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Abstract. The average of the moments for event shapes in e+e− → hadrons within the con-
text of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied.
Moments used in this article are 〈1 − T 〉, 〈ρ〉, 〈BT〉 and 〈BW〉. We extract αs, the coupling con-
stant in perturbative theory and α0 in the non-perturbative theory using the dispersive model. By
fitting the experimental data, the values of αs(MZ0) = 0.1171 ± 0.00229 and α0 (μI = 2 GeV) =
0.5068 ± 0.0440 are found. Our results are consistent with the above model. Our results are also
consistent with those obtained from other experiments at different energies. All these features are
explained in this paper.

Keywords. Electron and positron scattering; perturbative calculations; quantum Monte Carlo;
strong coupling expansions.
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1. Introduction

The study of hadronic final states in e+e− annihilation allows precise tests of the theory of
strong interaction and quantum chromodynamics (QCD), using event-shape observables
for the analysis of hadronic events. Alternatively, there exist models describing hadroniza-
tion analytically. These models are: the dispersive model [1], the shape function [2] and
the single dressed gluon approximation [3,4]. Our aim is to study dispersive model qual-
itatively and quantitatively by measuring the strong coupling and the model parameters.
The dispersive model is based on the assumption of a non-perturbatively continued strong
coupling. Their parameters can be determined (i.e. the value of αs at some reference
energy) and the assumption of universality of these parameters can be probed.

The outline of the paper is as follows: In §2, the observables used in this analysis are
presented. Section 3 describes the power correction as well as the perturbative QCD pre-
dictions, and introduces analytical models which describe the hadronization process. The
simulated data (PYTHIA) for event shape moments are compared by measuring AMY
experimental data in §4. Also, a review of the work achieved on this subject in LEP by
L3 and DELPHI is made. Finally, §5 gives summary and conclusions.

Pramana – J. Phys., Vol. 81, No. 5, November 2013 775



R Saleh-Moghaddam and M E Zomorrodian

2. Event-shape variables

When we study observables in the process e+e− → hadrons, it is found that the pertur-
bative QCD predictions have to be complemented by non-perturbative corrections of the
form 1/Q P , where Q is the centre of mass energy (Ecm) and the power P depends on the
particular observable [5].

Event-shape variables measure geometrical properties of hadronic final states at high-
energy particle collisions. They have been studied at e+e− collider experiments. Apart
from studying the distributions of these observables, we can also study the mean values
as well as higher orders for the moments of event-shape variables.

The most common observables y of the three jet type are: thrust, the heavy jet mass,
the total and wide jet broadening.

Definitions of these observables are given below [6]:

2.1 Thrust (T)

The thrust value of a hadronic event is defined by the expression

T = max

(∑
i | �pi · �n|∑

i | �pi |
)

, (1)

where �pi denotes the three-momentum of particle i and the sum runs over all particles
in the final states. The value of �n for which the maximum is attained is called the thrust
axis and denoted by �nT. The value of thrust ranges between 0.5 and 1, where T = 1
corresponds to an ideal collinear two-jet event and T = 0.5 corresponds to a perfectly
spherical event.

Usually one considers the variable t = 1 − T instead of the thrust T , such that the two
jet regions correspond to t → 0.

2.2 Heavy jet mass MH

The plane orthogonal to the thrust axis divides the space into two hemispheres H1 and H2.
An invariant mass is calculated from the particles in each of the two hemispheres defined
by the thrust axis. The hemisphere masses are given as

M2
i =

⎛
⎝∑

j∈Hi

p j

⎞
⎠

2

, i = 1, 2, (2)

where p j denotes the four-momentum of particle j . The heavy hemisphere mass MH is
then defined as

M2
H = max(M2

1 , M2
2 ). (3)

The above variable is scaled by the visible energy which, after correction for detector
resolution, acceptance and for initial state radiation, equals to

ρ = M2
H

Q2
, (4)

where Q is the centre of mass energy.
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2.3 Jet broadening B

The jet broadening is calculated by the expression

Bk =
(∑

i∈Hk
| �pi × �nT|

2
∑

i | �pi |
)

(5)

for each of the two hemispheres (Hk , k = 1, 2), defined above. The total jet broadening
is given by

BT = B1 + B2. (6)

The wide jet broadening is defined as

BW = max(B1, B2). (7)

The present paper focusses on the distributions of collective variables.

3. Power corrections

The value of αs can be assessed by the energy dependence of mean values of the event-
shape distributions. The mean values of the observables considered in this analysis are
calculated up to O(α2

s ). The DMW model of Dokshitzer, Marchesini and Webber makes
the assumption that evolution of αs to energies below the Landau pole is possible but the
form of αs(μ) is a priori unknown. A non-perturbative parameter α0 is introduced as the
0th moment over αs(μ) [7].

The analytical power ansatz for non-perturbative corrections by Dokshitzer and Webber
[8,9] including the Milan factor established by Dokshitzer [10,11] is used to determine αs

from mean event shapes. This ansatz provides an additive term to the perturbative O(α2
s )

QCD prediction [12].

〈y〉 = 〈ypert〉 + 〈ypow〉 = 1

σtot

∫
y

dy

dσ
dσ. (8)

For an observable event, the perturbative prediction is

〈ypert〉 = ĀF

(
αs(μ)

2π

)
+

(
B̄F + ĀF β0 log

(
μ2

E2
cm

)) (
αs(μ)

2π

)2

, (9)

where ĀF = AF, B̄F = BF − (
3
2

)
CF AF, β0 =(33 − 2NF)/12π and μ is the renormalization

scale. The coefficients AF and BF were determined from the O(α2
s ) perturbative calcula-

tions [13]. The second term accounts for the difference between the total cross-section
used in the measurement and the Born level cross-section used in the perturbative calcula-
tion. The numerical values of these coefficients are tabulated in table 1 [13]. QCD colour
factors are:

CA = 3, CF = N 2 − 1

2N
= 4

3
(10)

for N = 3 colour quarks.
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Table 1. Contribution to event-shape moment at LO, NLO [13].

〈(1 − T )n〉 〈(ρ)n〉 〈(BW)n〉 〈(BT)n〉

AF n = 1 2.1035 2.1035 4.0674 1.0674
n = 2 0.1902 0.1902 0.3369 0.3369
n = 3 0.02988 0.02988 0.04755 0.04755
n = 4 0.005858 0.005858 0.008311 0.008311
n = 5 0.001295 0.001295 0.001630 0.001630

BF n = 1 44.999 ± 0.002 23.342 ± 0.002 −9.888 ± 0.006 63.976 ± 0.006
n = 2 6.2595 ± 0.0004 3.0899 ± 0.0008 4.5354 ± 0.0005 14.719 ± 0.0001
n = 3 1.1284 ± 0.0001 0.4576 ± 0.0002 0.6672 ± 0.0001 2.7646 ± 0.0003
n = 4 0.24637 ± 0.00003 0.08363 ± 0.00003 0.10688 ± 0.00002 0.60690 ± 0.00006
n = 5 0.06009 ± 0.00001 0.01759 ± 0.00001 0.01865 ± 0.00001 0.14713 ± 0.00002

The power correction is given by

〈ypow〉 = ayP

= ay · 4CF

π2
M

μI

Ecm

[
α0(μI) − αs(μI) −

(
log

(
μ

μI

)
+ 1 + k

4πβ0

)

× 2β0α
2
0 (μI)

]
, (11)

where α0 is a non-perturbative parameter accounting for the contributions to the event
shape below an infrared matching scale μI

∼= 2. In the MS renormalization scheme, the
constant k has the value k = (

(67/18) − (π2/6)
)

CA − (5/9)NF, with NF = 5 at the
energies studied. The Milan Factor M is known in two loops M = 1.49 ± 20% [10,14],
for flavour number NF = 3 at the relevant low scales [15]. Also, for M that is called
non-inclusive Milan factor, we have [16]:

M = 1 + 3.299CA

β0
+ 2

−0.862CA − 0.052NF

β0
= 1 + 1.575CA − 0.104NF

β0

= 1.49 ± 20%, for NF = 3 (12)

and coefficient ay depends on the event-shape observable. That is listed in table 2 [10,17].

Table 2. Coefficient ay of power correction ∝ 1/Q of event-shape
variables in the dispersive model.

Event-shape
variable 1 − T BT BW ρ

ay 2 1 1/2 1
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For BT and BW there is further correction to P. It arises from the kinematical mismatch
between parton direction and thrust direction which are used to define the hemispheres
in the broadening variables. This modification is accounted for by a modification to the
power correction. In [18], this modification was computed to NLO for the first moment
as

P〈BW〉 = P

(
π√

8CFα̂s(1 + (kα̂s/2π))
+ 3

4
− β0

6CF
+ η0

)
(13)

P〈BT〉 = P

(
π√

4CFα̂s(1 + (kα̂s/2π))
+ 3

4
− β0

3CF
+ η0

)
. (14)

Here, α̂s = αs(e−3/4 Q) and η0 = −0.6137.
In the first approximation, non-perturbative corrections generate a simple shift of the

perturbative differential distribution dσNLO/dy of the event-shape variables 1 − T , BT,
BW and ρ, when relating parton to hadron level,

dσhad

dy
= dσNLO

dy

(
y − ayP

)
. (15)

This prediction is valid if the value of the event-shape variable y is not too large (y �1)

and the centre of mass energy Q not too small (Q � (�QCD/y)). The nth moment of an
event-shape observable y is defined as

〈yn〉 =
∫ ymax

0
yn 1

σhad

dσ

dy
dy, (16)

where ymax is the kinematically allowed upper limit of the observable [19].
By inserting (15) in eq. (16) of the moment of order n and naively neglecting the

integration over the unphysical range of negative variable values, we obtain

〈yn〉 =
∫ ymax

0
yn 1

σhad

dσ

dy
dy =

∫ ymax−ayP

−ayP

(y + ayP)n 1

σhad

dσpt

dy
dy

≈
∫ ymax

0
(y + ayP)n 1

σhad

dσpt

dy
dy. (17)

Discarding the integration over the kinematically forbidden values of y leads to non-
perturbative predictions. The prediction for the moment on hadron level will be [20]

〈y1〉 = 〈y1〉NLO + ayP (18)

〈y2〉 = 〈y2〉NLO + 2〈y1〉NLO · ayP + (ayP)2 (19)
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〈y3〉 = 〈y3〉NLO + 3〈y2〉NLO · ayP + +3〈y1〉NLO · (ayP)2 + (ayP)3 (20)

〈y4〉 = 〈y4〉NLO+4〈y3〉NLO · ayP+6〈y2〉NLO · (ayP)2+4〈y1〉NLO · (ayP)3

+ (ayP)4 (21)

〈y5〉 = 〈y5〉NLO+5〈y4〉NLO · ayP+10〈y3〉NLO · (ayP)2+10〈y2〉NLO · (ayP)3

+ 5〈y1〉NLO · (ayP)4 + (ayP)5. (22)

The dispersive model gives predictions for several observables and contains only
universal free parameters αs(MZ0) and α0(μI).

4. Physics results

In this section, we use the event-shape variables mentioned above, for calculating both the
strong coupling constant αs(MZ0) and the non-perturbative coupling parameter α0(μI =
2 GeV). To achieve this, we do our analysis up to the fifth order of power corrections.

Figure 1. First moments of event shapes from DELPHI [7].
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We explain first the work performed on the above subject by other experiments.
Figure 1 presents the DELPHI high-energy data together with the data obtained from
other experiments [7]. The fit of O(α2

s ) perturbative QCD prediction combined with a
power correction describes the data well. All diagrams show that by increasing energy,
the amount of these variables will tend to zero. However, they do not vanish, because
some hadrons have a finite transverse momentum (PT).

Figure 2 shows the results by L3 for second moments from the analysis of the LEP
high-energy data as well as from the low-energy data obtained by selecting events at√

S = MZ0 with hard initial or final-state photon radiation [7].
Using the above results and fitting the corresponding distributions from the analyses of

the DMW power correction model, table 3 and also figure 3 show the values for αs and
α0 extracted from their data.

In order to clarify the situation further, we extend this analysis by using the events
obtained by the AMY (the range of energy between 52 and 60 GeV) at KEK, as well as

Figure 2. The second moments of the event shapes from L3 [7,21].
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Table 3. The values of αs(MZ0) and α0 (2 GeV) [22].

Exp. ALEPH DELPHI L3 MPI√
s range (GeV) 12(35)–206 12–202 41–206 12(35)–189

1 − T αs(MZ0) 0.1207 ± 0.0019 0.1241 ± 0.0034 0.1164 ± 0.0060 0.1217 ± 0.0060
α0 (2 GeV) 0.539 ± 0.011 0.491 ± 0.018 0.518 ± 0.059 0.528 ± 0.064
χ2/d.o.f. 69/43 27/41 18/14 50/41

MH, ρ αs(MZ0) 0.1161 ± 0.0018 0.1197 ± 0.0122 0.1051 ± 0.0051 0.1165 ± 0.0043
α0 (2 GeV) 0.627 ± 0.020 0.339 ± 0.263 0.421 ± 0.037 0.663 ± 0.095
χ2/d.o.f. 50/40 10/15 13/14 24/35

BT αs(MZ0) 0.1148 ± 0.0025 0.1174 ± 0.0029 0.1163 ± 0.0042 0.1205 ± 0.0049
α0 (2 GeV) 0.492 ± 0.020 0.463 ± 0.033 0.449 ± 0.054 0.445 ± 0.054
χ2/d.o.f. 7/18 9/23 9/14 24/28

BW αs(MZ0) 0.1179 ± 0.0028 0.1167 ± 0.0019 0.1169 ± 0.0042 0.1178 ± 0.0025
α0 (2 GeV) 0.467 ± 0.037 0.438 ± 0.049 0.342 ± 0.079 0.425 ± 0.097
χ2/d.o.f. 11/18 10/23 14/14 10/29

C αs(MZ0) 0.1228 ± 0.0027 0.1222 ± 0.0036 0.1164 ± 0.0047 0.1218 ± 0.0059
α0 (2 GeV) 0.461 ± 0.016 0.444 ± 0.022 0.457 ± 0.040 0.461 ± 0.048
χ2/d.o.f. 17/18 12/23 12/14 18/26

D αs(MZ0) 0.1046 ± 0.0124
α0 (2 GeV) – – 0.682 ± 0.096 –
χ2/d.o.f. 24/14

Figure 3. Measurements of αs(MZ0) and α0 (2 GeV) from different experiments such
as: ALEPH, DELPHI, L3 and MPI [22].
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the simulated events (PYTHIA) up to the fifth order. The reason behind this is to see if
there are any differences between the lower- and the higher-order moments.

In figure 4 we show the mean value of 〈1 − T 〉 up to the fifth order as a function
of the centre-of-mass energy fitted to the dispersive prediction. As the results obtained
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Figure 4. Fits of the dispersive prediction to PYTHIA and AMY measurements of
1−thrust moments. The solid line shows the prediction with fitted values of αs(MZ0)

and α0(μI).
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by the AMY data coincide with those obtained from the MC, we have made a single
fitting procedure to both data. We observe that results for the dispersive model follow
the same trend as those for the Monte Carlo data. In addition, the values for the AMY
in the range of 52–60 GeV are consistent with both the Monte Carlo and the dispersive
model.

We include on all figures the fitted distribution obtained from the NLO predictions. We
observe that the distributions for the dispersive model (solid line) are in good agreement
with those for the Monte Carlo when compared with the NLO prediction because the NLO
does not include the power correction. For comparison, we show in figure 5 the results by
the JADE and OPAL experiments up to fifth order [15].

We do a similar analysis for BW, BT and ρ in figures 6, 7 and 8 respectively. Due to the
similarity between the distributions, we have deliberately omitted the distributions of the

Figure 5. The dispersive prediction to JADE and OPAL measurements of 1−thrust
moments. The solid line shows the prediction with fitted values of αs(MZ0) and
α0(μI) [15].
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Figure 6. Fits to distributions of the wide jet broadening (BW) for different centre-of-
mass energies.

first two moments. For higher moments (n ≥ 2) of the jet broadening BT and BW the kine-
matical modifications to the power correction are not known at present. If we do not apply
these corrections to the higher moments, the mutual consistency of the parameter extrac-
tions from different moments of BT deteriorates considerably, while minor improvements
in consistency are observed on BW [19].

Mass effects, in particular on ρ moments, have not been considered in obtaining the
averages for αs and α0. However, Salam and Wicke [23] showed that mass effects are
smaller than effects due to the non-inclusiveness of the heavy jet mass, used in this
analysis.

In a second step, we achieve αs and α0 measurements obtained from different event-
shape variables. Figures 9 and 10 show our results for αs(MZ0) and α0 (μI = 2 GeV)

respectively.
Figure 9 indicates that the values of αs(MZ0) measured from 〈1 − T 〉 , 〈ρ〉 , 〈BW〉 and

〈BT〉 are in agreement within errors with previous analysis [15] and references in it.
In particular the αs(MZ0) values are steeply rising with moment order for the variables
〈(1 − T )n〉, 〈ρn〉 and 〈(BT)n〉. On the other hand, the value of αs(MZ0) for 〈(BW)n〉
decreases when order n increases, because these moments are not universal [15]. Our
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Figure 7. Fits to distributions of the total jet broadening (BT) for different centre-of-
mass energies.

results are consistent with the values obtained from JADE and OPAL experiments as we
can see in figure 11.

The values of α0 (μI = 2 GeV) for four moments of event-shape observables in
figure 10 show slow increase with increasing order n.

The α0(μI) values of BW are much lower than those of the other observables. Fit
to PYTHIA and the AMY data of 〈B1

W〉 gives αs(MZ0) = 0.12382 ± 0.0022 and
α0 (μI = 2 GeV) = 0.3112 ± 0.08 GeV. So, at lower energies where the coupling is
large, the compensation is stronger, and the power correction for this parameter is not uni-
versal; while different orders for BT show very steep rising, because it is both a universal
and a complete variable.

Finally, the combined results for αs and α0 values in event-shape moments are summa-
rized in table 4. In this table, we observe that the error in different orders of event shapes
on extraction of αs(MZ0) from BW is considerably smaller than those of ρ, 1 − T and
BT. Consequently, the theoretical description of the moments of BW displays a higher
perturbative stability, which is reflected in the theoretical uncertainty on αs(MZ0) derived
from them. We conclude that our results obtained from PYTHIA and the AMY data are
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Figure 9. Measurement of αs(MZ0) using moments of four event-shape observables.
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Figure 10. Measurement of α0 (2 GeV) using moments of four event-shape
observables.

Figure 11. Measurements of αs(MZ0) and α0 (μI = 2 GeV) from moments of four
event-shape variables at PETRA and LEP energies [15].

consistent with those obtained from LEP (table 3, figure 3) and also with those obtained
from JADE experiment (figure 11).

5. Conclusions

In this paper, we studied the perturbative and non-perturbative contributions to the
moments of event shapes in e+e− annihilation. We introduced an analytical hadroniza-
tion model called dispersive model. We extended this model for non-perturbative power
corrections to include all logarithmic corrections to NLO order.
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Table 4. αs and α0 values up to the fifth order for combined Monte Carlo and the
AMY data.

Event-shape variables n αs(MZ0) α0 (μI = 2 GeV)

〈(1 − T )n〉 1 0.11128 ± 0.00299 0.50639 ± 0.02593
2 0.13055 ± 0.00168 0.51834 ± 0.01019
3 0.14167 ± 0.00166 0.53409 ± 0.00798
4 0.14412 ± 0.00134 0.55495 ± 0.0088
5 0.16179 ± 0.01171 0.61062 ± 0.07696

〈(ρ)n〉 1 0.1102 ± 0.00246 0.6147 ± 0.0327
2 0.11788 ± 0.00044 0.63289 ± 0.00486
3 0.1225 ± 0.0014 0.63373 ± 0.01324
4 0.1253 ± 0.0021 0.68711 ± 0.01544
5 0.12585 ± 0.00067 0.7464 ± 0.00726

〈(BW)n〉 1 0.12382 ± 0.00229 0.31126 ± 0.08593
2 0.1245 ± 0.00017 0.3904 ± 0.00057
3 0.12159 ± 0.00065 0.4693 ± 0.02022
4 0.11421 ± 0.00069 0.57942 ± 0.03309
5 0.11033 ± 0.00053 0.62981 ± 0.02799

〈(BT)n〉 1 0.12326 ± 0.00243 0.59486 ± 0.03171
2 0.12442 ± 0.00072 0.64896 ± 0.01384
3 0.12961 ± 0.00074 0.65861 ± 0.01302
4 0.13015 ± 0.00114 0.67062 ± 0.02031
5 0.13356 ± 0.0014 0.65128 ± 0.0256

We used this newly obtained theoretical description of the event-shape moments to
analyse data from AMY and PYTHIA for determining the strong coupling constant αs

and the non-perturbative parameter α0. We also reviewed the results obtained from LEP
(DELPHI and L3) and also the results obtained from JADE experiments. The most
common variables used are: thrust, heavy jet mass, wide jet broadening and total jet
broadening.

We have done it by fitting the experimental data with this model. We observed that
results obtained from the dispersive model follow the same trend as those of the Monte
Carlo data. In addition, the value for the AMY data at the range of 52–60 GeV centre-
of-mass energy is consistent with both the Monte Carlo distribution and the dispersive
model.

In this fitting, we extracted the coupling constant αs(MZ0) and also the non-perturbative
parameter α0(μI) in low-energy momentum scale.

Our best fitting result with dispersive model for the values of average coupling con-
stant are: αs(MZ0) = 0.1171 ± 0.00229 and α0 (μI = 2 GeV) = 0.5068 ± 0.0440 GeV.
Our results are consistent with those obtained from both LEP and JADE experimental
values for these parameters.
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