 Simulation results and discussion

To show the efficiency of this optimization procedure of non-traditional DVA on beam structures in vibration
suppression, the numerical case studies are presented in this section. At first, vibration suppression performance
of variant design of DVA under harmonic force excitation is studied in comparison with traditional one, and
then, the effect of the non-traditional DVA in suppressing random vibration is considered.

Model introduction
We consider an Euler beam with simply support boundary condition and attached with non-traditional DVA, and
it is shown in Fig. 7. The material of beam supposed to be aluminum of Young’s modulus and density of 207 Gpa
and 7,870 kg/m3, respectively, and other properties are A = 2.24 ∗ 10−4m2, I = 6.31 ∗ 10−10m4, L = 1m.
Absorber attached in x0 = 0.5L , the force applied at x1 = 0.1L and the mass ratio μ is 0.2.
The eigenfunction and natural frequencies of beam considered as

ϕi (x) = sin

(
iπx

L

)
, ω2

i =
(

iπ

L

)4 E I

ρ A
, i = 1, 2, 3, . . . . (35)

and Fourier coefficients are

ai = 1

L
sin

(
iπx1

L

)
, bi = 1

L
sin

(
iπx0

L

)
, i = 1, 2, 3, . . . (36)

Case 1: Vibration suppression performance under harmonic force excitation
We employed the model which introduced in the previous section to show that non-traditional DVA has

better outcomes in minimizing vibration of a point and kinetic energy of a beam under harmonic force excitation
than use of traditional DVA, while one of the best optimization procedures which followed by Cheung and
Wong [12] applied on it.

Case 1-a: Minimizing the vibration at a point on the beam
Performance of proposed DVA in suppressing vibration of a point under harmonic force excitation is

compared by traditional DVA, while three optimum parameters which introduced in H∞ optimization and
optimum parameters that presented by Cheung and Wong [12] are applied on non-traditional and traditional
DVAs, respectively. Percentage reduction in frequency response of a point by use of non-traditional DVA
relative to traditional one was 13.3, 27.0, 53.9 % for first, second and third set, respectively. Results in Fig. 8
show that third set has the best performance among others, but there are some constraints in real application at
times which guide us to use other sets, i.e., small mass ratios cause large frequency, and damping ratio in third
set or sometimes a damping element could not be so massive hence the use of the first set is the best solution.

Case 1-b: Minimizing the kinetic energy of whole beam
The kinetic energy amplitude of whole beam calculated at different excitation frequency according to

Eq. (37), while the first mode considered as target mode

ρhω2
1

2

L∫

0

(
W (x, λ)

P(λ)

)2

dx = ρhω2
1

2

10∑

i=1

(
Lλ

ρhω2
1

)

⎛

⎝ai − bi

μL
∑∞

i=1
ai ϕi (x0)

γ 2
i −λ2

− 2ζa jγ λ+γ 2−λ2

λ2(2ζa jγ λ+γ 2)
+μL

∑∞
i=1

bi ϕi (x0)

γ 2
i −λ2

⎞

⎠
2

(
γ 2

i − λ2
)2 (37)
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Fig. 8 Minimizing vibration of a point by use of traditional and non-traditional DVA

Fig. 9 Minimizing kinetic energy by using non-traditional and traditional DVA with different transfer functions

To calculate these kinetic energy amplitudes, a Matlab program is written, and the results were plotted in
Fig. 9. Ten vibration modes (imax = 10) of the beam were used in the calculation. As shown in Fig. 9, the
amplitude of the kinetic energy of the first resonance of the beam was suppressed after adding the vibration
absorber. By use of traditional dynamic vibration absorber, acceleration transfer function has better results in
minimizing kinetic energy at the first resonance of the primary system than other transfer functions. While
traditional DVA has a good effect in minimizing kinetic energy, better results achieved by use of non-traditional
DVA due to eliminating the pick around objective mode. Consequently, the maximum response of the system
can be reduced by more than 35 % in this case while the first set of optimum parameters is used.

The effect of different optimum parameters of non-traditional dynamic vibration absorbers in minimizing
the kinetic energy is studied in Fig. 10. The percentage reduction in the maximum amplitude of the kinetic
energy of the whole beam around the first natural frequency of the beam by use of proposed DVA toward
traditional one was 26.9, 40.3, 59.7 % for first, second and third set, respectively. It is noted that the acceleration
optimum parameters of traditional DVA are used in this comparison.

Case 2: Vibration suppression performance under a random force excitation
For non-traditional DVA, it is recommended that a high tuning frequency ratio be used if it is possible

in H2 optimization, but in this section, the tuning frequency equals to H∞ optimization of first set optimum
parameters is considered here for comparison. At first, the spectral density of the vibration amplitude at
point x on the beam is calculated for both traditional and non-traditional DVAs and is plotted for H∞ and H2
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Fig. 11 The spectral density of the vibration amplitude at point x on beam for both DVAs and H∞ optimization

optimization procedures in Fig. 11 and Fig. 12, respectively. It is obvious that for both optimization procedures,
non-traditional DVAs minimize the spectral density of the vibration amplitude at point x better than traditional
one about 8.2 % for H∞ and 11 % for H2 optimization.

The spectral density of the vibration amplitude is calculated for both optimizations in order to define better
procedures for non-traditional DVA. As shown in Fig. 13, H2 optimization is more effective than the other
one in suppressing vibration of the beam under a random force excitation due to 11.4 % reduction in spectral
density.

According to the above analysis, using tuning frequency as high as possible in H2 optimization results
in better mean square motion minimization, so the percentage reduction in the mean square motion of the
proposed absorber in different tuning frequencies relative to the traditional absorber at different equivalent
mass ratios by use of H2 optimization in both cases is calculated and plotted in Fig. 14. Outcomes show, for a
constant equivalent mass ratio, the percentage reduction in the mean square motion raises by increasing tuning
frequency ratio. Furthermore, for the fixed value of frequency ratio, increasing equivalent mass ratio results
in more percentage reduction in the mean square, although this growth is not significant for frequency ratios
less than 1.2. As mentioned before for the equivalent mass ratio less than 1.1, the appropriate frequency ratio
needed to choose, if it is not possible, using other optimization procedure is suggested.

In the following, effect of two optimizations, different dynamic vibration absorbers and equivalent mass
ratios, ε, in minimizing mean square motion is studied. Mean square motion is calculated for non-traditional
and traditional DVA according to Eq. (30) and which proposed by Cheung and Wong [12], respectively. In this
calculation, optimum parameters of non-traditional DVA considered as first set for H∞ and Eq. (33), γ = 1.5
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Fig. 12 The spectral density of the vibration amplitude at point x on beam for both DVAs and H2 optimization
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Fig. 13 The spectral density of the vibration amplitude at point x on beam for variant DVA and both optimizations
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Fig. 15 Percentage reduction in the mean square motion of absorbers relative to the traditional absorber and H∞ Opt

for H2 optimization. For tuning frequency and damping ratio of traditional DVA, the formulae which obtained
by Cheung and Wong [12] are used. Outcomes show that using H∞ optimization and traditional DVA has the
worst result in minimizing root mean square motion among others, so its percentage reduction in proposed
absorber and two optimization procedures relative to the traditional DVA and H∞ optimization is calculated for
different ε and plotted in Fig. 15. It is obvious, in a particular range of equivalent mass ratio, H2 optimization
and non-traditional DVA have the best result in minimizing mean square motion.

7 Conclusion

H2 and H∞ optimization procedures of a variant design of dynamic vibration absorbers for suppressing
vibration in beam structures under a random and harmonic force excitation were derived. Three sets of optimum
parameters proposed for H∞ optimization, while no global optimum tuning condition exists in the proposed
absorber when H2 optimization is applied, but it is recommended that a high tuning frequency ratio be used
if it is possible. The best value of damping ratio after selecting the tuning frequency ratio is derived too.
These parameters depend on the value of ε. That means, it depends on both the mass ratio and the modal
response of the beam at the attachment point of the DVA. The best location for DVA is the place that makes
the eigenfunction of the beam maximum, and the mass ratio has to be chosen as high as possible.

To show the usefulness of non-traditional DVA, numerical results are presented in minimizing the vibra-
tion at a point on the beam and kinetic energy of a beam under harmonic force excitation as well as
minimizing the mean square motion and the spectral density of the vibration amplitude under a random
force excitation which supposed to be ideally white. It has been shown that the performance of the vari-
ant DVA can be better than the ordinary one if the frequency and damping ratios of the DVA are cho-
sen properly, i.e., for a practical range of equivalent mass ratio, ε = 0.2, the proposed DVA can pro-
vide 13.3 and 26.9 % or more reduction in vibration at a point and kinetic energy of the beam under
harmonic excitation, respectively, as well as, 18 and 33 % or more reduction in mean square motion of
beam at a point by applying H∞ optimization and use of H2 optimization with γ = 1.5, respectively.
Comparison of two optimization procedure for non-traditional DVAs showed the mean square motion at a
point of the beam with the proposed absorber and H2 optimization was 15 % smaller than H∞ optimiza-
tion.

Changing the places of the absorber elements is an interesting issue which will be reported elsewhere
because the derivation of the H2 and H∞ optimal parameters of this variant DVA to control the structural
vibration is spacious and the comparison result of the effectiveness of the absorbers is found to be quite
different from the result of the present case.
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