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Quantile Estimation Using Ranked Set Samples
from a Population with KnownMean

M. MAHDIZADEH AND N. R. ARGHAMI

Department of Statistics, School of Mathematical Sciences, Ferdowsi
University of Mashhad, Mashhad, Iran

Ranked set sampling (RSS) is a cost-efficient technique for data collection when the
units in a population can be easily judgment ranked by any cheap method other
than actual measurements. Using auxiliary information in developing statistical
procedures for inference about different population characteristics is a well-known
approach. In this work, we deal with quantile estimation from a population with
known mean when data are obtained according to RSS scheme. Through the
simple device of mean-correction (subtract off the sample mean and add on the
known population mean), a modified estimator is constructed from the standard
quantile estimator. Asymptotic normality of the new estimator and its asymptotic
efficiency relative to the original estimator are derived. Simulation results for several
underlying distributions show that the proposed estimator is more efficient than the
traditional one.

Keywords Mean-correction; Quantile estimation; Ranked set sampling.

Mathematics Subject Classification 62G30; 62G99.

1. Introduction

The method of ranked set sampling (RSS) is applicable when ranking the sampling
units can be done easily without actual measurement on them, which may be
difficult or expensive. McIntyre (1952) proposed this sampling strategy when
studying population mean of pasture yields in the context of agriculture. He claimed
that in estimating the population mean, RSS based estimator is more efficient
than that obtained by simple random sampling (SRS). The basic version of RSS
introduced by McIntyre can be elucidated as follows. First, the experimenter draws
k independent simple random samples, each of size k from the population. Then
the units within the rth (r = 1� � � � � k) sample are subjected to judgement ordering,
with negligible cost, and the unit possessing ith lowest rank is identified. Finally, the
identified units are measured. Proceeding in this way, we attain a ranked set sample
of size k. The success of this sampling scheme highly depends on the accuracy of
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Quantile Estimation 1873

ranking the k units. For this reason, the set size k must be kept small to reduce errors
in judgement ranking. If needed, this process can be replicated m times (cycles) to
yield a sample of desired size n = mk. Each cycle involves identifying k2 units which
only k of them are selected for actual quantification. These n measured observations
are said to constitute the ranked set sample denoted by �X�r�j � r = 1� � � � � k�
j = 1 � � � � m�, where X�r�j is the rth judgement order statistic from the jth cycle. In
the absence of ranking errors, X�r�j has the same marginal distribution as the rth
order statistic from a simple random sample of size k. It is worth noting that the n
resulting measurements are mutually independent.

Ranked set sampling received little attention for years until Halls and Dell
(1966) examined its effectiveness for estimating weight of herbage in a pine
forest. This was perhaps due to lack of mathematical foundation for RSS.
Theoretical support to this technique, without referring to McIntyre’s work, was
given by Takahasi and Wakimoto (1968) and, independently, by Dell (1969) while
investigating McIntyre’s proposal. Since then there have been a lot of contributions
to statistical inference based on RSS. The recent book by Chen et al. (2004)
presented a comprehensive survey and references on this topic. We now briefly
mention some of the literature, especially parts related to our work.

Nonparametric approach to RSS has been developed in a large number of
articles. Dell and Clutter (1972) formally showed that the sample mean using
RSS is an unbiased estimator of the population mean regardless of ranking
errors and it has a smaller variance than the sample mean using SRS when the
number of measured units are the same. Stokes and Sager (1988) characterized a
ranked set sample as a sample from a conditional distribution, conditioning on a
multinomial random vector, and applied RSS to the estimation of the cumulative
distribution function. Kvam and Samaniego (1994) discussed nonparametric
maximum likelihood estimation based on ranked set samples. Chen (1999) studied
the kernel method of density estimation in RSS. Chen (2000) considered quantile
estimation from RSS data and found that RSS method can substantially improve
the efficiency of the quantile estimators.

Being the most informative parameter of a distribution, mean is communicated
in scientific media more than any other population parameter. For example, World
Health Organization (WHO) has very reliable estimates of some health indices
(such as milligram of iron per liter of blood of 12 years old children of various
countries). The distribution of such indices are however not derived or at least not
published. So there are cases in which we may be interested in the quantiles of
a distribution with known mean. Now suppose that there is a simple and cheap
method of measuring the variable of interest in addition to the relatively expensive
method of measurement of the same quantity. The former can be used to order the
units and the latter is then applied for actual quantification.

The use of auxiliary information to improve estimation accuracy is a key topic
in sampling theory. Control variate is a well-established method for improving the
efficiency of quantile estimation when auxiliary information is available. It works by
adjusting the standard quantile estimator using an estimated relationship between
the control variate and the variable of interest. In this work, we adopt this technique
for quantile estimation using ranked set samples when the population mean is
known.

This article is structured as follows. In Sec. 2, we propose the mean-corrected
quantile estimator in RSS and present some theoretical results concerning its
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1874 Mahdizadeh and Arghami

asymptotic normality and asymptotic relative efficiency with respect to the standard
quantile estimator in RSS. Section 3 contains results of Monte Carlo simulations
carried out to reveal the properties of the proposed estimator. We end in Sec. 4 with
a summary.

2. Mean-Corrected Quantile Estimator

To present the main result of this section, we first review some basic concepts
regarding quantile estimation. For convenience, the following notations will be
used. Let f and F denote the probability density function (pdf) and cumulative
distribution fuction (cdf) of the population of interest, respectively. We also denote
the pdf and cdf and mean of the rth order statistic in a set of size k as f�r�, F�r�,
and 	�r�, respectively. Finally, the pdf of Beta random variable with parameters 


and � is indicated by b�
� �� x, and its cdf by B�
� �� x. Throughout this article,
we assume that there is no errors in ranking the sampling units.

Suppose we wish to estimate the pth quantile

�p = inf�x � F�x ≥ p�

using the ranked set sample �X�r�j � r = 1� � � � � k� j = 1 � � � � m� of size n = mk, from
F . The corresponding empirical distribution function is given by

F̂ �
n �x =

1
mk

k∑
r=1

m∑
j=1

I�X�r�j ≤ x��

where I�A� denotes the indicator function of the set A. The estimate of pth quantile
based on the ranked set sample is given by

�̂�p = inf�x � F̂ �
n �x ≥ p��

The following two theorems (Chen, 2000) which state, respectively, the asymptotic
normality and Bahadur representation for �̂�p, are of main importance and will be
used in the sequel.

Theorem 2.1. Suppose that the density function f is positive in a neighborhood of �p
and is continuous at �p and the judgement ranking is perfect. Then

√
n��̂�p − �p

�→ N

(
0�

�2
k�p

f 2��p

)
�

where

�2
k�p =

1
k

k∑
r=1

B�r� k− r + 1� p�1− B�r� k− r + 1� p�

and
�→ denotes convergence in law.
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Quantile Estimation 1875

Theorem 2.2. Suppose that the density function f is positive in a neighborhood of �p
and is continuous at �p. Then

�̂�p = �p +
p− F̂ �

n ��p

f��p
+ Rn�

where with probability one,

Rn = O�n−3/4�log n3/4

as n → �.

When the population of interest has known mean, it is possible to improve �̂�p
by an application of control variate method, i.e., mean-correction: subtract off the
sample mean and add on the known population mean. Such a strategy was also
employed by Breidt (2004) in the context of SRS. We now present a central limit
theorem for the mean-corrected sample quantile, along with its asymptotic efficiency
relative to the standard sample quantile in RSS.

Theorem 2.3. Let �X�r�j � r = 1� � � � � k� j = 1 � � � � m� be a ranked sample of size n =
mk drawn from F , where F has known mean 	 and finite unknown variance �2. Suppose
that F has a continuous derivative in a neighborhood of �p, with F ′��p = f��p > 0.
Define

�r = Cov�I�X�r�1 ≤ �p�� X�r�1�

Then for the mean-corrected sample quantile

�̃�p = �̂�p −
1
n

k∑
r=1

m∑
j=1

X�r�j + 	� (1)

we have E��̃�p = E��̂�p and

√
n��̃�p − �p

�→ N

(
0�

�2
k�p + 2

k

∑
r �rf��p+ ��2 − 1

k

∑
r �	�r� − 	2�f 2��p

f 2��p

)
�

The asymptotic relative efficiency of �̃�p relative to �̂�p is

ARE = �2
k�p

�2
k�p + 2

k

∑
r �rf��p+ ��2 − 1

k

∑
r �	�r� − 	2�f 2��p

�

Proof. From Theorem 2.2, we can write

�̃�p = �p +
p

f��p
+ 	 −

(
F̂ �
n ��p

f��p
+ 1

n

k∑
r=1

m∑
j=1

X�r�j

)
+ Rn�
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1876 Mahdizadeh and Arghami

where Rn → 0 almost surely as n → �. Hence, the results follow from a standard
central limit theorem and making the observation that

nVar
(
F̂ �
n ��p

f��p
+ 1

n

k∑
r=1

m∑
j=1

X�r�j

)
= �2

k�p

f 2��p
+

[
�2 − 1

k

k∑
r=1

�	�r� − 	2
]

+ 2
nf��p

Cov
( k∑

s=1

m∑
j=1

I�X�s�j ≤ �p��
k∑

r=1

m∑
i=1

X�r�i

)

= �2
k�p

f 2��p
+

[
�2 − 1

k

k∑
r=1

�	�r� − 	2
]

+ 2m
nf��p

k∑
r=1

Cov�I�X�r�1 ≤ �p�� X�r�1�

in which we have used the fact that

Var
(
1
n

k∑
r=1

m∑
j=1

X�r�j

)
= 1

n

[
�2 − 1

k

k∑
r=1

�	�r� − 	2
]

and that X�r�j and X�r ′�j are independent for any r �= r ′.

To have better understanding of the behavior of �̃�p, we look at its counterpart
in SRS. Let X1� � � � � Xn be a simple random sample of size n, from F , with empirical
distribution function given by

F̂n�x =
1
n

n∑
i=1

I�Xi ≤ x��

The pth quantile is then estimated by

�̂p = inf�x � F̂n�x ≥ p��

and subsequently the mean-corrected sample quantile is

�̃p = �̂p −
1
n

n∑
i=1

Xi + 	� (2)

Breidt (2004) derived asymptotic relative efficiency of �̃p relative to �̂p as

ARE = p�1− p

p�1− p+ 2�0f��p+ �2f 2��p
�

where

�0 = Cov�I�Xi ≤ �p�� Xi�
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Quantile Estimation 1877

We can write

�0 = E�I�Xi ≤ �p�Xi− E�I�Xi ≤ �p�E�Xi =
∫ �p

−�
xf�xdx − 	P�Xi ≤ �p�

and by taking derivative of �0 with respect to p we have

d�0

dp
= d

dp

( ∫ F−1�p

−�
xf�xdx − 	p

)
= 1

F ′��p
�pf��p− 	 = �p − 	�

where the second equality is an application of the Leibnitz differentiation formula.
He deduced that �0 is a decreasing function of p for �p < 	, achieves its minimum
at �p = 	 and is increasing function of p for �p > 	. Since �0 → 0 as p → 0 or
p → 1, it follows that �0 is negative for 0 < p < 1. The negative covariance makes
it possible for �̃p to outperform �̂p.

We are going to examine what happens in the case of RSS. Similarly,

�r = E�I�X�r�1 ≤ �p�X�r�1− E�I�X�r�1 ≤ �p�E�X�r�1

=
∫ �p

−�
xf�r��xdx − 	�r�P�X�r�1 ≤ �p�

and

d�r

dp
= d

dp

( ∫ F−1
�r� �B�r�k−r+1�p

−�
xf�r��xdx − 	�r�B�r� k− r + 1� p

)

= 1
F ′
�r���p

�pf�r���pb�r� k− r + 1� p− 	�r�b�r� k− r + 1� p

= b�r� k− r + 1� p��p − 	�r��

But we have

k∑
r=1

b�r� k− r + 1� p =
k∑

r=1

k!
�r − 1!�k− r!p

r−1�1− pk−r

= k
k−1∑
s=0

�k− 1!
s!�k− 1− s!p

s�1− pk−1−s = k�

Hence,

d

dp

(∑
r

�r

)
= k��p −

∑
r

wr	�r��

where wr = b�r� k− r + 1� p/k and
∑

r wr = 1. It is observed that instead of 	 in
the expression of d�0

dp
, a weighted sum of the mean of the k order statistics appears,

which makes it harder to justify negativity of the covariances explicitly. As a referee
pointed out, the following elegant proof is available for determining the sign of
�r’s. It is easy to show that for any random variable X, E�I�X ≤ �p�X = E�X �X ≤
�pP�X ≤ �p. Then, it follows that

Cov�I�X ≤ �p�� X = E�I�X ≤ �p�X− E�XP�X ≤ �p
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1878 Mahdizadeh and Arghami

= E�X �X ≤ �pP�X ≤ �p− E�XP�X ≤ �p

= �E�X �X ≤ �p− E�X�P�X ≤ �p < 0�

As noted by Breidt (2004), a general form of the control variate estimator (2) is

�̃p�� = �̂p − �

(
1
n

n∑
i=1

Xi − 	

)
�

which has asymptotically zero bias and attains minimum asymptotic variance
(MAV) at

�p =
−�0

�2f��p
�

The above class of estimators can also be constructed in RSS, i.e.,

�̃�p�� = �̂�p − �

(
1
n

k∑
r=1

m∑
j=1

X�r�j − 	

)
�

From Theorem 2.3, it follows that an asymptotic approximation for the variance of
the MAV estimator is

Var��̃�p�� ≈
�2
k�p

nf 2��p
+ 2�

nf��p

1
k

∑
r

�r +
�2

n

[
�2 − 1

k

∑
r

�	�r� − 	2
]
= h���

By setting h′�� equal to zero, we have

dh

d�
= 2

nf��p

1
k

∑
r

�r +
2�
n

[
�2 − 1

k

∑
r

�	�r� − 	2
]
= 0�

which is solved by

��p =
− 1

k

∑
r �r

��2 − 1
k

∑
r �	�r� − 	2�f��p

� (3)

and

d2h

d�2
= 2Var

(
1
n

k∑
r=1

n∑
j=1

X�r�j

)
> 0�

ensures us that MAV occurs at ��p. In practical situations, however, (3) is unknown
and its estimation (which is quantile-specific) requires estimating covariances,
variance and density function. To this end, the following estimators are available.

Each �r is estimated by an expression such as numerator of the sample
correlation coefficient with appropriate choice of random variables. Consider an
ANOVA performed on the ranked set sample with rank of units as the factor. Let
MSE and MST be the mean-square error and mean-square due to treatment, i.e.,

MSE = 1
k�m− 1

∑
r

∑
j

�X�r�j − 	̂�r�
2
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Quantile Estimation 1879

and

MST = 1
k− 1

{∑
r

∑
j

�X�r�j − 	̂2 − k�m− 1MSE
}
�

where 	̂�r� =
∑

j X�r�j/m and 	̂ = ∑
r

∑
j X�r�j/�mk. MacEachern et al. (2002)

developed an unbiased estimator of �2 in RSS. Their estimator is equivalently
expressed as

�̂2 = 1
mk

��k− 1MST+ �mk− k+ 1MSE��

Also, the kernel estimator of f at a point x ∈ R is given by

f̂RSS�x =
1

mkh

k∑
r=1

m∑
j=1

K

(
x − X�r�j

h

)
�

where K is usually a standard probability density function symmetric about zero,
and h is a bandwidth to be determined. Chen (1999) showed that given a fixed h,
f̂RSS has smaller variance than its SRS counterpart based on the same sample size.
We use the standard normal density function as K with h = 1�06 sn−1/5, where s is
the sample standard deviation. Finally, when estimating f��p, f̂RSS��̂

�
p is used.

3. Simulation Results

In this section, the Monte Carlo approach is used to assess the performance
of the proposed estimators through relative efficiencies e1, e2, and e3 defined
as efficiency of the mean-corrected RSS estimator relative to the basic RSS
estimator, efficiency of the MAV RSS estimator relative to the basic RSS estimator,
and efficiency of the mean-corrected RSS estimator relative to its SRS counterpart,
respectively. These values are estimated based on 10,000 replications at sample size
n = 50. In generating ranked set samples, the set size k = 2 was used.

Table 1 contains simulated relative efficiencies for 0.05, 0.25, 0.5, 0.75, and 0.95
quantiles under the following models: (A) uniform(0,1), (B) normal(0,1), (C) t(10),
(D) t(25), (E) beta(2,2), (F) exponential(1), (G) chi-square(8), (H) gamma(3,1), (I)
inverse-gaussian(1,2), and (J) gumbel(0,1). This set of distributions includes a variety
of functional shapes. It is to be noted that (A)–(E) are symmetric, (F)–(I) are right-
skewed, and (J) is left-skewed.

It can be seen from Table 1 that for (A)–(E), the mean-corrected estimator is
superior to the standard estimator in RSS. Moreover, the corresponding relative
efficiency gains its maximum at p = 0�5 and damps away symmetrically towards
p = 0�05 and p = 0�95. The results suggest that mean correction is deficient in a very
light tail (such as the left tail in a right-skewed distribution, or a bounded tail). It
is observed that for symmetric distributions, apart from a few cases, efficiency of
the MAV estimator relative to the standard estimator is not higher than that of
the mean-corrected estimator relative to the standard estimator. Indeed, the MAV
estimator tends to be similar to �̃�p in these cases. Agreeing with this claim, the
normal distribution has �p ≡ 1, and �̃p��p is the same as �̃p. One can find that
for asymmetric distributions, the MAV estimator outperforms the mean-corrected
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1880 Mahdizadeh and Arghami

Table 1
Simulated relative efficiencies under several underlying distributions

p p

Dist. Eff. 0.05 0.25 0.5 0.75 0.95 Dist. Eff. 0.05 0.25 0.5 0.75 0.95

A e1 0.75 1.90 2.52 1.94 0.78 F e1 0.08 0.40 1.29 2.17 1.39
e2 1.14 1.87 2.94 1.88 1.04 e2 0.93 0.96 1.52 2.36 1.71
e3 1.20 1.04 1.09 1.02 1.19 e3 1.26 1.10 1.00 1.05 1.06

B e1 1.29 1.82 2.16 1.81 1.31 G e1 0.78 1.15 1.93 2.15 1.40
e2 1.26 1.77 2.08 1.76 1.27 e2 1.10 1.36 1.88 2.25 1.54
e3 1.01 1.00 1.02 1.00 1.03 e3 1.11 1.03 1.02 1.04 1.03

C e1 1.29 1.73 1.87 1.74 1.31 H e1 0.66 1.03 1.84 2.16 1.39
e2 1.28 1.71 1.85 1.73 1.30 e2 1.08 1.34 1.82 2.31 1.55
e3 1.03 1.00 0.98 1.02 1.01 e3 1.12 1.02 1.02 1.03 1.05

D e1 1.32 1.81 2.07 1.79 1.32 I e1 0.54 0.82 1.54 2.15 1.40
e2 1.29 1.78 1.99 1.75 1.28 e2 1.07 1.20 1.68 2.33 1.65
e3 1.02 1.00 1.01 1.00 0.99 e3 1.13 1.05 1.02 1.03 1.03

E e1 1.15 1.91 2.54 1.93 1.14 J e1 0.86 1.08 1.74 2.10 1.38
e2 1.18 1.86 2.57 1.85 1.17 e2 1.11 1.31 1.85 2.26 1.56
e3 1.06 1.01 1.04 1.02 1.06 e3 1.10 1.02 1.04 1.02 1.03

estimator and this is more evident for 0.05 quantile. Finally, it is seen that except
for the extreme tails in (A), and lower tails in (F)–(J), the mean-corrected estimator
in SRS and RSS are more or less similar.

4. Conclusion

In this article, we employed the control variate method to improve quantile
estimation using ranked set samples when the population that yielded the sample
has a known mean. The proposed estimator is the standard quantile estimator which
is mean corrected: the sample mean subtracted off and the known population mean
added on. Asymptotic results for the mean-corrected estimator are provided and
compared with those in SRS. Simulation results, for several underlying distributions,
integrate the presentation to illustrate the asymptotic theory and show that the
mean-corrected estimator surpasses the standard quantile estimator in RSS. We
are working on a more systematic approach of utilizing the additional information
(known mean) to propose quantile estimator which markedly dominates its
competitor in SRS. Another interesting extension is towards distribution function
estimation in the above setup. Results of research in these directions will be reported
in future works.
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