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ABSTRACT. Among all mathematical models for avascular tumor growth,
the present model is one of the newest models released by Sherratt and
Chaplain in 2001. This model is based on cell densities of proliferating,
quiescent and necrotic cells in a one-dimensional domain in space and
is formulated as a system of partial differential equations.

In this paper, adaptive moving mesh method is described briefly which
in this method, to raise accuracy and efficiency, instead of using a uni-
form grid by a monitor function nodes are concentrated in areas where
greater accuracy is required. The rest of the paper the adaptive moving
mesh method is used for the numerical solution of the above avascular
tumor growth model.

1. INTRODUCTION

When a normal cell is turned to cancer cell the rate of proliferation in-
creases abnormally and causes a clump of tumor cells with fast growing.
The growth of a tumor consists of three distinct steps; avascular(tumor
without blood vessels), vascular(angiogenesis) and metastatic[l]. For each
stage, there are many mathematical models. Two well-known models for
avascular tumor growth are Ward- King model[2] and Sherrat- Chaplain [3].
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Improvement of numerical methods for approximate solution is very impor-
tant to analyze the models. Our chosen model in this paper is the Sherratt-
Chaplain[3], [1] ;model for avascular tumor growth and we use a dynamical
moving mesh method for approximating the solution of this model[5]. in ad-
dition, we examine the several monitor functions to improve the numerical
solutions.

2. THE MODEL

If the cell densities for proliferating, quiescent and necrotic cells are de-
noted by p(z,t), g(x,t) and n(z,t), respectively then Sherratt-Chaplain
model can be written by the following system of partial differential equations

E% - gxpiqmgzw)+ﬂdml—p—q—n%—ﬂ@n
dg _ 9, g dp+q)

o = aﬁp+q 5 ) T ep—hl(c)g,

dn

E = h(C)q,

where ¢(z, t) is the local nutrient concentration and it is assumed that nutri-
ents are distributed across the surface of the tumor into the inward via the
intracellular space[l], g(c) is the mitosis rate function of the proliferating
cells and is an increasing function, proliferating cells become quiescent at
rate f(c) and the rate of turning quiescent cells to necrosis is denoted by
h(c) . Both of f and h are decreasing functions and will be zero as ¢ tend
to +oo, in addition f(c) > h(c).
In Sherratt-Chaplain model ¢ =

55 (1 —a(p+q+n)), where o and  are
dimensionless parameters.

For the initial conditions, we have p(z,0) = e~ %1% ¢(z,0) = 0, n(z,0) = 0
and ¢y = 1. The boundary conditions are g—g =0, 32 =0 and % =0, at
x = 0 and as * — oo but it is not feasible to tend  — oo , furthermore,
x = 210 is chosen as sufficiently large value.

3. MovING MESH METHOD AND NUMERICAL SOLUTION

Let x and & denote the physical and computational coordinates, respec-
tively and suppose a one-to-one coordinate transformation between these
coordinate as follows:

=[0,1] = Q= [a,b],
I—wﬁ) §€[0,1],
x(0,t) = xz(1,t) = b.
Suppose that a uniform mesh on computational domain is given by & =
%, 1 =0,1,...,n, where n is a positive integer and corresponding mesh in x
is denoted by {a = zg, x1, ..., z, = b} where x; = z(&;,t), i =0,1,...,n
The equidistribution principle (EP) is the foundation of moving mesh method
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and the mesh in x, should be satisfied the EP for all values of time t. For a
chosen monitor function M (z,t), EP can be given in integral form as

2(&0)
/ M(&,t)dz = €0(t)

where 0(t) = f: M(z,t)dz. By twice differentiating above equation we can
obtain 5

0
5g M ale). ) zx(e.0) =0,

If a mesh satisfy in EP equation at the time ¢t + 7 (0 < t << 1) instead of ¢,
according to the above we have
(%{M(x(g, t+7),t+ T)aafm(f, t+71)} =0,

the parameter 7 is called a relaxation time.
Using the expansions of M (xz({,t+7),t+ 7) and a%m(& t+7) and dropping
higher order term, various MMPDEs is obtained[5]. In this work, we use
MMPDE4 for moving mesh method:

0 oz 10 Ox

oM o) =7 ac M ag"

The monitor function M is used to guide the mesh redistribution. The arc-
length mesh monitor function M = (1 + |u,|?)!/? and the curvature mesh
monitor function M = (14 |ug,|?)'/* are two well-known monitor functions.
We have used several monitor functions as follows:

M=(1+ ﬂ1|pz\2+52|qz|2+ﬁ3|nz\2)1/2

1 B1+pF2+B3
M = %(1 + [pl + lg| + In)
M = BiMi+PaMa+B3Ms
Bi1+B2+83

where Mi, M and M3 are three suitable monitor functions based on p, q

We obtain numerical solution for p, ¢ and n, for this model of avascular

MESHTRARCTORES

figurel: Mesh trajectories
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tumor growth. The initial values and functions are defined f(c)
tanh(4c—2))/2, h(c) = f(c)/2 and g(c) = B’ in addition o = 0.8,
and v = 10.
Mesh trajectories by using M = B 1Mlﬁtﬁ26¥j§f 3Ms where My, My and Ms
are the arc-length monitor functions of p,q and n, respectively with 5, =
B2 = B3 = 1/3, is presented in Figure 1.

Cell densities of proliferating, quiescent and necrotic cells plotted as a
function of space in Figure 2.
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figure 2: Numerical solution for p, q and n, at times t=0, 2, ..., 14.
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