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Inertial capability index based on fuzzy data
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Abstract. Process performance can be analyzed by using process capability indices (PCIs), which are
summary statistics to depict the process location and dispersion successfully. In some cases, quality char-
acteristic and target are not precise numbers and they are expressed in fuzzy terms, so that the classical
capability indices cannot be applied. In this paper we obtain a confidence interval for inertial capabil-
ity index Cpi (defined by [Pillet, TQM Mag. 16, 202–209 (2004)]) based on fuzzy data and propose a
membership function for it.
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1 Introduction

Many PCIs have been proposed in the literature. Although
they are very usable statistics to summarize process per-
formance, they can give misleading results and can cause
incorrect interpretation if the process distribution is not
normal. Experience shows that the normality assumption
is not often met in real world application and different
distributions are presented such as skew, heavy-tailed and
short tailed distributions and the percentages on noncon-
forming parts are significantly different from the computed
PCIs.

The traditional tolerancing considers the conformity of
a batch when it satisfies the specifications. The character-
istic is considered for itself and not regarding its incidence
on the final assembly resultant. The inertia I =

√
σ2 + δ2

is not tolerated by a tolerance interval but by a scalar
representing the maximum inertia that the characteristic
should not exceed. It has been showed that inertial toler-
ancing proposes another tolerancing method to guarantee
the final assembly while allowing larger variability in the
case of centered production. The inertial process capabil-
ity index (Cpi) is defined based on the inertial tolerancing
that it has many properties, in particularly in the case
of the mixed batches and it is independent from process
distribution. One of the disadvantages of the traditional
capability index such as Cpk appears when two batches are
mixed. By mixing two batches with an acceptable capabil-
ity (Cpk > 1.33), one can obtain a non-acceptable capabil-
ity (Cpk < 1.33) [1]. These disadvantages are eliminated
in the case of inertial tolerance with the Cpi index [1].

� Correspondence: sadeghpour@umz.ac.ir
�� Correspondence: Samane.asghari@yahoo.com

Chen et al. [2] used the fuzzy analytic method concern-
ing process capability index Cpm and calculated C̃pm for
fuzzy observations. Perakis and Xekalaki [3] constructed
confidence interval for the index Cpm with crisp data. Par-
chami et al. [4] obtained fuzzy confidence interval for a
fuzzy process capability index. In this paper, fuzzy set the-
ory is incorporated to increase Cpi’s flexibility and sensi-
tivity by defining quality characteristic and target as fuzzy
numbers. In such a case, both a confidence interval and a
membership function for Cpi are introduced. The fuzzy set
theory is a useful method for modeling the problems with
fuzzy (imprecise) information that has been recognized as
one of uncertainties in the real world.

2 Preliminary notes

Definition 2.1. Let R be the set of real numbers. Set,
F (R) =

{
Ã|Ã : R → [0, 1] , Ã is a continous function

}
and FT (R) = {T (a, b, c) |a, b, c ∈ R, a � b � c} , where

T (a, b, c) =

⎧⎨
⎩

(x − a)/(b − a) if a � x � b,
(c − x)/(c − b) if b � x � c,
0 elsewhere.

Any Ã ∈ F (R) is called a fuzzy set on R and any
T (a, b, c) ∈ FT (R) is called a triangular fuzzy number.

Definition 2.2. Fuzzy number Ã is positive (negative) if

∀x � 0; Ã(x) = 0 (∀x � 0; Ã(x) = 0).

Definition 2.3. a-cut set for a fuzzy number is closed
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interval that indicated with [A−
α , A+

α ] such that

A−
α = inf{x ∈ R : Ã(x) � α},

A+
α = sup{x ∈ R : Ã(x) � α}.

Definition 2.4. The Dp,q-distance, indexed by parameters
1 � p � ∞ and 0 < q < 1 between two fuzzy numbers Ã
and B̃ is a nonnegative function on F (R)×F (R) gives as
follows:

Dp,q(Ã, B̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(1 − q)

∫ 1

0 |A−
α − B−

α |pdα

+q
∫ 1

0 |A+
α − B+

α |pdα
] 1

p

if p < ∞

(1 − q) sup
0<α�1

( |A−
α − B−

α | )

+q inf
0<α�1

( |A+
α − B+

α | ) if p = ∞.

The analytical properties of Dp,q depend on the first
parameter p, while the second parameter q of Dp,q char-
acterizes the subjective weight attributed to the sides of
the fuzzy numbers. If there is no reason to distinguish any
side of fuzzy numbers, Dp,0.5 is recommended.
Definition 2.5. A mapping X̃ : Ω → F (R) is said to
be a fuzzy random variable associated with (Ω, A) if and
only if

{(ω, x) : x ∈ Xα (ω)} ∈ Ω × B,

where B denote the σ-field of Borel set in R.
Definition 2.6. The central D2,q-mean square dispersion
of X̃ about Ẽ(X̃) (or μ̃X̃) is called D var(X̃) given by the
value (if it exists)

D var (X̃) = E

([
D2,q(X̃, μ̃X̃)

]2)
=
∫
Ω

[
(1 − q)

∫ 1

0 (X−
α (w) − (μX̃)−α )2dα

+ q
∫ 1

0
(X+

α (w) − (μX̃)+α )2dα
]
dp(w).

Proposition 1. Assume that Ã and B̃ are triangular
fuzzy numbers: Ã = tri(a1, a2, a3) and B̃ = tri(b1, b2, b3),
the α-cuts of Ã and B̃ are as follows

Aα = [(1 − α) a1 + a2α , a3α + (1 − α) a4] ,

Bα = [(1 − α) b1 + b2α , b3α + (1 − α) b4] .

It can establish that[
D2,1/2(Ã, B̃)

]2
=

1
6
[(b1 − a1)2 + 2(b2 − a2)2 + (b3 − a3)2

+(b1 − a1)(b2 − a2) + (b3 − a3)(b2 − a2)].

Proposition 2. [5] Suppose that X̃ be a fuzzy random
variable and T̃ be a fuzzy number. Then

E
[
D2,q

(
X̃, T̃

)]
2 = E

[
D2,q

(
X̃, μ̃X̃

)]
2

+
[
D2,q

(
μ̃X̃ , T̃

)]
2 = D var (X̃) +

[
D2,q

(
μ̃X̃ , T̃

)]
2.

Similarly, it can establish that

1
n

n∑
i=1

[
D2,q

(
X̃i, T̃

)]2
=

1
n

n∑
i=1

[
D2,q

(
X̃, ˜̄X

)]2

+
[
D2,q

(
˜̄X, T̃

)]
= D̂ var

(
X̃
)

+
[
D2,q

(
˜̄X, T̃

)]2
.

3 The inertial acceptance criterion

The aim of tolerancing is to determine an acceptation cri-
terion on the components characteristics xi to guarantee
the quality of the assembly resultant Y . In the case of a
good design, when the x characteristic is produced on the
target, the quality is optimal. As x gets an offset from the
target, the function of the assembly will be more sensitive
to the conditions of use and the environment, and can
lead to a non-satisfaction of the customer. By using the
Taguchi’s financial loss function associated with an off-
centering from the target (L = K(X − T )2), the Inertial
tolerancing, in the case of a batch, is defined by Pillet [1]
as follows

IX = E(X − T )2 =
√

σ2
X + δ2

X .

Here IX represents the inertia of the x characteristic, δX

corresponds to the batch off-centering to its target and σX

is its standard deviation.
To qualify the capability of a process with the inertial

tolerancing, Pillet [1] defines the Cpi capability index as:

Cpi =
Imax

IBatch
=

Imax√
σ2

X + δ2
X

,

which indicates the capability considering the process off-
centering.

Compared to the traditional tolerancing, the proposed
approach of the inertial tolerancing is quite different. The
aim is no more to guarantee a rate of parts out of tol-
erance, but to guarantee the centering of components
around the target in order to guarantee the quality of the
assembly. The reflection is no more based on the propor-
tions out of tolerances but on the inertias of the compo-
nents, the normality of the batch distribution is no more a
necessary criterion [1]. The main advantage of the inertial
acceptance criterion is the absence of use of a tolerance
interval that usually corresponds to the acceptance limits
of the parts dimension. There is then no ambiguity of ac-
ceptance of a batch included in the tolerance interval but
not acceptable due to the Cpm capability index [6].

4 The inertial tolerancing method

Inertial tolerancing is a statistical method of tolerance
synthesis. The allocation strategy is similar to that of the
traditional statistical tolerancing. Let us consider compo-
nents with centered batches. The resultant assembly is
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then a centered batch. The functional requirement is de-
fined by a tolerance interval that is supposed to contain
six standard deviations of the resultant batch. As the com-
ponent inertias in the case of centering are given by the
batch standard deviations, the inertial tolerances of com-
ponents under the assumption of independent variables
are given by:

Ii =
R0x

6
√

n
,

where

Ii = the inertial tolerance of the ith components
R0 = the tolerance interval of the functional require-
ment
n = the number of components in the dimensions
chain.

In the general case, the inertial tolerance allocation is
given by:

Ii =
βiR0x

6
√

α2
i β

2
i

,

where αi corresponds to influential coefficients of the ith
component on the resultant assembly and βi is the feasi-
bility index of the ith component that allows a nonuniform
distribution of the tolerances [6].

5 The inertial acceptance criterion for fuzzy
data

Assume that Ỹ (fuzzy random variable) represents qual-
ity characteristic and T̃ (fuzzy number) represents target
value. In this case we introduce the inertial for Ỹ and in-
ertial capability index Cpi based on the definitions given
in Section 2 and Proposition 2 such as following

IỸ = E
(
D2,q(Ỹ , τ̃ )

)2

= D var
(
Ỹ
)

+
(
D2,q

(
μ̃Ỹ , T̃

))2

,

Cpi =
IY max

IỸ

=
IY max√

E
(
D2,q(Ỹ , T̃ )

)2

=
IY max√

D var
(
Ỹ
)

+
(
D2,q(μ̃Ỹ , T̃ )

)2
,

and we estimate Ĉpi with the following relation

Ĉpi =
IY max√

1
n

n∑
j=1

(
D2,q(Ỹj , T̃ )

)2
.

6 The interval estimation of Cpi based
on fuzzy data

The statistic

n∑
i=1

[D2,1/2(Ỹi,T̃ )]2

D var (Ỹ )
, is distributed as the non-

central chi-square with n degrees of freedom and non-
centrality parameter nδ where δ = [D2,1/2(μ̃Ỹ ,T̃ )]2

D var (Ỹ )
, [5, 7].

Therefore, it follows that

P

⎛
⎜⎜⎝χ

2

n,α/2(nδ) <

n∑
i=1

[D2,1/2(Ỹi, T̃ )]2

D var (Ỹ )
< χ

2

n,1−α/2(nδ)

⎞
⎟⎟⎠

= 1 − α,

where χ2
n,α/2(nδ) denotes the 100α% percentile of the non-

central chi-square distribution with n degrees of freedom
and non-centrality parameter nδ. We can write

P

⎛
⎜⎜⎝χ2

n,α/2(nδ) <

1
n

n∑
i=1

[D2,q(Ỹi, T̃ )]2

E[D2,q(Ỹ , T̃ )]2

×nE[D2,q(Ỹ , T̃ )]2

D var (Ỹ )
< χ2

n,1−α/2(nδ)

)
= 1 − α.

Taking into account the fact that

(
Cpi

Ĉpi

)2

=

n∑
i=1

[D2,q(Ỹi, T̃ )]2

nE[D2,q(Ỹ , T̃ )]2
,

we obtained

P

⎛
⎝χ2

n,α/2(nδ)D var (Ỹ )

nE[D2,q(Ỹ , T̃ )]2
<

(
Cpi

Ĉpi

)2

<
χ2

n,1−α/2(nδ)D var (Ỹ )

nE[D2,q(Ỹ , T̃ )]2

)
= 1 − α.

Let δ̂ = [D̂2,1/2(μ̃Ỹ ,T̃ )]2

D̂ var (Ỹ )
, then the interval

⎛
⎝Ĉpi

√
χ2

n,α/2(nδ)

n(1 + δ̂)
, Ĉpi

√
χ2

n,1−α/2(nδ)

n(1 + δ̂)

⎞
⎠

is a 100(1 − α)% confidence interval for Cpi.
In order to evaluate the non-central chi-square distri-

bution with n degrees of freedom and non-centrality pa-
rameter nδ can use the order “ncx2inv” in MATLAB pro-
gram or estimates with Patnaik’s approximation [3].

To obtain a better understanding of Cpi based on fuzzy
data, we propose to put this confidence interval as a α-cut
for Cpi and plot the upper and lower limits of the interval
estimation for different values of α. This method gives a
membership function for C̃pi.
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Table 1. Triangular fuzzy data collected from suppliers.

7 A numerical example

In this section, we use Example 6.1 given in [8], that is
described in the following.

Since light emitting diodes (LEDs) have a long life
span and high intensity of solid-state illumination exhibit-
ing a wide range of colors, the uses of LEDs are growing
rapidly in a wide variety of applications such as automo-
tive lighting, computer displays, LCD televisions, signal-
ing and general lighting products.

Here, an LED-based lighting fixture (LED-LF) is in-
vestigated as an example; the LED-LF is manufactured
in Tainan Industrial Park, Taiwan. Due to high demands
on the LED-LFs, the company does not have enough pro-
duction capacity to supply one type of LED components
used in the LED-LFs. Therefore, the decision-makers de-
cide to purchase the LED components from some pos-
sible suppliers. The luminous intensity of LED sources
is a critical characteristic for this type of LEDs. Thus
far, all light measurements and rating systems depend
on the perception of the human eye or imprecise termi-
nology and calibration standards. This implies that the
randomness is not the only aspect of uncertainty for data
collected on the luminous intensity of LED sources; that
is, the occurrence of fuzziness introduces another uncer-
tainty that should be taken into account while solving
the problem. Four suppliers are capable of producing this
type of LEDs. The decision-makers need to choose prefer-
able suppliers based on the fuzzy sample data of the lumi-
nous intensity which have been collected from each sup-
plier with size 20, as listed in Table 1, where the data
x̃in = tri (xin1, xin2, xin3) with i = 1, 2, 3, 4 and n = 1, 2,
3, . . . 20, are assumed as triangular fuzzy numbers. The
upper and lower specification limits of luminous intensity
are set at USL = 90 mcd/m2 and LSL = 40 mcd/m2,
respectively.

Let the value of target be equal to total mean of fuzzy
data, that is T̃ = tri(64.1046, 66.3670, 68.9561).

Necessary maximum inertial with method in Section 4
is obtained such as Imax = 8.3333.

We obtained the value of Cpi for each supplier such as
following:

Supplier Cpi

S1 1.6976
S2 1.6307
S3 1.9645
S4 1.7412

According to Cpi, the order of four suppliers is ranked
as {S3, S4, S1, S2}.

In order to obtain a membership function for Cpi, we
construct confidence intervals against different values of
α. Figure 1 shows the graph of C̃pi for each supplier. The
membership functions of C̃pi’s are triangular fuzzy num-
bers, given as follows:

Supplier C̃pi

S1 T (0.8853,1.6700,2.6044)
S2 T (0.8472,1.6034,2.5127)
S3 T (1.0206,1.9316,3.0273)
S4 T (0.9090,1.7132,2.6681)

For comparison C̃pi’s, one can calculate their
Dp,q-distance from zero.

Supplier Dp,q

S1 3.1620
S2 2.9268
S3 4.2480
S4 3.3239

According to this method of ranking, four suppliers are
ranked as {S3, S4, S1, S2}.
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Fig. 1. Membership function of Cpi for each supplier.

8 Conclusion

A constructive methodology for obtaining the fuzzy esti-
mate of inertial process capability index Cpi with the help
of “confidence interval” and “Dp,q-distance” is proposed in
this paper. The main advantage of this methodology is
that the fuzzy data can be handled now. By applying the
Dp,q-distance between two fuzzy numbers, we estimated C̃pi

and proposed a method to compare different C̃pi’s. Our
results are illustrated by a numerical example.
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