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A B S T R A C T  

   

In this study a non-associated viscoplastic flow rule (NAVFR) with combining von Mises and Tresca 
loci in place of yield and plastic potential functions and vice verse is presented. With the aid of fully 
implicit time stepping scheme and discussing the other studies on plastic potential flow rules and also 
experimental results it is shown that the proposed NAVFR can be adopted to forecast the experimental 
events more accurate than the conventional associated viscoplastic flow rules (AVFR). 
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NOMENCLATURE 
Greek Symbols The nodal strain-displacement matrix   

The fluidity parameter   The nodal displacement   
The Lode parameter   The consistent elastic-plastic modulus    
Strain   Young modulus E 

Viscoplastic strain     The external work   

Viscoplastic strain rate   ̇  The yield locus   
The angle of loading in deviator plane   The uniaxial yield stress     
Time stepping parameter   The plastic potential locus   
The hardening parameter   Plastic modulus  ʹ 
Poisson ratio ν The first invariant of stress     
Stress   The second and the third invariants of deviatoric stress   ′ ,   ′   
The residual forces   Arbitrary prescribed constants  ,  
Positive monotonic increasing function   Time   
  The pseudo load   

 
1. INTRODUCTION1 
 
Time rate effects are always present to some degree in 
all inelastic deformations (time dependant mechanical 
behaviors). Metals especially under high temperatures 
                                                        
1*Corresponding Author Email: farzad_moayyedian@yahoo.com (F. 
Moayyedian) 

show signs of simultaneously the phenomena of creep 
(viscoelasicity) and viscoplasticity. The former is 
essentially a redistribution of stress and/or strains with 
time under elastic material response while the latter is a 
time dependant plastic deformation. In this research a 
NVFR rule is studied and introduced to provide a new 
approach to problems of time dependant and 
independent plasticity. Providing solutions to time-
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dependent elastic-plastic problems can provide effective 
solutions for classical elastic-plastic situations. It can be 
shown that the steady-state solution of the viscoplastic 
problems is identical to its corresponding conventional 
static elastic-plastic one. In the following the studies of 
the previous researchers on the mentioned issue are 
reviewed. 
 A non-associated flow rule based on a pressure 
sensitive yield locus with isotropic hardening was 
proposed by Stoughton and Yoon [1]. The significance 
of their work was that their model distorted the shape of 
the yield function in tension and compression, fully 
accounting for the strength differential effect (SDE). A 
return mapping algorithm for cyclic viscoplastic 
constitutive models that included material memory 
effects was presented by Kumar and Nukala [2]. Their 
constitutive model was based on multi-component 
forms of kinematic and isotropic hardening variables in 
conjunction with von Mises yield locus. Armstrong-
Fredreick type rules [3] were used to describe the non-
linear evolution of each of the multi-component 
kinematic hardening variables. A design sensitivity 
analysis approach by the consistent tangent operator 
concept-based boundary element implicit algorithm was 
presented by Liang et al. [4]. It was included geometry, 
elasto-visco-plastic material and boundary condition 
parameters. A finite element formulation based on non-
associated plasticity was developed by Cvitanic et al. 
[5]. The yield and plastic potential functions were 
considered as two different functions with functional 
form. With use of five different material data for 
aluminum and stainless steel alloys, five material 
models ranging in complexity from a von Mises model 
based on isotopic hardening to a non-associated flow 
rule model based on anisotropic hardening was 
calibrated and evaluated by Stoughton and Yoon [6]. 
Their model was expected to lead to a significant 
improvement in stress prediction under conditions 
dominated by proportional loading and to improve the 
accuracy of springback, tearing and earning predictions 
for these processes. Gao et al. [7] by using experimental 
and numerical studies showed that the stress state had 
strong effects on both plastic response and ductile 
fracture behavior of an aluminum 5083 alloy. As a 
result, the hydrostatic stress and the third invariant of 
the stress deviator (which was related to the Lode angle) 
needed to be incorporated in material modeling. Mohr et 
al. [8] were applied a combined normal and tangential 
loads to a flat specimen in order to characterize the 
sheet metal response under 20 distinct multi-axial 
loading states. The comparison of the experimental 
results with the plasticity model predictions revealed 
that both associated and non-associated quadratic 
formulations provided good estimates of the stress-
strain response under multi-axial loading. However, the 
non-associated model was recommended when an 
accurate description of the thinning behavior was 

important. A consistent tangent stiffness was introduced 
by Romano et al. [9] to improve the asymptotic 
convergence rate of the iterative correction algorithm 
for the evaluative analysis of elastoplastic structures. An 
estimation of the tangent stiffness associated with finite 
step elastoplastic and elastoviscoplastic constitutive 
models was given. A generalized finite element 
formulation of stress integration method for non-
quadratic yield functions and potentials with mixed non-
linear hardening under non-associated flow rule was 
developed by Taherizadeh et al. [10]. Different 
approaches to analyze the anisotropic behavior of sheet 
materials were compared. The first model was based on 
a non-associated formulation with both quadratic yield 
and potential functions in the form of Hill's and the 
second one was an associated non-quadratic model 
Yld2000-2d. The third model was a non-quadratic non-
associated model in which the yield function was 
defined based on Yld91 and the potential function was 
defined based on Yld89. A plasticity model for isotropic 
materials, which was a function of the hydrostatic stress 
as well as the second and third invariants of the stress 
deviator with special attention to adopt the non-
associated flow rule was described by Gao et al. [11]. It 
was implemented in finite element method including 
integration of the constitutive equations using the 
backward Euler method and formulation of the 
consistent tangent modulus. A thermodynamic 
consistent, small-strain, non-unified model to capture 
the irregular rate dependency included in the strain 
controlled inelastic responses of polymers at the glassy 
state was developed by Voyiadjis et al. [12]. The model 
was considered as a generalized Frederick-Armstrong-
Philips-Chaboche (FAPC) [13]. A consistent 
formulation of the non-associated plasticity for soil was 
proposed by Berga [14]. He presented the implicit 
standard material method and a methodology to build a 
full model for the boundary value problem. The 
derivation of the second differentiation of a general 
yield surface by implicit time stepping method along 
with its consistent elastic-plastic modulus were studied 
by Moayyedian and Kadkhodayan [15]. Moreover, the 
explicit, trapezoidal implicit and fully implicit time 
stepping schemes were compared in rate-dependant 
plasticity. Finally it was shown that implementing fully 
implicit time stepping scheme in rate-dependant 
plasticity predicts experimental results more accurate 
than the other schemes. 
 The main goal of this study is arisen from combining 
of von Mises and Tresca loci as the yield and plastic 
potential functions. To show the ability of the proposed 
NAVFR, the global finite element code of a two-
dimensional problem with the aid of references [16-20] 
in finite element and [21-25] in plasticity theories is 
developed. An internally elastic-viscoplastic pressurized 
thick walled cylinder is considered with perfectly plastic 
and linear-isotropic hardening behaviour of material and 
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coded in Compaq Visual Fortran Professional Edition 
6.5.0. It should be noted that to employ the implicit time 
stepping scheme viscoplasicty the first and the second 
differentiation of a yield or plastic potential locus 
should be available. A general derivation required for 
the latter subject is used from the previous work of 
authors [15]. 

 
 

2. GENERAL INTERPRETATIONS 
 
The general form of a yield locus of an isotropic 
material is  (  ,   ′ ,   ′ ) which    is the first stress 
invariant and   ′  and   ′  are the second and the third 
invariants of deviatoric stresses.    shows the 
dependency of the yield locus to the hydrostatic 
pressure while   ′  and   ′  show the dependency of the 
yield locus to deviatoric stresses. Another parameter 
which can help to interpret the state of stress in 
deviatoric plane is the angle of loading in deviatoric 
plane,  , see Figure 1. This parameter can be defined as 
following [15]: sin 3 = −  √     (   )  .  (1)  

For an isotropic material it would be sufficient if the 
yield locus is studied in the region of −   ≤  ≤ +   . 
Hence, the Lode parameter can be defined as  =−√3     , therefore the yield locus can be mentioned 
in −1 ≤  ≤ +1. It can be demonstrated that for pure 
shear,  =  = 0, for pure tension,  = −   ,  = +1 
and for pure compression,  = +   ,  = −1. The 
presentation of von Mises and Tresca yield loci which is 
proper for the computational purposes are observed in 
Table 1. Where    is the uniaxial yield stress,   is the 
hardening parameter [15]. Figure 1 shows the 
presentation of the von Mises and Tresca loci in 
deviatoric plane. 
 
 
 

 
Figure 1. Presentation of von Mises and Tresca loci in   plane 
[17]. 
 

TABLE 1. Two classic yield loci [15] 
von Mises Tresca √3(  ′ )  =   ( ) 2(  ′ )      =   ( ) 

 
 
3. NON-ASSOCIATED VISCOPLASTIC FLOW RULE 
(NAVFR) 
 
The onset of viscoplastic behavior is governed by a 
scalar yield condition of the form:    ,     −   = 0,  (2) 

In which    is the uniaxial yield stress which may be a 
function of a hardening parameter  . It is assumed that 
viscoplastic flow only occurs for values of  >    [15]. 
A common explicit form of viscoplastic strain rate is 
offered by the following viscoplastic flow rule:    ̇   =  <  ( ) >         ,  (3) 

where  =    , ε  ,   is a plastic potential locus and   
is a fluidity parameter controlling the plastic flow rate. 
The term  ( ) is a positive monotonic increasing 
function for  > 0 and the notation 〈 〉 implies:  <  ( ) >  =  ( )      > 0,<  ( ) >  = 0             ≤ 0.   (4) 

For the associated plasticity situations,  ≡  . Different 
functions for   have also been recommended as 
following [15]: 

  ( ) =           − 1, ( ) =          .    (5) 

M and N are arbitrary prescribed constants. 
 In the following the symbol { } is used for a 6 × 1 
vector and the symbol [ ] for a 6 × 6 matrix in three 
dimensional stress space. 

 
3. 1. The Viscoplastic Strain Increment      With the 
strain rate law expressed by Equation (3) a strain 
increment         occurring in a time interval    =    −    using a time stepping scheme as  was defined 
[15]:        =     (1− )   ̇   +    ̇      .  (6) 

For  = 0 the Euler time integration scheme is obtained 
which is also referred to as 'fully explicit' (or forward 
difference method) since the strain increment is 
completely determined from the existing conditions at 
time   . On the other hand, taking  = 1 gives a 'fully 
implicit' (or backward difference) scheme with strain 
increment being determined from the strain rate 
corresponding to the end of the time interval. The case 
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  =     results in the so-called 'implicit trapezodial' 

scheme which is also known generally as the Crank-
Nicolson rule [15] . 
     To define    ̇      in Equation (6) the limited Taylor 
series expansion can be used [15]:    ̇     =    ̇   + [ ] {   },  (7) 

where, [ ] =    ̇      ,  (8) 

and            ⃗  is the stress change occurring in the time 
interval    =     −   . Thus Equation (6) can be 
written as:        =    ̇      + [ ]  {   },  (9) 

 where, [ ] =     [ ] .  (10)  

 
3. 2. Evaluation of    ⃖   ⃗  using NAVFR      To employ 
the fully implicit or semi-implicit (trapezoidal) time 
stepping scheme the matrix [ ]  is required which in 
turn can be expressed in terms of [ ]  as indicated in 
Equation (8). Matrix [ ]  has to be explicitly 
determined from the plastic potential locus assumed for 
material behavior. From Equations (3) and (9) it is 
found:  ⃡ =           +                     .  (11) 

The symbol 〈 〉 on   and the superscript   are dropped 
for convenience. The approach of calculating        and          for a general yield or plastic potential locus is 
presented in previous work of the authors [15]. 

 
3. 3. Solution Sequence for Stress updating using 
(NAVFR)      The essential steps in solving process are 
summarized here. The solution begins from a known 
initial conditions at  = 0, which are the static elastic 
situation. At this stage   ,   ,   ,    and    are known 
and     = 0. The time marching scheme described in 
the previous section then is employed to advance the 
solution.  
 
  
4. RESULTS AND DISCUSIONS 
 
In this section with considering the mechanical 
properties, Young modulus of elasticity,  =21000      , Poisson ratio,  = 0.3, yield stress,   =   = 24.0      , plastic modulus,  ′ = 0.0       

for perfect plastic and  ′ =      for isotropic linear 

hardening behaviour of materials, fluidity parameter,  = 0.001/   , inner radius of the cylinder,  =100    and outer radius of the cylinder,  = 200   , 
and the flow function  ( ) =   and employing the 
fully implicit time stepping scheme ( = 1), von Mises 
and Tresca loci are combined by considering them in 
the role of yield and plastic potential functions and vice 
verse. The abbreviations of (V) and (T) stand for the 
von Mises and Tresca loci, respectively. Moreover, in 
symbol of (□-□) the first and second letters show the 
yielding and plastic potential functions used in the 
analysis, respectively. To compare the latter effects on 
the obtained results the steady state condition at 100% 
over strain can be observed in Figure (2) for an elastic-
viscoplastic internally pressurised vessel. The results 
show that employing NAVFR (V-T) comparing with 
AVFR (V-V) and also NAVFR (T-V) comparing with 
AVFR (T-T) predict the experimental results more 
accurately. It is seen that (V-V) overestimates and (T-T) 
underestimates the experimental data. Moreover, it can 
be observed that for the less ratios of     , using Tresca 
locus along with the AVFR (T-T) cause better accuracy 
than that of the von Mises AFVR. 

Consequently, it can be found out that using 
NAFVR may predict the experimental results more 
precisely. For instance, for   ≤ 2 and    ≥ 2 using (T-
V) and (V-T) could provide better accuracy, 
respectively. 
 Figures (3, 4) demonstrate the variation of 
circumferential strain at the outer surfaces   = 1,6 and   = 2.4 (the most accurate ratio of     with employing 
(T-T) and (V-T) as it seen in Figure (2)) with time and 
also the steady state circumferential stress distributions 
in 1 ≤   ≤ 1.6 and 1 ≤   ≤ 2.4 for perfect-plastic 
materilas with considering AVFR and NAVFR. Figures 
(5, 6) show the previous items with considering 
isotropic linear hardening behaviour of materials.. 
 
 

 
Figure 2. Comparison between the experimental results and   −  ,  −  ,  −   and  −   in steady state condition. 
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Figure 3. Comparison between the  −   and  −   and also  −   and  −   for variation of circumferential strain at the 
outer surface with time and perfect plastic behavior of  
materials. 
 
 

 
Figure 4. Comparison between the  −   and  −   and also  −   and  −   for variation of circumferential stress with 
radial distance and perfect plastic behavior of  materials. 
 
 

 
Figure 5. Comparison between the  −   and  −   and also  −   and  −   for variation of circumferential strain at the 
outer surface with time with considering linear isotropic 
hardening behavior of materials. 

 
Figure 6. Comparison between the  −   and  −   and also  −   and  −   for variation of circumferential stress with 
radial distance and with considering linear isotropic hardening 
behavior of  materials. 
 
 
 Figures (3, 5) show that the strains predicted by 
NAFVR, V-T (T-V) are more (less) than that of AFVR, 
V-V (T-T) for the same time for   = 2.4 (  = 1,6). 
Moreover, Figures (4, 6) show that the steady state 
stresses predicted by NAFVR, T-V are more than those 
of AFVR, T-T in the interval of 1 ≤   ≤ 1.6 and for   < 1.4 (  ≥ 1.4) the hoop stresses predicted by 
NAVFR V-T are more (less) than AVFR V-V.  

Finally, by considering Figures (3-6) it can be found 
that with increasing the load and hardening the 
differences between AFVR and NAFVR increase. 
 To investigate the proposed NAVFR more precisely, 
the subsequent investigations can be helpful. From 
Table 1 the Tresca yield locus can be written as below: 2(   )  cos  −   = 0,−   ≤  ≤    ,  (12) 

or, 

(13)    cos  =      .  

Using Equation (1) it can be found that: Cos  = 1 −            ,  (14) 

where, 

  =     , =            .      (15) 

Consequently, the Tresca locus can be shown as 
following:     1−            =     .  (16) 

Using Equation (15) and the range of   in Equation 
(12), the range of   can be determined as   ≤  ≤      or 0.75 ≤  ≤ 1.6875. Moreover, some experimental 
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studies show that the plastic potential locus can be as 
following [21]:  (   ,    ) =     1 − 0.73           ,  (17) 

which can predict the behaviour of material more 
accurately than AVFR, V-V. Comparison Equation (16) 
with Equation (17) shows that the new plastic potential 
locus is nearly equal to Tresca locus in pure shear. 
Furthermore, the direction of normal to the Tresca locus 
is constant in the range of −   ≤  ≤   , hence 
considering (V-T) can predict the experimental results 
more accurately compared to (V-V). In addition, Gao, et 
al. [11] used yield and plastic potential loci as below: 

  =       + 27    +            , =       + 27    +            ,   (18) 

where, 

   =    +       + 1     ,  =    +       + 1     .   (19) 

Comparing the model with different experimental 
results, they concluded that selecting   =   = 0 and   = −60.75 and   = −25 could predict the 
experimental data with good accuracy. It can be 
deduced that they nearly used T-V in their numerical 
calculations and showed that it is more accurate than 
AVFR, V-V. 
     From previous sections it is realized that increasing 
the load step and considering hardening material 
increase the difference between NAVFR and AVFR. 
Moreover, another main reason for this difference can 
be attributed to the combination of loading (tention-
shear). To investigate this issue the Lode parameter,  , 
is considered. Figures (7,8) show the variation of Lode 
parameter (in outer surface of the vessel) with time and 
angle   when AVFR based on both von Mises and 
Tresca yielding loci is used, respectively. As it is 
apparent, in pure shear the orthogonal vectors to Tresca 
and von Mises surfaces have the same directions (not 
the same values). Now, when the loading is such that  ⟶ 0, then the difference between the directions of 
the vectors of plastic strain increment for von Mises and 
Tresca decreases. On the other hand, when the loading 
is such that  ⟶ ±1, the difference increases. In other 
words, as the loading condition varies in such a way that  ⟶ ±1, the difference between the AFVR and 
NAVFR becomes higher. Figure (9) shows that the 
maximum difference between the AVFR and NAVFR 
happens in the outer surface of the vessel and for the 
current loading condition the Load parameter is  ≅ −0.4 in the outer surface. The difference between 
the results obtained by considering perfect-plastic 

behaviour of matrials in Figures (3, 4) is solely because 
of the combination of loading. However, these 
differences become higher when in addition to 
combination of loading the isotropic hardening is also 
considered, see Figures (5, 6). Therefore, for the 
problems with non-linear isotropic hardening in 
conjunction with the load condition in deviatoric plane 
as  ⟶ ±1, the difference between the presented 
NAVFR and the corossponding AVFR becomes 
maximum. Figure (10) shows the variation of steady 
Lode parameter with different ratios of     at 100% over 
strain. It is evident that for both (V-V) and (T-T) there is 
almost no change for Lode parameter in outer surface of 
the vessel. Therefore, it can be expected that the 
differences between the NAFVR and AFVR, i.e. 
between (V-V) and (V-T) and also (T-T) and (T-V), 
have to remain constant approximately for different 
ratios of    as it can be observed in Figure (2). 
 
 
 

 
Figure 7. Variation of Lode parameter at outer surface versus 
time with perfect-plastic material. 
 
 
 

 
Figure 8. Variation of steady state Lode parameter versus 
angle   with perfect-plastic material. 
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It was expected in AVFR (V-V) or (T-T) when  → ±1 
the difference between NAVFR (V-T) or (T-V) 
becomes more obvious. In Figure 14, with AVFR, V-V 
(T-T) when   = 2.4 (  = 1.6),  ≅ −0.4 and therefore 
it was expected in outer face of the vessel the difference 
between V-V (T-T) and V-T (T-V) becomes maximum. 
In Figures (4,6) this maximum difference in outer face 
of the vessel can be observed. 

In Figure (9), for AVFR, V-V when   = 1.41341, 
the Lode parameter becomes zero ( = 0), when 1 ≤   < 1.41341, sign of the Lode parameter becomes 
positive ( > 0) and when 1.41341 <   ≤ 2.4, it 
becomes negative ( < 0). The effect of changing the 
Load parameter can be observed in Figures (4,6) with 
employing NAVFR (V-T). In Figure (9), for AVFR, T-
T when 1 ≤   ≤ 2.4, sign of the Lode parameters 
remains negative ( < 0), therefore sign of Lode 
parameter is unchanged unlike V-V and this effect can 
be seen in Figures (4, 6) when NAVFR (T-V) is 
employed. Finally it can be realized that the difference 
between AVFR and NAVFR has a direct effect on the 
sign and value of the Lode parameter. 
 
 

 
Figure 9. Variation of steady state Lode parameter versus 
radius with perfect-plastic material and von Mises and Tresca 
criteria. 
 
 

 
Figure 10  The variation of steady state Lode parameter with    at 100% over strain.  

5. CONCLUSIONS 
 
The main idea in this research is arisen from combining 
von Mises and Tresca loci for the yield and plastic 
potential functions and vice verse. During this 
investigation the experimental observation and analysis 
of plastic potential locus is discussed and the following 
results are obtained: 

1- The case of (V-V) overestimates and (T-T) 
underestimates the experimental data. 

2-  Employing NAVFR (V-T) compared with 
AVFR (V-V) and also NAVFR (T-V) 
compared with AVFR (T-T) cause the 
experimental results are predicted more 
accurately. 

3- The value and sign of the Lode parameter 
along with the value of plastic modulus in 
isotropic hardening problems has a direct effect 
on difference between the proposed NAVFR 
and AVFR.  

4- Combination of loading (tension-shear) can 
cause differences between the presented 
NAFVR and corresponding AFVR such that 
for  ⟶ ±1 these differences increase and for  ⟶ 0 they decrease. 
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  چکیده

  
 

با ترکیب سطوح تسلیم ون مایزز و ترسکا به جاي  (NAVFR) قانون جریان ویسکوپلاستیسیته ناوابستهدر این پژوهش 
زمانی کاملا غیرصریح و همچنین مرحله اي به کمک روش . توابع تسلیم و پتانسیل پلاستیک و برعکس ارائه شده است

مولفین و همچنین نتایج  ارائه شده توسط سایرابع پتانسیل پلاستیک وتمطالعات انجام شده روي در مورد  بررسی
 (AVFR)قانون جریان ویسکوپلاستیسیته ناوابسته ارائه شده از قانون جریان وابسته آزمایشگاهی نشان داده خواهد شد که 

   .نمایدتر پیش بینی میگاهی را دقیقشنظیر خود نتایج آزمایمرسوم 
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