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ABSTRACT  

      This paper develops a structural mechanic model that analyzes the natural frequency of single-walled 

carbon nanotubes (SWCNTs) subjected to fixed-fixed and free-fixed boundary conditions. The necessity of 

desirable conditions and expensive tests for experimental methods, in addition to the time expenditure 

required for atomic simulations, are the motivation for this work. Because the present model is constructed 

in the CAE space of ABAQUS, there is no need to program for different loading and boundary conditions.  

A Morse potential is employed for stretching and bending potentials, and a periodic type of bond torsion is 

used for torsion interactions. The natural frequencies for various aspect ratios are predicted by this structural 

model. The effect of different vacancy defects on the natural frequency of zigzag and armchair nanotubes is 

also investigated. These findings are in good agreement with the existing numerical results. 

 

1 INTRODUCTION  

The discovery of carbon nanotubes by Iijima (1991) opened up a new window in nanoscience. An 

extremely high stiffness and light weight in CNTs results in high vibration frequencies. Due to these 

features, the vibrational behavior of CNTs is a fundamental characteristic that should be fully studied 

because it is essential for applications such as NEMS devices. Gibson et al. (2007) studied the vibrational 

behavior of CNTs and their composites, including both theoretical and experimental studies. Kwon et al. 

(2005) used eigenvalue analysis of mass and stiffness matrices computed from atomistic simulations and 

predicted the natural frequencies and mode shapes of various carbon nanotubes. Xu et al. (2008) studied the 

free vibration of double-walled CNTs modeled as two individual beams by considering van der Waals 

interactions between the inner and outer tubes. Their methods can mainly compute the bending modes of the 

vibrational modes and natural frequencies. S.K. Georgantzinos and N.K. Anifantis (2009) reported a study 

of the vibrational characteristics of multi-walled carbon nanotubes modeled exclusively using springs and 

lumped masses. They examined the effects of different constraints at the nanotube ends on the computed 

frequencies and mode shapes. By investigating the influence of van der Waals interactions, they concluded 

that the presence of all corresponding elements is necessary in the vibration analysis of MWCNTs. 

Here, we studied frequency analysis of fixed–fixed and free-fixed SWCNTs with different aspect 

ratios (L/D) and compared their frequencies with those of numerical methods. Therefore in this work 

structural mechanics model (Parvaneh et al., 2009) is employed to determine the natural frequencies and 

their corresponding modes for two types of SWCNTs i.e., zigzag and armchair. 
 

2     CARBON NANOTUBE MODELLING 

            A single-walled carbon nanotube can be considered as a rolled graphene sheet so that the direction of 

rotation determines the type of nanotube (zigzag, armchair, or chiral). Various interactions exist between the 

carbon atoms in constitutive carbon nanotubes. The motions of carbon atoms are regulated by a force field 

that is generated by electron-nucleus interactions and nucleus-nucleus interactions, which can be expressed 

in the form of steric potential energy. The total steric potential energy is the sum of energies due to 

interactions between carbon atoms (Rappe et al., 1992): 
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where ru , u , u , and u  are bond energies associated with bond stretching, angle variation or bond 

bending, dihedral angle torsion, and out-of-plane torsion, respectively and 
vdw

u  and 
el

u  are also non-bonded 

energies associated with Van der Waals and electrostatic interactions, respectively. For prediction of 

behavior of nanotubes under axial tensional load, we can apply other potentials in lieu of stretching and 

bending potentials. However, we do not allow potentials apart from torsion potential and out-of-plane 

torsion potentials for the analysis of buckling.  

 uuuuu rtotal                                                                                                                                         (2) 

            Different expressions have been developed for these potentials. Brenner and Morse potentials are 

well-known and are the usual potentials applied to nanotubes. The Brenner potential function is more 

accurate and more versatile than the Morse potential; however, it is also more complex. In this paper, Morse 

potentials are employed for stretching and bending potentials, and a periodic type of bond torsion is applied 

for torsion and out-of-plane torsion interactions (Eqs. (3)-(6)). The parameters at these potentials are listed in 

Table 1(Cornell et al., 1995). 
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            As indicated in Fig. 1(a) and Fig. 2, a nonlinear axial spring is used for modeling of the angle 

variation interaction between atoms. The relationship between changes in the bond and the corresponding 

change in length of the spring for small displacements can be expressed simply by Eq. 7 (Odegard et al., 

2002). 
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            Therefore, we can simplify equation (6) to equation (8). 
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            The stretch force, the angle variation moment, the dihedral angle torque, and out-of-plane torque can 

be obtained from differentiations of (Eqs. (3), (8), (5), (6)) as functions of bond stretch, bond angle, dihedral 

angle, and out-of-plane angle variation, respectively: 
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            In the present structural model, interactions between atoms are modeled with spring and connector 

elements so that the carbon atoms are joint points. A nonlinear connector is considered for modeling of the 

stretching and torsional interactions and a nonlinear spring for modeling of the angle variation interaction 

(see Fig. 2).  

          Carbon atoms in ABAQUS are modeled by a discrete rigid sphere so that connector elements between 

toms are adjoined to reference points at the center of the sphere and a local coordinate is set at the center of 

each atom. This local coordinate is a combination of a Cartesian coordinate for stretching and a rotational 

coordinate for torsion. The X direction of these coordinates is in the connector direction, and the Z direction 

is vertical to the central axis of the nanotube. Because we can only use a linear spring in the CAE space of 
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ABAQUS, by changing the linear spring command to a nonlinear spring command in the input file, and by 

applying the nonlinear data for F( R ) versus R  using Eq. 10, we can apply the bond bending spring to 

the model. For applying bond stretch and torsion forces to the connectors, we can apply the nonlinear 

stiffnesses in three directions (X,Y,Z) directly. For stretching stiffness in the X direction, we can obtain the 

nonlinear data for F( r ) versus r  by Eq. 9, and for torsional stiffness in X direction, we can obtain the 

nonlinear data for T(  ) versus   by Eq. 11. For torsional stiffness in the Y direction, we can obtain the 

nonlinear data for T(  ) versus   by Eq. 12. 
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Fig. 1: (a) A hexagonal unit cell, (b) Location of local coordinates of each connector 
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Fig. 2: Spring and connector elements corresponding to 

the interactions of carbon atoms. (a) The angle 

variation interactions, (b) the stretching and torsional 

interactions, (c) total interactions. 

 

 

 

3      RESULTS AND DISCUSSION  

             In this section, the commercial finite element numerical package ABAQUS is applied to study the 

natural frequency of a fixed-fixed and free-fixed SWCNT. The natural frequencies were predicted by the 

present structural model. Zigzag (12,0) and armchair (7,7) SWNTs with various aspect ratios (L/D) were 

employed for this study. The effect of different types of defects on the natural frequency is also studied for 

zigzag and armchair nanotubes with various aspect ratios. Fig. 3 shows the natural frequencies of perfect and 

defective nanotubes with different aspect ratios. The natural frequencies are obtained by our present model, 

and are compared with results from K.Hashemnia et al. (2009). As indicated in Fig. 2, the vacancy defects 

have a very weak effect on the natural frequencies when the Euler mode occurs. Of course, it should be 

noted that for defective nanotubes, the Euler mode will happen later; it occurs at an aspect ratio of 

approximately 5 for a single vacancy defect.  
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(a)                                                                                               (b) 

Fig. 2: Natural frequencies vs. aspect ratio of SWCNTs with (a) fixed-free and (b) fixed-fixed boundary conditions. 

 

             When the Euler buckling mode occurs (aspect ratio of up to 5), the natural frequency follows from 

the analytical equations. Therefore, we can calculate the natural frequency by the analytical equation simply 

enough for the long carbon nanotubes. Also, we have compared the present results to those from the simple 

continuum model. The value of the effective thickness for the nanotube is adopted as 0.066 nm (Yakobson et 

al., (1996)). This proposed value provided excellent results for the critical strain, but the effective thickness t 

= 0.066 nm could not be used when studying buckling load from the critical strain, because the cross-section 

of a CNT can only be expressed by A = pdt, where t = 0.34 nm is to be applied. However, with an effective 

wall thickness of 0.34 nm for CNTs, we can not model these by continuum shell models because the Euler 

mode will happen much earlier. There may be an equivalent wall thickness for the continuum shell model 

that predicts the critical buckling load and corresponding mode shapes correctly.   

            As a conclusion, it can be seen that the results of this continuum model are in acceptable agreement 

with the present model for nanotubes with diameter of d=0.95 nm and various lengths. This agreement is 

better for long nanotubes than short nanotubes (high aspect ratios). 

            The mode shapes according to the displacement contours are represented for various lengths of 

zigzag nanotubes in Fig. 4. With increasing aspect ratio of nanotubes, the shell mode shapes convert to the 

Euler mode shape.  
 

(a) (b) (a) (b) 

L=1.988nm 
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Fig. 4: The mode shapes of (12,0) SWCNTs under frequency analysis (a) perfect and (b) defective. 
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4      CONCLUSION 

             In the present paper, SWCNTs with particular fixed-fixed and free-fixed boundary conditions under 

frequency analysis were studied based on a structural mechanics approach using ABAQUS. From our 

findings, the following conclusions can be drawn: 

1. With increasing aspect ratio of nanotubes, the shell mode shapes convert to the Euler mode shape.  

2. Tube chirality has not a significant effect on the natural frequency of SWCNTs. 

3. The vacancy defects have a significant effect on the natural frequency when shell modes occur. 

4. The vacancy defects cause the Euler mode to occur later. 
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