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a b s t r a c t

In this study, a numerical model based on the complete solution of the NaviereStokes equations is
proposed to predict the behavior of the submerged circular cylinder wave energy converter (WEC)
subjected to highly nonlinear incident waves. The solution is obtained using a control volume approach
in conjunction with the fast-fictitious-domain-method for treating the solid objects. To validate the
model, the numerical results are compared with the available analytical and experimental data in various
scenarios where good agreements are observed. First, the free vibrations of a solid object in different
non-dimensional damping ratios and the free decay of a heaving circular cylinder on the free surface of a
still water are simulated. Next, the wave energy absorption efficiency of a circular cylinder WEC calcu-
lated from the model is compared with that of the available experiments in similar conditions. The re-
sults show that tuning the converter based on the linear theory is not satisfactory when subjected to
steep incident waves while the numerical wave tank (NWT) developed in the current study can be
effectively employed in order to tune the converter in such conditions. The current NWT is able to predict
the wave-body interactions as long as the turbulence phenomena are not important which covers a wide
range of Reynolds and Keulegan-Carpenter numbers.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The wave energy as a renewable energy has inspired numerous
inventors and motivated many experimental and numerical in-
vestigations. Yet, several reviews have been published in this regard
two of which are the book of McCormik [1] and a recent review
paper by Falcao [2]. Although various types of wave energy con-
verters (WECs) have been designed, no single technology has yet
been recognized to be superior to the others.

The design of several WECs is based on the oscillatory motion of
a submerged or floating part against a fixed reference. Depending
on thewater depth, different types ofWECsmight bemore efficient
in terms of energy absorption. The vertical force component of the
waves are the main source of energy in the offshore WECs such as
the floating buoys while near-shore devices, like bottom-hinged
flaps, utilize the horizontal force component. A device where
both the horizontal and vertical force components can be absorbed
was first proposed by Evans [3]; this device includes a horizontally
aligned cylinder that can move elliptically during the wave. He
derived a linear theory for the performance of this class of wave
: þ98 511 8626541.
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energy absorbing bodies. The submerged cylinder exhibits a large
efficiency (up to 100% theoretically) in a wide range of wave fre-
quencies [3]. Dean [4] and Ogilvie, [5] using linear wave diffraction
theory, showed that no energy is reflected from the cylinder
whether it is fixed or freely buoyant. This fact is also valid for a case
where the cylinder is constrained by springs and dampers in two
orthogonal directions and the constants of spring and damper are
the same in both directions [3]. Evans showed that for certain
constants of the spring and damper corresponding to a given fre-
quency, the transmitted wave would also be eliminated resulting in
the complete absorption of the incident wave energy. Very recently,
Heikkinen et al. [6] using the potential flow theory, investigated the
effect of phase shift, cylinder radius, wave height and wave period
on the efficiency of the submerged cylinder wave energy converter.

For wave energy applications, a good agreement has been re-
ported experimentally in several studies (see for example [7]) be-
tween the results of the linear theory and those of the experiments
in small (H/L < 0.01) to moderate wave steepness (0.01 < H/
L < 0.03), where H and L being the wave height and length,
respectively. However, for steep waves (H/L > 0.03) or in the wave
conditions that excite resonances, due to non-linear and/or viscous
effects, considerable discrepancies have been reported in the
literature. Evans et al. [8] and Davis [9] demonstrated that the linear
theory completely fails to predict the performance of the
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submerged cylindrical wave energy absorbers for steep waves. This
drawback of the linear theory is mainly due to its limiting as-
sumptions namely assuming the flow to be linear and irrotational,
and neglecting the viscosity effects.

A common practice to consider the effects of viscosity is to add a
damping term similar to the drag term in the well-knownMorison’s
equation [10]. This method has been employed by Davis [9] and
Babarit et al. [11]. In this method, however, estimating the drag co-
efficient is a major problem. Although there are many experimental
results available in the literature to determine the drag coefficient,
this methodology leads to a poor prediction of the absorption effi-
ciency [9] and considerable uncertainties in the results [11]. There-
fore, considering a constant value for the drag coefficient for an
elliptically moving cylinder will lead to unrealistic wave forces.

In this study, the behavior of a submerged cylinder WEC is
simulated using the complete solution of the NaviereStokes
equations in conjunction with the fast fictitious domain method
[12] for treating the solid objects. The numerical model is a modi-
fied version of the one previously developed by Mirzaii and
Passandideh-Fard [13] for modeling fluid flows containing a free
surface in presence of an arbitrary moving object. Using this nu-
merical model, the wave forces on the submerged cylinder con-
taining the viscous drag forces are calculated via solving the
NaviereStokes equations in each time step. The results of the
proposed model show a good agreement with those of the exper-
iments even for steep waves.
2. Mathematical model

2.1. Problem setup

The schematic of the computational domain shown in Fig. 1 is a
rectangular numerical wave tank (Lc � Hc) equipped with a flap-
type wavemaker and two passive damping zones. A solid object
representing the flap-type wavemaker is positioned at x ¼ Xp from
the left, and the circular cylinder representing the wave absorber is
initially placed at x ¼ Ls in the submergence depth Sd measured
from the free surface. The cylinder is moored to the bottom of the
tank via springs and dampers aligned at 45 degrees with respect to
the x-axis.

The solid object representing the flap-type wavemaker is forced
to move according to a prescribed harmonic motion in order to
generate a desired wave. The domains of computations based on
Fig. 1 are considered as: Lc > 8L, Hc > 1.5d, Ld1 ¼ 0.25 m and
Ld2> 2L. More details on thewave generationmethodology used in
this study is given elsewhere [14]. The generated waves travel to-
ward the submerged cylinder and force it to move; as a result, some
parts of the wave energy are absorbed by the dampers.
Fig. 1. Schematic of the co
2.2. Fluid flow

The governing equations for fluid flow are the NaviereStokes
equations in two-dimensional, Newtonian, incompressible and
laminar flow:

V,V
! ¼ 0 (1)

vV
!
vt

þ V
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,VV
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where V
!

is the velocity vector, r the density, m the dynamic vis-
cosity, p the pressure, s! the stress tensor and F

!
b represents body

forces acting on the fluid. The interface is advected using Volume-
of-Fluid (VOF) method by means of a scalar field (F), the so-called
liquid volume fraction, defined as:

F ¼
8<
:

0 in the gas phase
0 <; < 1 in the liquid� gas interface
1 in the liquid phase

(4)

The discontinuity in F is a Lagrangian invariant, propagating ac-
cording to:

dF
dt

¼ vF
vt

þ V
!
,VF ¼ 0 (5)
2.3. Solid object treatment

As seen in Fig. 1, the solid objects that move within the
computational domain are the flap-type wavemaker and the sub-
merged circular cylinder which acts as the wave energy absorber.
Both objects are modeled via the fast-fictitious-domain method
[13] where the fluid flow equations are enforced everywhere in the
computational domain including fluid and solid zones. This con-
ceptual framework leads to a simple geometry and time indepen-
dent computational domain which can be discretized by a
structured and fixed grid mesh resulting in a considerable reduc-
tion of the required time for computations. There are several nu-
merical approaches presented based on the fast-fictitious domain
method such as those of Glowinski et al. [15,16], Patankar [17],
Patankar et al. [18] and Sharma and Patankar [12]. The numerical
method used in this study is a modified version of the Sharma and
Patankar model [12] developed by Mirzaei and Passandideh-Fard
mputational domain.
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[13]. This method is capable of handling unprescribedmotion of the
solids without solving any additional equation in the computa-
tional domain. The no-slip condition on the solideliquid interface is
imposed by attributing a high viscosity to the solid objects. In the
first stage of a computation in each time step, the governing
equations of fluid motion are solved everywhere in the computa-
tional domain including the solid zone without any additional
equation. Next, the rigid body motion for the submerged cylinder
can be obtained by imposing an additional condition that the total
linear and angular momentums in the solid body must be
conserved in each time step. For the flap-type wavemaker, how-
ever, the flap angular velocity is determined based on a harmonic
motion calculated to generate a desired wave [14]. Then, a velocity
change based on the average values is imposed only within the
solid zones; the change, however, is not projected into the fluid
domain. Considering an average velocity for the solid, leads to an
unrealistic slip condition in the solideliquid interface as stated by
Sharma and Patankar [12]. Therefore, in this study, a high viscosity
is attributed to the solid zone [13]. A summary of the computational
procedure followed in each time step of simulation is given below:

1) The solid object in the computational domain is identified using
a scalar parameter 4s defined as:

4s ¼
8<
:

0 Out of the solid
0 <; < 1 Solid boundary
1 Within the solid

(6)

2) The fluid flow equations are solved everywhere in the compu-
tational domain including the solid zone. In this step, the den-
sity and viscosity in each cell are defined as:

r ¼ Frl þ ð1� F � 4sÞrg þ 4srs (7)

m ¼ Fml þ ð1� F � 4sÞmg þ 4sms (8)

where subscripts l, g and s refer to liquid, gas and solid, respectively.
The viscosity of the solid is set by a large magnitude in comparison
with that of the liquid. This large magnitude of viscosity implicitly
imposes the no-slip condition on the solideliquid interface. It has
been shown elsewhere [13] that using a viscosity two orders of
magnitude larger than that of the fluid is large enough to have an
accurate solid body movement. It should be noted that within the
solid zone, the value of F is set to zero.

3) The average translational and rotational velocities in the solid
zones are obtained. For the solid object representing the flap-
type wavemaker, these velocities are calculated based on the
flap prescribed harmonic motion; while for the solid zone rep-
resenting the submerged cylinder they are obtained based on
the conservation of the momentum in the solid using following
integrals:

Ms V
!

s ¼
Z

Solid zone

rV
!

dc (9)

Isu
!

s ¼
Z

Solid zone

r!� rV
!

dc (10)
The velocity distribution inside the solid zone is then updated
accordingly. When the velocity in the computational domain is
updated, the interface is advected using Eq. (5).
2.4. Spring and damper forces

The effects of the external forces, which are the spring and
damper forces in this study, on the rigid body motion of the cyl-
inder are considered by imposing an additional body force in the
momentum equation for the computational cells inside the solid
zone. At each time step, this body force per unit mass of the solid
object is determined based on the spring and damper forces of the
previous time step according to the following relation:

a!added ¼
P

F
!

external
Ms

(11)

The above equation is applied in the two orthogonal directions
as:

ax;added ¼
P

Fx;external
Ms

¼
�ksx

�
xc;s � xfree

�
� cxUs

Ms
(12)

ay;added ¼
P

Fy;external
Ms

¼
�ksy

�
yc;s � yfree

�
� cyVs

Ms
(13)

where ksx, ksy, cx, cy are the spring constants anddamping coefficients
in the x and y directions, respectively.Us, Vs andMs are the horizontal
velocity, vertical velocity and themass of the solid object. xc;s, yc;s are
the center positions of the solid cylinder and xfree, yfree are the spring
free lengths in the x and y directions, respectively.
2.5. Absorption efficiency

The wave energy absorbed by the cylinder in one wave period
may be calculated as:

Eabs ¼
ZtþT

t

PabsðtÞdt ¼
ZtþT

t

F
!

wave
�
t
�
,V
!

s
�
t
�
dt (14)

where PabsðtÞ is the instantaneous absorbed power, F
!

waveðtÞ the
wave excitation force acting on the cylinder, and V

!
sðtÞ represents

the cylinder velocity. The total force, F
!

totðtÞ, consists of the spring,
damper, buoyancy and the wave excitation forces. According to the
Newton’s second law:

F
!

totðtÞ ¼ F
!

springðtÞ þ F
!

damperðtÞ þ F
!

bouyancyðtÞ þ F
!

waveðtÞ

¼ Ms
dV
!

sðtÞ
dt

(15)

Hence the wave excitation force can be written as:

F
!

waveðtÞ ¼ Ms
dV
!

sðtÞ
dt

� F
!

springðtÞ � F
!

damperðtÞ � F
!

bouyancyðtÞ
(16)

The energy absorption efficiency is the ratio of the mean
absorbed power, Pabs, to the total mean wave power, Pw, calculated
as [6]:
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h ¼ Pabs
Pw

¼

1
T

2
4 ZtþT

t

PabsðtÞdt
3
5

1
8 rwgH

2cg
(17)

where T is the wave period, rw thewater density, g the gravitational
acceleration, H the wave height and cg is the wave group velocity.
Because of the periodic motion of the cylinder, neither the spring
forces nor the buoyancy and inertia forces have an effect on the
mean absorber power; i.e.:

1
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�
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!

s
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�
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3
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t
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!
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,V
!
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3
5 ¼ 0 (20)

Thus, the absorption efficiency can be calculated using the
following:

h ¼

1
T

2
4 ZtþT

t

� F
!
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!

sdt

3
5

1
8 rgH

2cg
(21)

Since F
!

damper tð Þ ¼ �cV
!

s tð Þ, therefore:
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where L is the wave length, k the wave number and d is the still
water level.
3. Numerical method

For the discretization of the governing equations, a three-step
projection method is used in which the continuity and mo-
mentum equations are solved in three fractional steps [13]. In the
first step, the convective and body force terms in the momentum
equations are discretized using an explicit scheme. The viscosity
and pressure terms in this step are not considered. An intermediate
velocity field, Vnþ1/3, is then obtained as:

V
!nþ1=3 � V

!n

dt
¼ ��V

!
,VV

!�n þ 1
rn

F
!n

b (23)

In this study, the no-slip condition on the solideliquid interface
is imposed by attributing a high viscosity to the solid region. As a
result, the allowable time step for numerical simulation will
decrease dramatically if the viscous term discretization is per-
formed using an explicit scheme. This fact is due to a linear stability
time step constraint for an explicit scheme [19]. Therefore, in the
second step, an implicit discretization scheme is used to model the
viscous term of themomentum equation to obtain the intermediate
velocity from this step, Vnþ2/3, as:

V
!nþ2=3 � V

!nþ1=3

dt
¼ 1

rn
V,m

��
VV
!nþ2=3�þ

�
VV
!nþ2=3�T�

(24)

In this equation, the viscous term is discretized in the fractional
time step tnþ2/3. This leads to an implicit treatment of the viscous
termwhich, in turn, allows using a large time step for simulation of
fluids with high viscosities. Eq. (24) is solved using a TDMA (Tri-
Diagonal Matrix Algorithm) method to obtain Vnþ2/3.

In the final step, the second intermediate velocity is projected to
a divergence free velocity field as:

V
!nþ1 � V

!nþ2=3

dt
¼ � 1

rn
Vpnþ1 (25)

The continuity equation is also satisfied for the velocity field at the
new time step:

V,V
!nþ1 ¼ 0 (26)

Taking the divergence of Eq. (25) and substituting from Eq. (26)
results in a pressure Poisson equation as:

V,

�
1
rn
Vpnþ1

�
¼ V,V

!nþ2=3

dt
(27)

The obtained pressure field can then be used to find the final
velocity field by applying Eq. (25). The resulting set of equations is
symmetric and positive definite; a solution is obtained in each time
step using an Incomplete CholeskyeConjugate Gradient (LDLT)
solver [20]. Eq. (5) is used to track the location of the interface and
is solved according to the Youngs PLIC algorithm [21]. More details
regarding the model and the free surface treatment are given
elsewhere [13].

The initial condition considered in this study is a still water with
no velocity and no surface waves. The solid cylinder is at its equi-
librium position at rest. At the left, right and bottom boundaries of
the computational domain, as displayed in Fig. 1, the no slip con-
dition for the velocity components is imposed. At the top of the
domain, the outlet boundary with atmospheric pressure is used.
Two passive absorption zones, one just behind the wavemaker and
the other at the end of the computational domain are considered in
the simulations. The method used for treating these damping re-
gions is increased viscosity to a level high enough to effectively
damp the energy of the incident waves [14].
4. Results and discussion

Certain aspects of the proposed model have been previously
validated in other studies [13,14]. They include the ability of the
model to simulate the interaction of a solid object with a liquid in
presence of a free surface [13] and the wave generation method
[14]. In this study, therefore, the new developments in the model
will be examined. For this purpose, first, an analytical case (free
vibrations of a solid object) is considered where the accuracy of the
methodology used to apply the external forces to the solid object is
tested. Next, the problem of the free decay of a heaving circular
cylinder is studied and the results are compared with the available
analytical and experimental data. Finally, the wave energy ab-
sorption efficiency at various wave frequencies is compared with
the experimental results of Davis [9].



Fig. 3. Contour of solid volume fraction 4s at t ¼ 0.0 s for the free vibration of a circular
solid cylinder (Fig. 2).
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4.1. Free vibrations of a solid object

The first case considered for simulation is a single-degree-of-
freedom system with a viscous damper as shown in Fig. 2. If the
system, after an initial disturbance, is left to vibrate on its own, the
free vibration will continue until all the energy is dissipated by the
damper. The available analytical solutions for such an oscillating
system are classified based on the value of the damping ratio,
2 ¼ c=ccr, where c is the damping coefficient, ccr ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
ksMs

p
the

critical damping coefficient, ks the spring constant and Ms is the
mass of the solid object [22]. Depending on the damping ratio, 2, the
system is called under-damped for 2 < 1, critically damped for 2 ¼
1 and over-damped for 2 > 1. The computational domain consid-
ered for this simulation is a rectangle (0.5m� 2.0 m) given in Fig. 3.

A solid circular cylinderwith a diameter of 0.2m is initially placed
at (x ¼ 0.25 m, y ¼ 1.6 m). The figure shows the contour of 4s which
defines the solid zone according to Eq. (6). The cylinder is connected
to the ground (y¼ 0) bya springwhichhas a free lengthof 1.3mand a
spring constant of 500 N/m. The solid cylinder is surrounded by at-
mospheric air with reduced viscosity to eliminate the viscous drag
forces on the solid sphere. From a mesh refinement study, it was
found that for a mesh size corresponding to 10 cells per cylinder
radius (CPR), the results were mesh-independent. Also a time step
equal to T/100 (where T is the oscillation period of the un-damped
system) is found to be sufficiently small such that the results were
independent of the time step. Fig. 4 shows the center positions of the
solid cylinder as a function of time for different values of the damping
ratio: 2 ¼ 0:1 and 0:5 for under-damped systems, 2 ¼ 1:0 for a
critically-damped system, and 2 ¼ 1:5 for an over-damped system.
The figure shows a good agreement between the numerical results
and those of the analytics for all values of the damping ratio. The
velocity vectors at an intermediate time, t/T ¼ 0.77, for the critically-
damped system are shown in Fig. 5. Two recirculation zones formed
behind the falling cylinder can be well observed in this figure. The
Hc

d

D

Lc

Wall

W
a
l
l

x

y

W
a
l
l

Outlet

Sp
rin
g,
k

D
am
pe
r,
c

Ms

s

Fig. 2. Schematic of an oscillating system with a single degree of freedom.
close comparison between the simulations and analytics is an indi-
cation of the accuracy of the model for the external forces.
4.2. Free decay of a heaving circular cylinder

Consider a solid circular cylinder floating on the free surface of
an infinitely deep liquid. If the cylinder is slightly disturbed from its
stable equilibrium position in the direction normal to the free
surface, it will oscillate in a heave motion until the cylinder and the
liquid return to their equilibrium state at rest. An analytical solution
for such a transient motion of a half-submerged circular cylinder in
heaving oscillations is available in the literature [23,24]. Ito [25]
Fig. 4. Center positions of the solid cylinder of Fig. 2 as a function of time for different
values of the damping ratio.



Fig. 5. Velocity vectors at t/T ¼ 0.77 for the critically damped vibrations (2 ¼ 1:0) of
the solid cylinder of Fig. 2.

M. Anbarsooz et al. / Renewable Energy 64 (2014) 132e143 137
also studied the problem experimentally where a good agreement
between the experimental results and those of the analytics was
obtained. This case with similar conditions, as shown in Fig. 6, has
been investigated in this study to better illustrate the capabilities of
the proposed model. A solid circular cylinder with a radius of 0.1 m
in awater depth of 1.6 m (d/R¼ 16) is given an initial disturbance of
0.03 m (y0/R ¼ 0.3) and is left to oscillate on the water free surface.
The dimensions of the computational domain and the boundary
conditions are shown in Fig. 6. The right boundary is selected 4.0 m
away from the center of the cylinder; a high viscosity damping zone
is also considered at this boundary to avoid any free surface wave
reflections during the simulation. The density of the solid cylinder
is half of the water, rs ¼ 500 kg=m3.

The center position of the cylinder as a function of the non-
dimensional time, t

ffiffiffiffiffiffiffiffi
g=R

p
, in comparison with the experimental

results of Ito [25] and those of the analytics [24] is shown in Fig. 7.
As observed, the cylinder motion in y-direction approximately
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Fig. 6. The dimensions of the computational domain and the boundary conditions for the fr
scale).
follows a harmonic oscillatory motion in time with damping
amplitude [19]. The results of simulations are given for four
different mesh sizes characterized by the number of cells per cyl-
inder radius (CPR). As seen from the figure, a mesh size corre-
sponding to 20CPR guaranteed grid independent results. The
simulated results agree well with those of the experiments and
analytics; this validates the model and its underlying assumptions.

4.3. Submerged cylinder wave energy converter

In this section, the numerical model is applied to amore realistic
application involving the behavior of a submerged circular cylinder
WEC, the so-called “Bristol cylinder”. The cases considered are
similar to those performed by Davis in his experiments [9]. A cir-
cular cylinder with a diameter of D ¼ 0.1 m, a water depth
d ¼ 0.35 m, and a submergence depth Sd/D ¼2.0 is subjected to
several incident wave heights of H ¼ 16 and 31 mm with various
wave frequencies ranged from 0.8 to 1.6 Hz. The cylinder is tuned to
a frequency of 1.1 Hz based on the linear theory as follows. For a
given wave frequency, u=2p, the power absorption efficiency is
maximized by choosing the spring and damper constants as [8]:

ks;i ¼ ðMs þ aiiÞu2 and ci ¼ bii ði ¼ x; yÞ (28)

where aii is the added mass representing the apparent increase of
the cylinder inertia due to the liquid, and bii is the damping coef-
ficient of the cylinder due to its forced oscillation in the ith direc-
tion. The non-dimensional added mass, aii=rc, and the
dimensionless damping coefficient, bii=ruc, as a function of the
non-dimensional submergence depth, Sd/R, and the dimensionless
wave number, kR can be found in the literature [26,27].

In order to simulate each case, the dimensions of the computa-
tional domain must be adjusted according to the discussion given in
Section 2.1. These dimensions according to Fig. 1 for a typical case,
which is selected to be the conditions at the frequency of f ¼ 1.4 Hz
are: Lc ¼ 8.0 m, Hc ¼ 0.5 m, d ¼ 0.35 m, Ld1 ¼ 0.25 m, Ld2 ¼ 1.0 m,
Xp ¼ 0.5 m, Ls ¼ 4.0 m and Sd ¼ 0.1 m. The values of the spring and
damper constants in each direction are determined based on the
linear theory for f¼1.1Hzasksx¼ ksy¼826N/mand cx¼ cy¼20Ns/m.
A uniform mesh corresponding to 20 CPR is used in the entire
computational domain. Also a time step equal toT/100 (where T is the
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Fig. 7. The cylinder center position as a function of the non-dimensional time for the
free decay of a circular cylinder on the free surface of a still water (Fig. 6).
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Fig. 9. Time variations of the absorbed power in the x and y directions, for H ¼ 31 mm
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wave period) is found to be sufficiently small such that the results
were independent of the time step. The calculation time for this case
is about 48 h on a single core 2.4 GHz PC computer.

The time evolution of the free surface profile as the flap starts its
motion inside the water is shown in Fig. 8. The solid objects, which
are the flap-type wavemaker and the submerged circular cylinder,
are displayed in black. The wavemaker is forced to move with a
prescribed simple harmonic motion in order to generate a 31 mm-
height wave. The motion of the flapper is initiated using a linear
timeramp with a duration of 2T to eliminate the initial instabilities
[14]. The wave-generated motion of the submerged cylinder,
however, is calculated based on the momentum conservation
equations of the solid as described in Section 2.3.
Fig. 8. Time evolution of the free surface profile for the interactions of the 31
The resultant absorbed power in the x and y-directions as a
function of the non-dimensional time is shown in Fig. 9. After
nearly 13 wave periods (including the initial time ramp) steady-
state conditions are achieved. As the figure shows, the absorbed
power in the x-direction is slightly greater than that of the y-di-
rection. The total absorbed power is the sum of the power in the
two orthogonal directions. The simulation is repeated for several
wave frequencies for two wave heights of 16 and 31 mm with the
values of the spring and damper constants tuned for f ¼ 1.1 Hz. For
these simulations, the incident wave characteristics including the
wave number, wave steepness, wave group-velocity and wave po-
wer per meter of the crest are given in Table 1 for the 16-mmwaves
mm incident waves at f ¼ 1.4 Hz with the circular cylinder WEC (Fig. 1).



Table 1
Wave characteristics at various frequencies for the 16 mm-height waves.

Wave frequency (Hz) Wave number k kd kR H ¼ 16 mm

H/L cg (m/s) pL (W/m) Rex � 10�3 KCx Rey � 10�3 KCy

0.8 3.19 1.12 0.160 0.008 1.168 0.367 3.928 0.492 2.604 0.326
0.9 3.76 1.32 0.188 0.010 1.036 0.325 3.847 0.428 2.830 0.315
1.0 4.41 1.54 0.221 0.011 0.913 0.287 3.756 0.376 3.009 0.301
1.1 5.15 1.80 0.258 0.013 0.803 0.252 3.653 0.333 3.131 0.285
1.2 5.98 2.09 0.299 0.015 0.710 0.223 3.535 0.295 3.191 0.266
1.3 6.93 2.43 0.347 0.018 0.635 0.199 3.399 0.262 3.186 0.246
1.4 7.97 2.79 0.399 0.020 0.576 0.181 3.245 0.232 3.121 0.223
1.5 9.09 3.18 0.455 0.023 0.529 0.166 3.071 0.205 3.002 0.201
1.6 10.33 3.62 0.517 0.026 0.492 0.154 2.879 0.180 2.843 0.178

Table 2
Wave characteristics at various frequencies for the 31 mm-heightwaves.

Wave frequency (Hz) Wave number k kd kR H ¼ 31 mm

H/L cg (m/s) pL (W/m) Rex � 10�3 KCx Rey � 10�3 KCy

0.8 3.19 1.12 0.160 0.016 1.376 1.376 7.610 0.953 5.045 0.632
0.9 3.76 1.32 0.188 0.019 1.036 1.220 7.454 0.830 5.482 0.610
1.0 4.41 1.54 0.221 0.022 0.913 1.076 7.278 0.729 5.829 0.584
1.1 5.15 1.80 0.258 0.025 0.803 0.946 7.078 0.644 6.067 0.553
1.2 5.98 2.09 0.299 0.030 0.710 0.836 6.849 0.572 6.183 0.516
1.3 6.93 2.43 0.347 0.034 0.635 0.748 6.587 0.508 6.173 0.476
1.4 7.97 2.79 0.399 0.039 0.575 0.678 6.287 0.450 6.046 0.433
1.5 9.09 3.18 0.455 0.045 0.529 0.624 5.950 0.397 5.817 0.389
1.6 10.33 3.62 0.517 0.051 0.492 0.580 5.578 0.349 5.508 0.345
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Fig. 10. Wave absorption efficiency in comparison with the experimental and nu-
merical results of Davis [9] and those of the analytics [8].
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and in Table 2 for the 31-mm waves. Nearly all these cases fall
within the range of the intermediate water depth (p/10 � kd � p).
The oscillatory flow regime around structures can be characterized
by two dimensionless numbers, the Reynolds (Re) and the Keule-
ganeCarpenter (KC) numbers, defined as:

Re ¼ rUmD
m

(29)

KC ¼ UmT
D

(30)

where Um is the maximum flow velocity in a wave period T at the
level of the cylinder center. The values of the Re and KC numbers for
the x and y directions are also given in Tables 1 and 2. For the entire
cases, the Reynolds number was less than 1� 104 and the KC less
than 1.0. Based on the experimental studies of Sarpkaya [28] and
Honji [29], summarized by Sumer and Fredsoe [30], these condi-
tions guarantees that the flow regime remains laminar.

Fig. 10 shows a comparison of the total energy absorption
calculated in the present study with the numerical and experi-
mental results of Davis [9] and also those of the linear theory [8]. As
the figure shows, there is a substantial discrepancy between the
experimental results and the predictions of the linear theory. The
efficiency obtained from the measurements is considerably lower
than that of the linear theory. The experimental data also shows
that the maximum efficiency shifts toward higher frequencies as
the wave height increases. The shift in the maximum efficiency
implies that the values of the spring and damper constants are
mistuned [9]. In other words, application of Eq. (28) in tuning the
absorber for steep waves is questionable since this equation is
obtained based on the linear theory assumptions. As seen in Fig. 10,
although the numerical results of Davis [9] predict an efficiency
drop to some extent, there is still a considerable discrepancy be-
tween these results and those of the measurements. In addition,
the calculations of Davis [9] in contrast to his experiments predict
the maximum efficiency to occur at the tuned frequency of 1.1 Hz.
FromFig.10 it can be seen that thepredictions from thedeveloped
model in the present study are in a better agreement with the
experimental data in terms of both the efficiency values and the
frequency of the maximum efficiency. Although the results of the
present numericalmodel are ina convincingagreementwith thoseof
the experiments, still some discrepancy can be observed in Fig. 10.
Thismight be attributed to theway the spring and damper constants
are adjusted in the experiments. These values have been set up based
on themaximumorbit diameter of the cylinder in the experiments of
Davis [9] which may not necessarily represent the exact values
calculated from the linear theory and used in the simulations.

The above observation regarding the shift of the maximum ef-
ficiency may be further explained by the fact that at the tuned
frequency, a resonance should occur and the orbital motion of the
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Fig. 11. Cylinder center position exposed to 31 mm waves with f ¼ 1.3 and 1.6 Hz,
(A ¼ 0.0155 m).
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cylinder should increase considerably. The added mass and the
damping coefficient used to tune the cylinder are obtained for small
oscillatory motions of a cylinder in an inviscid fluid. These condi-
tions are violated especially around the resonance conditions
where the cylinder experiences large displacements. Fig. 11 shows
the transient non-dimensional center position of the solid cylinder
obtained from simulations for the 31-mmwaves at the frequency of
the maximum efficiency point (f ¼ 1.3 Hz) in comparison with that
of the highest considered frequency (f ¼ 1.6 Hz). As can be
observed, the range of the movement of the cylinder center at the
maximum efficiency is nearly two times larger than that of the
1.6 Hz. This might be a reason for the fact that the maximum effi-
ciency points in the experiments do not coincide with the tuned
frequencies calculated based on the linear theory.
4.4. Steeper waves

The largest wave heights in the experiments of Davis [9] are 31-
mm waves in a water depth of d ¼ 0.35 m. The maximum wave
steepness in his experiments is H/L ¼ 0.051 which occurs at the
maximum frequency of the tests (f¼ 1.6 Hz). In practice, however, a
submerged cylinder WEC might be exposed to steeper waves at
various water depths. The numerical wave tank developed in the
current study is capable of reproducing the fully nonlinear in-
teractions of viscous water waves with two-dimensional bodies as
long as the turbulence phenomena are not important. Assuming
the flow to be laminar, the method is applied to highly steep waves,
H/L ¼ 0.074, but still far enough from breaking. Similar conditions
Table 3
Wave characteristics at various frequencies for the 45-mm height waves.

Wave frequency (Hz) Wave number k kd kR H ¼ 45 mm

H/L c

0.8 3.19 1.12 0.160 0.023 1
0.9 3.76 1.32 0.188 0.027 1
1.0 4.41 1.54 0.221 0.032 0
1.1 5.15 1.80 0.258 0.037 0
1.2 5.98 2.09 0.299 0.043 0
1.3 6.93 2.43 0.347 0.050 0
1.4 7.97 2.79 0.399 0.057 0
1.5 9.09 3.18 0.455 0.065 0
1.6 10.33 3.62 0.517 0.074 0
to the experiments of Davis [9] (discussed in the previous section)
are considered, but with wave heights of 45mm. The incident wave
characteristics including the corresponding Re and KC numbers are
given in Table 3. For these cases, the laminar flow assumption is
valid for the wave frequencies in the range of 1.1e1.6 Hz [30].

The water free surface profiles for the case with a maximum
wave steepness (H/L ¼ 0.074 at f ¼ 1.6 Hz) at various non-
dimensional times are shown in Fig. 12. For this case a time ramp
equal to 4T is used for the initiation of the flap-type wavemaker
motion. As the figure shows, after nearly 12 wave periods the first
significant wave height reaches the cylinder. Clearly, the resultant
wave-generated motion of the cylinder increases as the wave
height increases. The center position of the cylinder when sub-
jected to the 45-mm wave is compared with the one subjected to
31-mmwave in Fig. 13 at the wave frequency of f ¼ 1.6 Hz. They are
both non-dimensionalized using the amplitude of the 31-mmwave
(A ¼ 0.0155 m). For the wave with a higher height, a considerable
increase in the orbital motion of the cylinder is evident. This, of
course will lead to a more departure from the validity of the linear
theory assumptions used in tuning the cylinder. As a result, a more
reduction in the absorption efficiency is expected. The calculated
total power absorbed for the 45-mmwaves is also shown in Fig. 10.
As can be seen, the efficiency for the 45-mm waves is dropped
compared to those of the 31 and 16-mmwaves; also, the maximum
efficiency point has further moved toward higher frequencies. As
the results indicate, the submerged cylinderWEC has a self-limiting
quality. In other words, although the input wave power increases as
height square, the fall in efficiency counteracts this positive effect
by limiting the power absorbed.
4.5. Tuning at large wave heights

As stated in the previous sections, the mistuning of the WEC is a
reason for the efficiency drop as the wave height increases. Accord-
ingly, in this section the effects of the spring anddamper constants on
the absorption efficiency are investigated separately for conditions
similar to those considered by Davis [9] in his experiments discussed
in previous sections. Fig. 14 shows the effect of the damping coeffi-
cient on the absorptionefficiencyat f¼ 1.1Hz for threedifferentwave
heights while the spring constant was held fixed at its value calcu-
lated based on the linear theory. The damping coefficients are non-
dimensionalized using the value calculated based on the linear the-
ory (namedhere cL). Clearly, at c/cL¼0.0noenergy is absorbed. As the
figure shows, for all the wave heights the maximum efficiency point
occurs in a damping coefficient larger than that of the linear theory.
However, the maximum efficiency point moves toward higher non-
dimensional damping coefficients as the wave height increases.
Such a behavior suggests that providing amechanismwhich enables
controlling the damping coefficient might be very helpful in
increasing the energy absorption efficiency of the WEC when
g (m/s) pL (W/m) Rex � 10�3 KCx Rey � 10�3 KCy

.168 2.900 11.047 1.384 7.324 0.917

.036 2.573 10.821 1.205 7.958 0.886

.913 2.267 10.565 1.059 8.462 0.848

.803 1.994 10.274 0.936 8.807 0.802

.710 1.763 9.942 0.830 8.976 0.749

.635 1.577 9.561 0.737 8.961 0.691

.576 1.430 9.126 0.653 8.776 0.628

.529 1.314 8.637 0.577 8.444 0.564

.492 1.221 8.097 0.507 7.996 0.501



Fig. 12. Time evolution of the free surface profile for the 45 mm incident waves at f ¼ 1.6 Hz interacting with the circular cylinder WEC (Fig. 1).
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subjected to large incident waves. Similarly, in Fig. 15 the effect of
spring constant on the absorption efficiency is shown when the
dampingcoefficientwasheldfixedat its valuecalculatedbasedonthe
linear theory (named here ksL) for f ¼ 1.1 Hz. Unlike the damping
coefficient, the maximum efficiency point moves toward lower non-
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Fig. 13. Cylinder center position at f ¼ 1.6 Hz for two wave heights, H ¼ 31 and 45 mm,
both non-dimensionalized using the 31-mm wave amplitude (A ¼ 0.0155 m).
dimensional spring constants as the wave height increases.
Compared to Fig. 14, the values of the non-dimensional spring con-
stants at the maximum efficiency points are closer to the values
determined based on the linear theory. In other words, the results of
theabsorptionefficiencyaremore sensitive to thevaluesof the spring
constant in comparisonwith those of the damping coefficient.
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Fig. 14. Efficiency variations at various dimensionless damping coefficients at
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5. Conclusions

A numerical model based on the complete solution of the
NaviereStokes equations is proposed in order to investigate the
behavior of the submerged cylinder wave energy converter (WEC).
The solution is obtained using a control volume approach in
conjunction with the fast-fictitious-domain-method for treating
the solid objects. In the numerical wave tank developed in this
study, both the prescribed harmonic motion of the flap-type
wavemaker and the wave-generated motion of the submerged
cylinder WEC are simulated. For validating the model, the free vi-
brations of a solid object in various non-dimensional damping ra-
tios and the free decay of a heaving circular cylinder on the free
surface of a still water are simulated. The numerical results are
compared with those of the analytics where a good agreement is
observed. Next, the wave energy absorption efficiency of a circular
cylinder WEC calculated from the model is compared with that of
the available experiments in similar conditions. The results of nu-
merical simulations for steep waves show that the wave energy
absorption of the cylinder falls off substantially as the wave height
increases. Moreover, the maximum efficiency point moves toward
higher wave frequencies with increasing the wave height. In other
words, tuning the cylinder based on the linear theory does not
work well for steep waves. Therefore, the effects of the spring and
damping constants on the absorption efficiency are investigated
using the developed numerical wave tank. Results show that as the
wave height increases, the maximum efficiency of the submerged
cylinderWEC occurs in larger damping coefficients relative to those
calculated based on the linear theory. Conversely, the maximum
efficiency as the wave height increases moves toward lower spring
constants relative to those of the linear theory. As long as the tur-
bulence phenomena are not important, the proposed numerical
wave tank can be effectively incorporated in the design of the
submerged cylinder WEC for a wide range of Reynolds and Keule-
ganeCarpenter numbers.
Nomenclature

A wave amplitude
c damping coefficient
cx, cy damping coefficients in x and y directions, respectively
d still water depth
F
!

b body forces
f wave frequency
F liquid volume fraction
g gravitational acceleration
H wave height ¼ 2A
Hc height of the computational domain
k wave number
ksx, ksy spring constants in x and y directions, respectively
L wave length
Lc length of the computational domain
Ld1, Ld2 length of the damping zones
Ls position of the submerged cylinder
p pressure
R cylinder radius
Sd submergence depth
t time
us horizontal velocity of the solid object
V
!

velocity vector
vs vertical velocity of the solid object
c volume
x horizontal coordinate distance
xc, s the center position of the solid object in the x-direction
xfree spring free length in the x direction
y vertical coordinate distance
yc, s the center position of the solid object in the y-direction
yfree spring free length in the y direction
m dynamic viscosity
r density
s stress tensor
4s solid volume fraction
u angular frequency
h free surface elevation
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