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Abstract—With the emerging of smart grid, residential 
consumers have the opportunity to reduce their electricity cost 
(EC) and peak-to-average ratio (PAR) through scheduling their 
power consumption. Moreover, it is obviouslyimpossible to 
integrate a large scale of renewable energy sources (RES) without 
extensive and pervasive participation of the demand side. We are 
looking for a way to provide the system operators with the 
capability of increasing the penetration of RES besides 
maintaining the reliability of the power grid via load 
management and flexibility in the demand side.In this paper, first 
we present a novel architecture of home EMS and automated DR 
framework for scheduling of various household appliances in a 
smart home, and then propose a genetic algorithm (GA) based 
approach to solve this optimization problem. The primary aim is 
to provide consumers with a simple smart controller which can 
result in maximum benefits and cost reduction with respect to 
consumer preferences and convenience level. The profit of utility 
companies is also considered via diminishing the PAR which 
would lead to improving the stability of the entire power system. 
The real-time price (RTP) model in spite of its privileges has the 
tendency to accumulate a lot of loads at a pretty low electricity 
price time. Therefore, in this paper we use the combination of 
RTP with the inclining block rate (IBR) model which has the 
capability to remarkably decrease the PAR and eliminate 
rebound peak during low price periods. We present three 
different case studies with diverse power consumption patterns to 
evaluate the performance of our proposed approach for home 
EMS. The simulation results demonstrate the terrific impact of 
this method for any household load shape. 

Keywords- automated demand response; home energy 
management system; real time price; inclining block rate; peak to 
average ratio;  smart grid. 

I. INTRODUCTION 
Rising demand for electricity, growing share of 

intermittent renewable energy sources, increasing energy costs 
and environmental concerns are just a few of the challenges 
that face the energy industry. With such a diverse set of issues, 
it is essential to adopt a comprehensive approach to overcome 
these barriers through transitioning to a smart grid [1]. The 
emerging smart grid by use of advanced metering 
infrastructure (AMI), which can deliver real-time electricity 
prices to consumers and simultaneously send back their power 
consumption data to the utility companies, can address the 
major part of these issues [2], [3]. Demand response (DR) as 
one of the main topics in the smart grid, can provide the 

system operators with the capability of increasing the 
penetration of renewable resources besides maintaining the 
reliability of the power grid via load management and 
flexibility in the demand side. At the same time, consumers 
will have the opportunity to control their power usage as well 
as reducing their costs. In some cases, this can even lead to 
consume more electrical energy, but pay less for it [4]. 

Due to the fact that industrial and commercial sectors have  
a considerable occasion for offering large load in order to 
participate in DR programs, such as direct load control (DLC), 
the vital role of residential customers is often forgotten, while 
this sector makes up a notable portion of total energy demand 
[5]. Moreover, residential consumptions constitute a 
significant percent of peak load and are still growing. Since 
DR has been designed to shave peak load, the residential part 
simply cannot be ignored. 

Because traditional DR is often done manually, it is 
difficult for residential customers to track hourly price signals 
and respond to them by changing the daily schedule of their 
appliance usage, whereas they do not have sufficient 
knowledge and time. Thus, automated DR is necessary for 
attracting more householders to take part in DR programs. 
Obviously it is impossible to profit from all of its various 
privileges without extensive and pervasive participation of the 
demand side [6], [7]. Hence, energy management system 
(EMS) has been presented to control in home power 
consumption with regard to DR signals, real-time price (RTP), 
consumer preferences and specific comfort level. In recent 
years, several architectures for home EMS and power 
scheduling have been proposed that authors attempt to design 
optimal software and hardware schemes [8]-[12]. The primary 
aim is to provide consumers with a simple smart controller 
which can result in maximum benefits and cost reduction with 
the least inconvenience to residents [13]. Nowadays, the 
emergence of smart home appliances which can communicate 
with one another and EMS over the home area network 
(HAN), has facilitated achieving of this goal. Once the EMS is 
set, it will constantly communicate with smart meter (AMI) to 
send and receive home energy consumption and RTPs in order 
to plan the use of appliances given their power consumption, 
price data and job deadlines [14]. 

Early demand side management (DSM) programs have 
been implemented via techniques such as DLC with which the 
customers should permit the utilities (independent system 
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operators (ISO), aggregators, third party control companies, 
etc.) to disconnect selected appliances or curtail a certain load 
remotely on short notice when needed; in contrast, the 
consumers will receive a rebate or incentive on their electricity 
bill [15]. Although DLC is a simple and effective approach for 
DSM, unfortunately it cannot happen frequently and provide 
little flexibility for alleviating the uncertainty of renewable 
resources integration. Furthermore, it is not proper for load 
management in systems comprising a large number of 
appliances with relatively low power consumption [16]. 

Probably real-time pricing is the most efficient and 
practical DR program for being recognized in competitive 
markets that reflects wholesale power market conditions; also, 
it is the most inexpensive way of managing electricity 
demand. In this method, the load control is done indirectly via 
sending appropriate price signals according to energy 
consumption, power market and other economic and technical 
factors. Utilities can affect resident decisions by changing the 
electricity price in real-time with no incentive payment. 
Similarly, consumers have a chance to decline their costs 
based on their own desire [5]. Despite the mentioned 
advantages of  RTP, it has the tendency to cause even more 
volatility and instability in the electricity market and power 
system, due to customers respond to these signals. If all the 
customers receive the same RTP signals, the entire home 
EMSs will schedule the appliance utilization by shifting 
demand to the hours with lower price which would lead to a 
new peak load and higher peak-to-average ratio (PAR) at these 
times. Multiple approaches have been presented in order to 
avoid such a rebound peak which include, having a period of 
flat price at night and randomized scheduling at home, 
exerting different prices to different homes at night and 
signaling maximum allowable power to homes [17]. The 
adopted method in this paper is the combination of RTP with 
the inclining block rate (IBR) which can be the most efficient 
pricing model to replace the current flat rate tariffs. In IBR 
model, the electricity price would reach a higher level than the 
normal condition when the total energy consumption of 
residents exceeds a predetermined threshold. This model can 
remarkably reduce the PAR and eliminate rebound peak 
spikes during low price periods via applying both the real-time 
wholesale prices and the maximum allowable energy 
consumption level [18]. 

In the literature, substantial research effort has been 
devoted to investigate optimal residential load management 
techniques. Nevertheless, a few of them have considered a 
realistic view of various initial power consumption profiles. 
Reference [19] has studied a residential energy consumption 
scheduling to achieve a desired trade-off between minimizing 
the electricity cost (EC) and the waiting time for the operation 
of each appliance in a household based on the simple linear 
programming. Authors in [20] proposed a method to aggregate 
and manage consumer preferences to maximize both energy 
efficiency and user satisfaction, but the rebound peak and 
PAR were not considered. In [21], the presented demand 
management scheme takes into account the consumer comfort 
level to minimize the energy cost and PAR while maximizing 
the comfort level of consumers. However, it seems impractical 
and irrational to set a time for appliances such as TV and 

computer in advance or control the critical loads like freezer 
since it can extremely affect consumer convenience. In [22], 
the authors investigate the impacts of charging a large-scale 
electric vehicle on residential distribution networks including 
the transformer. Hence, a DR strategy has been proposed as a 
load shaping tool that allows improvement in distribution 
transformer usage with regard to consumer preferences, load 
priorities and privacy. In [23], an intelligent home EMS 
algorithm was presented for managing high power 
consumption household appliances according to their preset 
priority and preserving total energy consumption below a 
certain level. 

The rest of this paper is organized as follows. Section II 
presents the proposed architecture of home EMS in a HAN 
and describes the required conditions for scheduling different 
types of loads in a smart home. Section III has been devoted to 
define the optimization problem and its formulation via 
genetic algorithm (GA) for the purpose of reducing the EC 
and PAR with respect to consumer constraints. In section IV, 
we propose three separate case studies with various energy 
consumption patterns and discuss about simulation results. 
Finally, the conclusions of this study are expressed in section 
V. 

II. ARCHITECTURE OF HOME ENERGY MANAGEMENT 
SYSTEM 

In the proposed model, weassume a smart home consisted 
of smart appliances having the adequate communication 
interfaces for handling information exchange with the EMS. 
This architecture enjoys three data communication domains, 
including the smart meter domain (AMI), the internet domain 
and home area network (HAN). (Fig. 1) The smart meter 
domain represents tens of millions of networked smart meters 
so-called “AMI” deployed and controlled by utilities to 
transmit DR signals and load information between the smart 
homes and power market. The internet domain provides 
consumers with the ability of controlling and monitoring their 
power consumption profile, appliance usage schedule, energy 
savings and etc. through an in-home display (computer, tablet 
or smart phone). The home EMS schedules the pattern of 
electricity consumption for the next day based on the 
received 24 hours RTP signals and acts as a central gateway 
to both the internet and smart meter domain. According to 
consumer preset time intervals, power consumption and 
complete operation duration of each smart appliance, EMS 
determines the most suitable start time and send it to all of 
them via wireless HAN for minimizing the expense of 
electricity usage [13]. 

At first, a thoroughstudy must be done on the residential 
load profile in order to find out different home appliance 
capabilities to be controlled. Due to this fact, home appliances 
classified into two major types as follows: 

1) Schedulable appliances: This kind of appliances can          
be operated automatically without manual control and divided 
into two categories based on their operating characteristics, 
including time-shiftable and temperature-shiftable appliances.  
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Fig.1. Architecture of energy management system [31] 
 

The utilization of first type appliances (e.g., washing 
machine, dishwasher, plug-in hybrid electric vehicle (PHEV), 
clothes dryer)  can be delayed or shifted earlier by a few time 
slots without much impact on consumer convenience. In fact, 
any of the above mentioned loads can adapt themselves with 
time shift in their operation to some extent and this tolerance 
varies for each device. These loads have a fixed certain 
duration and required to start and finish at specific moments. 
The second type appliances (e.g., Heating Ventilation Air 
Conditioning (HVAC), refrigerator, water heater) are almost 
always in running state for a long time period and changing 
the temperature setting will alter their power consumption 
rate. The operation of these loads can be interrupted 
intermittently in an acceptable temperature shift interval. 
Indeed, the accumulation of these appliances contributes to the 
increase of peak load. Consequently, an accurate management 
of them is a crucial task that can significantly influence on 
energy efficiency and EC on demand side [7] [21]. 

2) Unschedulable appliances: In various papers, these 
loads have been referred as manually operated appliances, 
baseline loads and real time appliances that all of these names 
indicate the inherent nature of their operation manner [2], [5], 
[24]. The power consumption of these appliances (e.g., 
lighting, TV, vacuum cleaner) must be supplied immediately 
at any time on resident's request and it is impossible to offer a 
predetermined schedule for them. 

The European Smart-A project investigates how smart 
domestic appliances can contribute to load management in 
future energy systems and provides a detailed assessment of 
the acceptance of smart appliance operation by users[25]. The 
project has been conducted in five European countries to 
reveal to which extent consumers will agree to load shifting. 
The outcome of this survey illustrates that there is a clear 
tendency up to 90% regarding consumer acceptance of smart 
appliances. For instance, about 77% of the consumers would 
at least accept a shift of 3 hours for washing machine, tumble 
dryer and dishwasher, they have also claimed to use the smart 
operation mode up to 90% or 100% of the time. For HVAC 
loads and water heater, an automatic regulation would be 
highly accepted (range between countries: 88 to 95%) if there 

is no loss of comfort. In order to convince consumers to buy 
smart appliances, some conditions have to be met such as 
mature technology, acceptable prices, financial incentives and 
maintenance or enhancement of comfort. In this paper, we use 
these data to define acceptable realistic time shift for 
schedulable appliances under EMS control regarding the 
household restrictions and convenience. 

 
 

 

 
 

Fig.2. Load shapes for July (hour loads as percent of annual loads) 
 
The National Energy Modeling System (NEMS) in the 

USA uses sectoral end use and industry type load shapes to 
build the overall system load shapes in each region. These 
load profiles consist of data for 3 day types (weekday, 
weekend day and peak day), each with 24 hourly values, for 
each of 12 months. Regional load shapes for space heating and 
space cooling are constructed using regional weather 
information [26]. The Residential Energy Consumption 
Survey (RECS) is conducted every 4 years in 16 states of the 
USA in order to collect statistical data of energy consumptions 
and usage patterns from households. According to RECS data 
and reasonable assumptions, the alternative load shapes have 
been built for all of the home appliances in each region[27]. In 
this paper, we employ the load patterns of space cooling, 
water heating, cooking, microwave oven, dishwasher, washing 
machine and clothes dryer in region 1 (including Illinois state) 
for two months of summer (June and July). (Fig. 2) 

Based on these real statistical data, we attempted to define 
three various power consumption patterns in two states 
(weekday and weekend day) regarding the difference in peak 
time and consumption rate during the typical hours of usage. 
In each case, different kinds and numbers of appliances with 
diverse times of use have been considered; hence, their related 
EC and PAR are varied, too. The RTP data are obtained from 
the Ameren Illinois Power Company for the period of June 1st 
2013 to July 31st 2013 [28]. Due to the assumption, utilities 
have the predicted RTP of 24 hours of the next day. 

Space Cooling Water Heating 

Cooking Clothes Dryer 
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Concerning pricing issues, the interested reader can refer to 
[29] and references therein. 

III. PROPOSED SCHEDULING METHOD FOR HOUSEHOLD 
APPLIANCES 

After transmitting RTP and DR signals to smart meters 
from the aggregator or utility company, the home EMS 
specifies the operation time of household appliances for the 
following day. In the proposed scheduling method, the main 
goal is minimizing the EC related to the energy consumption 
of appliances under EMS control with respect to consumer 
constraints. Therefore, it is required to determine the time 
parameters for each schedulable appliance including the 
utilization time range (UTR) during which the appliance must 
be run and its operation period be completed, the operation 
time duration (OTD) from start to finish the cycle, the average 
power consumption (APC) per hour. These three parameters 
(UTR, OTD and APC) are the inputs of our scheduling 
algorithm that can be set regarding the resident's desired 
comfort level, lifestyle and consulting with expert persons in 
this field. Obviously, as much as the UTR is longer, the EMS 
has more chance to decrease the cost; on the contrary, setting a 
strict limited UTR cannot lead to a notable decline. 

A. Optimization Model and Formulation 
We assume that 1 hour is divided into 10 time slots (i.e., 

the time resolution is 6-minute), thus the home EMS is 
executed once every 240 time slots a day. The resolution is set 
6-minute because it is short enough as a time unit for the 
operation periods of all the home appliances such as, electric 
kettle or rice cooker. Therefore, the shortest OTD of any 
appliance is set to be 6 minutes and generally, the OTD will be 
the integer multiples of the 6-minute. It is easy about HVAC 
loads; however, for appliances with fixed certain OTD like 
washing machine or dishwasher, it must be set greater than 
and the closest number to the actual OTD of the appliance. In 
this method, the OTD indicates the number of time slots. On 
the whole, the errors are just some minutes and small enough 
to be disregarded.For each use of any appliance along a day, 
we define a characteristic vector: 

 
Chara≡[ ts , tf , d , p ]                           (1) 
 

where a∈A is the sequence number of the set of smart 
appliances A, ts and tf are respectively the indexes of the start 
and the finish time slots, d indicates the OTD and p represents 
the APC value per time slot. Due to the fact that currently we 
do not have access to the energy use profile of the all home 
appliances, the average power consumption has been 
considered fixed during the operating cycle. 

B. Pricing Model 
As we already mentioned, RTP in spite of its benefits, has 

the aptitude to accumulate a lot of loads at a pretty low 
electricity price time. Hence, we combine RTP with IBR as 
follows: 

 
priceh (ch)= 

wherePh denotes the electricity price during the hth hour in 
a day, Ch is the total power consumption of schedulable 
appliances during the hth hour, thr is the given threshold for 
the maximum allowable power consumption during the hth 
hour. As long as the power consumption Ch is less than or 
equal to the threshold, the electricity price would be Ph; 
otherwise, it would be multiplied by coefficient β in order to 
impose more expense and prevent the formation of new peaks. 
Regarding to our formulation method, the hourly Ch and 
threshold have to be divided into 10 time slots, while the RTP 
values remain the same as before during an hour[18]. 

The IBR model plays an important role in peak shaving 
and PAR reduction. Besides, it is a crucial task to assign 
proper optimal values to the threshold and β since it can be 
extremely effective. These two parameters must be determined 
based on a trade-off between cost reduction and PAR decline. 
In this paper, we assume β= 1.5 according to the ratio of the 
two electricity price levels in British Columbia Hydro[30]. 
The selected threshold is about 25% to 30% of the whole 
power consumption of schedulable appliances along the day 
(from 7 am to 11:59 pm); but during the night (from 12 am to 
6:59 am) due to turning off most of the consumer electronics 
and the baseline load decrease, it is considered 40%. 

C. Genetic Algorithm 
In this paper, we adopt an enhanced GA to solve our 

optimization problem. The fitness function is defined as 
follows: 

 
Min    F= Σ priceh (Ptotal

h) .Ptotal
h 

S.t.tset
(a)∈ [ts , tf‒ d]                              (3)                   

 
wherePtotal

(h) is the total power consumption of all the 
appliances (a∈ A) in the hth time slot after scheduling. The 
final goal is to obtain the variable tset

(a) i.e., the optimal time to 
begin the operation of the appliance a. Furthermore, this 
variable must be greater than or equal to ts and less than or 
equal to tf −d; because the operation cycle has to be completed 
in this time interval. 

The initial population is 50 and double vector type, the 
scattered crossover rate equals to 0.9 and the mutation rate 
decreases adaptively with generation growth. We consider two 
elitisms in order to guarantee the best result and use the 
tournament selection method. The GA finds the optimal tset for 
each appliance after 50 to 60 generations. The stopping 
criteria are set as no changes in the fitness function up to 6 
decimal places. For each case study, the GA program has been 
executed several times to ensure about achieving the global 
optimum time setting. 

 

IV. SIMULATION RESULTS 
In this section, we present three different case studies to 

assess the performance of our proposed approach for home 
EMS and compare the simulation results. Phif  0 ≤ Ch ≤ thr 

β .Ph    if Ch>thr 
(2) 



An Efficient Home Energy Management System for Automated Residential Demand Response 
28th Power System Conference - 2013 Tehran, Iran 

5  
 

A. Case Study 1 
We choose 7 kinds of appliances that are available in most 

homes (with regard to [27]). Although some of them may be 
used more than once a day by residents e.g., air conditioner 
will be operated several times along a day; therefore, in our 
simulation 13 times uses of appliances are considered. Table I 
shows the parameters of all the appliances under EMS control 
in case study 1. The threshold is set to 25% of the whole 
power consumption during the day that is equal to 0.3kWh per 
time slot and 35% during the night that is equal to 0.4kWh per 
time slot. 

Fig. 3  demonstrates the initial power consumption pattern 
of schedulable appliances (before scheduling) in two types 
(weekday and weekend). According to this load shape, the 
average daily EC for two months is 73.72 cents and the PAR 
is equal to 6.65 that is considered as a high peak load. Since 
only 7 numbers of appliances have been assumed for 
scheduling, the daily EC is not high; however, consumer could 
save 1681.5 cents with the use of our proposed method after 
two months. The average daily EC with a 37.4 % reduction 
becomes 46.14 cents and the PAR declines to 4.3 with a 
35.4% reduction. As Fig. 4 shows, in addition to decreasing 
the cost, this approach has a terrific ability of peak shaving 
that is very significant for the utilities. 

TABLE I.  DEFINED OPERATION PATTERN BY THE RESIDENTS 

Weekday Schedule Weekend Schedule 

Appliances APCkw UTR OTD UTR OTD 

Air Conditioner 1.2 105~125 8 95~135 16 

AirConditioner 1.2 126~155 12 136~155 8 

Air Conditioner 1.2 156~180 10 156~175 8 

Air Conditioner 1.2 181~205 9 176~205 11 

Air Conditioner 1.2 206~225 7 206~235 10 

Water Heater 1.5 65~105 15 80~115 14 

Water Heater 1.5 175~205 9 116~145 12 

Water Heater 1.5 206~230 6 180~220 12 

Microwave Oven 1.3 165~195 3 100~120 3 

Electric Kettle 1.2 65~85 1 85~105 1 

Clothes Dryer 2.4 1~70 10 1~80 10 

Dishwasher 1.2 1~70 18 1~80 18 

Washing Machine 0.96 210~240 8 195~240 8 

 

B. Case Study 2 
In case study 2, we select 8 appliances through adding 

PHEV (3300w, UTR=1~60, OTD=25) and replacing 
Microwave oven with Rice cooker (650w, UTR1=110~140, 
UTR2=180~210, OTD=5). We consider 15 times operations of 
appliances per day; thus, the average daily EC increases to 
102.78 cents due to involving more schedulable appliances in 
home EMS and consequently, more chance of decreasing the 
cost. 

 
Fig.3. The initial power consumption pattern without scheduling: (A) 

weekday; (B) weekend 

 
Fig.4. The impact of the proposed approach on: (A) daily EC; (B) PAR 

 
Moreover, the PAR of the assumed load shape is 5.11 that 
indicates a medium peak load. Fig. 5 illustrates simulation 
results that have been led to 41.2% reduction in EC and 
30.63% reduction in PAR. Because of this scheduling 
algorithm, residents could decrease their EC to 60.42 cents 
and save 2584.2 cents in two months. Similar to case study 1, 
the PAR has been also diminished; however, the reduction in 
PAR is less than EC. Regarding to the initial power 
consumption pattern, most of the times, the peak load has been 
occurred during the highest electricity price hours; therefore, a 
slightly load shifting could result in an enormous EC 
reduction. 

In order to have a sensible perception of the IBR model 
effectiveness on decreasing PAR, Fig. 6 is presented. Fig. 
6(A) demonstrates the real-time electricity price on July 3th 
2013 adopted from [28]. According to the profile, from 2 am 
to 5 am, the RTP is about 0.018 $/kWh which is the lowest 
price during that day. Fig. 6(B) shows the load profile without 
scheduling and with scheduling based on RTP combined with 
IBR model. The power consumption is scattered due to the 
applied threshold; on the other hand, when RTP model is used 
alone (Fig. 6(C)), plenty of load would be aggregated during 
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these hours. As a result, the phenomenal performance of our 
method in the aspect of eliminating the peak demand is 
proved. 

 

 
Fig.5. The impact of the proposed approach on: (A) daily EC; (B) PAR 
 
 

 
 

Fig.6. (A) RTP profile on July 3th 2013; (B) Power scheduling based on RTP 
combined with IBR model; (C) Power scheduling based on RTP alone 
 

C. Case Study 3 
In this section, the load shape is altered again by removing 

the Clothes dryer and PHEV; nonetheless, we have both the 
Microwave oven and Rice cooker. 

 
Fig. 7. The initial power consumption pattern without scheduling: (A) 

weekday; (B) weekend 
 

 
Fig. 8. The impact of the proposed approach on: (A) daily EC; (B) PAR 

 
Besides, the usage time of appliances is determined 

differently from the other case studies in order to achieve a 
new initial power consumption pattern. Although we still have 
7 kinds of schedulable appliances, because of omitting two 
loads with pretty high power consumption, the average daily 
EC lessens to 58.15 cents. In the assumed load shape, PAR is 
about 3.98 that indicates a low peak load and the profile is 
approximately uniform. In this section, we are willing to 
assess the performance of our proposed method in such strict 
situations (Fig. 7). 

As Fig. 8(A) illustrates, the average daily EC with a 25% 
reduction becomes 43.57 cents and the average PAR declines 
to 3.96 which is almost the same as before. The results show, 
although the primary load profile is relatively flat with a low 
PAR, the proposed scheduling algorithm still has the ability to 
decrease the EC. Despite the fact that PAR is almost 
unchanged, a proper scheduling with high flexibility in 
demand side can shift the time of the peak load to lower 
electricity price hours. Sometimes, this can lead to PAR 
enhancement as shown in Fig. 8(B); still, the average value 
remains fixed. 
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Since the domestic appliances assumed in these 
simulations are all typical appliances for common residents, 
and enough combinations with diverse conditions were 
considered, we believe that the proposed approach can be 
effective and practical for any household. 

 

V.    CONCOLUSION 
In this paper, we presented a novel architecture of home 

EMS and automated DR framework for load scheduling of 
various household appliances in a smart home. We considered 
the profits of both the consumers and utility companiesvia 
minimizing the EC as well as the PAR which leads to interest 
residents to participate in DR programs, and simultaneously 
improve the stability of the entire power system. The GA 
proposed method acts based on the preferences and 
convenience level determined by the consumer and has the 
capability to offer more than one consumption plan with 
relatively the same EC and PAR; hence, the consumers have a 
chance to select the most reasonable one. Through the 
combination of RTP with IBR pricing model, we could 
eliminate the rebound peak and flatten the load profile. 

Regarding the simulation results, our proposed approach 
for power consumption scheduling can feasibly control and 
manage diverse kinds of load shapes. For future work, 
discovering an optimal reasonable value for the threshold and 
β is suggested since it can be notably influence the results. 
There are still barriers to home EMS such as expensive smart 
appliances or lack of sufficient knowledge and information 
about EMS benefits on the demand side; however, with 
advancement in both the wireless and embedded system 
technologies, home EMS is expected to grow in the coming 
decades, particularly for new residential buildings. 
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