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ABSTRACT 
 
Aims: To evaluate the effect of aflatoxin B1 (AFB1) on in vitro dry matter disappearance 
(IVDMD), gas production and ammonia-N formation of an alfalfa hay based diet using 
batch culture system. 
Place and Duration of Study:  Department of Animal Science, between July 2011 and 
August 2012. 
Methodology:  In an anaerobic batch culture system, 50 ml of buffered rumen fluid was 
dispensed into a 125-ml serum bottle containing 0.5 g dry matter (DM) of the experimental 
diet. Experimental treatments included four dose levels of AFB1 (0, 300, 600 and 900 
ng/ml). All bottles were purged with anaerobic CO2, sealed and placed in a shaking water 
bath for 72 h at 38.6ºC. Gas production of each bottle was recorded at 2, 4, 8, 12, 16, 24, 
48 and 72 h of the incubation and then gas released. The batch cultures were repeated in 
three incubation runs. After 72 h incubation, bottles were opened and 2-ml sample of each 
bottle were taken for ammonia-N analysis. The biomass residues were centrifuged and the 
pellet was dried at 65°C for the determination of t he residual DM and IVDMD. 
Results:  Addition of AFB1 affected the rate and cumulative gas production (P<0.05), so, 
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by increasing the level of AFB1 from 0 to 900 ng/ml, the gas production rate decreased 
from 0.071 to 0.051 and cumulative gas production decreased from 196.4 to 166.0 ml/g 
DM, respectively. In addition, IVDMD decreased significantly with inclusion of AFB1 in 
culture medium, so that the lowest and the highest IVDMD values were observed in 
treatments with 900 and 0 ng/ml AFB1, respectively (0.54 vs. 0.68). The results indicated 
that addition of AFB1 significantly (P<0.05) decreased ammonia-N concentrations, so the 
lowest value was observed at 900 ng/ml AFB1.  
Conclusion:  The addition of different levels of AFB1 affected in vitro fermentation 
characteristic, as represented in reduced gas production, dry matter digestibility and 
ammonia-N concentrations. Therefore it is necessary to control and manage aflatoxin 
contaminations in ruminants. 
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1. INTRODUCTION  
  
Aflatoxins (AF) are secondary metabolites produced by Aspergillus flavus and Aspergillus 
parasiticus. Aflatoxin B1 (AFB1), the most abundant AF in naturally contaminated foods and 
feeds, is toxic and carcinogenic to humans and animals [1]. This toxin becomes stable once 
formed in grain, resistant to degradation during normal milling and storage [2]. This presents 
the toxicity of contaminated feedstuffs as a significant, potential health hazard to animals 
and human beings. In ruminants, toxic effects are associated with liver damage, diminished 
growth efficiency, diminished milk production and quality and impaired resistance to 
infectious diseases [3]. In other hand, rumen motility was decreased after aflatoxin 
administration in steers at the dose rates of 200-800 µg of AFB1 per kg diet [4]. Fehr and 
Delage [5] observed that levels of aflatoxin greater than 200 ng per ml in an in vitro artificial 
rumen system decreased cellulolysis and ammonia-N formation, but some studies reported 
no effect of AFB1 on in vitro dry matter disappearance of hay [6,7]. 
 
Although it appears that some microorganisms in the rumen may be disturbed by aflatoxin, 
the relative aflatoxicosis resistance of ruminant animals in comparison to nonruminants, 
suggest that other rumen microorganisms may be able to degrade and transform aflatoxin to 
less toxic metabolites (e.g., aflatoxicol). [7,8,9,10]. It has shown that the carbonyl group of 
the cyclopentane ring of aflatoxin Bl was reduced to form aflatoxicol [11], which is 18 times 
less toxic than aflatoxin B1.   
 
In recent years some studies have shown that adsorbent products including clays (typically 
hydrated sodium calcium aluminosilicates), activated carbons, and yeast products are 
effective in sequestering and binding aflatoxin [12,13,14,15]. These products are capable of 
attaching aflatoxin to their surface without any chemical action. Bentonite is one of the best 
known and the most commonly used clay for aflatoxin attachment. Montmorillonite which is a 
nano-structured and nano-porous member of smectite group  is  the  dominant  mineral  
constituent  of  a  bentonite  affecting  the  whole  bentonite properties. However these 
strategies mainly offer the potential to reduce transfer of aflatoxin from feed to bloodstream 
and reduce milk aflatoxin residues in ruminants, while, there is no document about 
preventive effect of adsorbent products on rumen dysfunction caused by feed born aflatoxin. 
The objective of the present study was to evaluate effect of AFB1 on in vitro dry matter 
disappearance, gas production and ammonia-N formation of an alfalfa hay based diet using 
batch culture system. 
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2. MATERIALS AND METHODS   
 
2.1 Experimental Diet and Aflatoxin Preparation 
 
Five mg of AFB1 (Sigma–Aldrich, Catalog number: A6636) was dissolved in 2 ml absolute 
methanol, then diluted with sterilized deionized water to make 15.3 µg/ml, 30.6 µg/ml, and  
45.9µg/ml AFB1 solutions. The experimental diet was a mixture of alfalfa hay and 
concentrate (Table 1). Samples were oven dried (66ºC, 48 h), then ground to pass through 
1.5 mm screen. A sample of 500 mg of the experimental diet was used for batch culture 
incubation. The experimental diet samples were analyzed for content of DM (method 930.5), 
crude protein (CP) (method 984.13), neutral detergent fiber (NDF) (method 2002.04) and 
acid detergent fiber (ADF) (method 973.18) with AOAC methods [16]. 
 

Table 1. Ingredients and chemical composition of ex perimental diet 
 

Item  Amount (% of diet DM)  
Ingredients   
Alfalfa hay 50.0 
Barley grain, rolled 20.5 
Corn grain, grind 17.0 
Sugar beet pulp 3.5 
Soybean meal 5.5 
Canola meal 3.5 
Chemical composition   
Crude protein 15.2 
Neutral detergent fiber 31.6 
Acid detergent fiber 23.0 
Non fiber carbohydrates 36.7 

 
2.2 In vitro Batch Culture   
 
Ruminal fluid was collected from 4 fistulated steers (620 ± 45 kg body live weight). Animals 
had free access to water and were fed 10.4 kg total mixed ration divided into two equal 
meals at 07:00 and 17:00 h. The ration contained [per kg of dry matter (DM)]: 250 g corn 
silage, 250 g alfalfa hay, 160 g corn grain, 160 g barley grain, 45g wheat bran, 110 g 
soybean meal, 5.5 g dicalcium phosphate, 4.5 sodium chloride and 5 g commercial vitamin 
and trace mineral premix (each kg containing: 190g Ca, 90g P, 50g Na, 19g Mg, 3g Cu, 3g 
Fe, 2g Mn, 3g Zn, 100mg Co, 100mg I, 1mg Se, 500,000 IU vitamin A, 100,000 IU vitamin 
D3, 100 mg vitamin E, 3g antioxidant ). Net energy for growth and CP content were 6.57 MJ 
and 155 g, per kg DM, respectively. Animals were cared for according to the Iranian Council 
of Animal Care guidelines. Ruminal fluid was immediately collected before the morning 
feeding, strained through four layers of cheesecloth to eliminate large feed particles and 
transferred to the laboratory in a pre-warmed thermos. 
 
Procedure of in vitro batch culture was performed according to the Menke and Steingass 
[17]. In an anaerobic condition, 50 ml of buffered rumen fluid [ratio of buffer to rumen fluid 
was 2:1]. was dispensed with Pipetor pump into a 125-ml serum bottle containing 0.5 g DM 
of the experimental diet. Experimental treatments included four dose levels of AFB1 (0, 300, 
600 and 900 ng/ml of medium). The respective AFB1 solutions (1 ml) were added to the 
bottles, resulting in the three dose levels of 300, 600 and 900 ng/ml AFB1, and 1 ml AFB1-
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free methanol solution diluted with deionized water was added to the zero dose treatment. 
All bottles were purged with anaerobic CO2, sealed with rubber stoppers and placed in a 
shaking water bath for 72 h at 38.6ºC. To prevent accumulation of gas produced, head 
space gas pressure of each bottle was recorded using a pressure transducer [18] at 2, 4, 8, 
12, 16, 24, 48 and 72 h of the incubation and then gas released. The batch cultures were 
repeated in three incubation runs. After 72 h incubation, bottles were respectively transferred 
to refrigerator to stop fermentation, and then opened. A 2-ml sample of each filtrate bottle 
was taken, then acidified with 2-ml of 0.2 N HCl and frozen at -20ºC. The biomass residues 
were centrifuged at 1000×g for 10 min at 4ºC. The supernatant in each bottle was decanted 
and the pellet was dried at 65ºC to a constant weight for the determination of the residual 
DM.  
 
2.3 Calculations and Statistical Procedure 
 
Gas pressure was converted into volume using an experimentally calibrated curve. Data of 
cumulative gas production data were fitted to the exponential equation GP=b(1−e−Ct) [19], 
where b is the gas production from the fermentable fraction (mL), the gas production rate 
constant C (mL/h), t the incubation time (h) and GP is the gas produced at time t (ml/g DM). 
In vitro DM disappearance (IVDMD) was calculated as the difference between initially 
incubated DM and residual DM, corrected by blanks. Ammonia-N concentration was 
determined by a colorimetric method [20].  
 
Data were statistically analyzed using GLM procedure of SAS [21] with flowing statistically 
model; y=µ+Ti+ eij, where y= depended variable, µ= overall mean, Ti= effect of AFB1 and eij= 
residual error. For gas production data, for which was repeated over time, the effects of time 
and time× AFB1 level were included in the REPEATED statement of the model. Significant 
means were compared using the Duncan’s multiple range tests. Mean differences were 
considered significant at P<0.05. 
 
3. RESULTS AND DISCUSSION 
 
Estimated parameters of gas production are presented in Table 2 and cumulative gas 
production profiles are shown in Fig. 1. In this study, gas production was significantly 
influenced by the AFB1 level and sampling time (Fig. 1). The addition of AFB1 affected the 
rate and cumulative gas production (P<0.05), so, by increasing the level of AFB1 from 0 to 
900 ng/ml, the gas production rate (c) decreased from 0.071 to 0.051 and cumulative gas 
production decreased from 196.4 to 166.0 ml/g DM, respectively. 



 
 
 
 

Annual Review & Research in Biology, 3(4): 686-693, 2013 
 
 

690 
 

 
 

Fig. 1. Pattern of in vitro gas production (fitted with exponential model) affe cted by 
different levels of aflatoxin B1 (0, 300, 600 and 9 00 ng AFB1/ml of medium). (AFB1 

effect: P<0.05; Time effect: P<0.01; AFB1×Time effe ct: P=0.73) 
 
These results are consistent with those of Jiang et al. [7] and Helferich et al. [22,23], who 
reported that the gas production parameters were reduced when AFB1 was added. These 
depressions in the gas production suggest that microbial populations are altered by AFB1 
contamination. 
 
Results of present study indicated that IVDMD decreased significantly (P<0.05) with 
inclusion of AFB1 in culture medium, so that the lowest and the highest IVDMD values were 
observed in treatments with 900 and 0 ng/ml AFB1, respectively (0.54 vs. 0.68). In 
agreement with our result Westlake et al. [8] reported that IVDMD of alfalfa hay was reduced 
by 50% with inclusion of 1 µg/ml AFB1. In another study [5], cellulose digestion and 
ammonia formation decreased with aflatoxin levels greater than 200 ng per ml in an in vitro 
artificial rumen system. In our study decreasing IVDMD with AFB1 addition can be attributed 
to compromised ruminal function by reducing fiber digestion and volatile fatty acid production 
[5,22,23]. However some studies reported no effect of AFB1 on in vitro dry matter 
disappearance of hay [6,7].  
 
Our  results indicated that the addition of AFB1 significantly (P<0.05) decreased ammonia-N 
concentrations, so the lowest value was observed at 900 ng/ml AFB1, but were similar for 0 
and 300 ng/ml doses (Table 2). Our result is consistent with other studies [5,7] who reported 
that the inclusion of AFB1 in an in vitro artificial rumen system decreased ammonia-N 
concentration. Ruminal ammonia concentration is a combined result of ammonia production, 
ammonia absorption and microbial ammonia uptake and utilization. The decrease in ruminal 
ammonia concentration with addition of AFB1 in the present study may be due to slower 
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release of ammonia from the diet thereby inhibition of protein digestion and metabolism by 
AFB1. 
 

Table 2. In vitro dry matter disappearance (IVDMD), gas production (G P) parameters 
and ammonia-N concentrations responses to different  doses of aflatoxin B1 (AFB1) of 

an alfalfa hay based diet using batch culture 
 

Items  Aflatoxin B1 (ng/ml)    

0 300 600 900 SEM P-value  
Gas production parameters       
GP rate (c)  0.071a 0.066a 0.054b 0.051b 0.005 0.04 
Cumulative GP after 72 h  (b) 196.4a 183.6b 170.5c 166.0c 6.1 <0.01 
IVDMD  0.68a 0.64b 0.59c 0.54d 0.07 <0.01 
Ammonia-N (mg/ 100 ml) 28.8a 27.6a 23.6b 18.1c 0.37 0.02 

 
The nonlinear equation, GP (ml/g DM) = b× (1−e−ct) was used to analyze the kinetic data as 
described by Osuji et al. [19]; Means in the same row with different letters differ significantly; 
SEM: standard error of means.  
 
Mathur et al. [24] observed that aflatoxin inhibited pure cultures of Streptococcus bovis and 
mixed rumen bacterial cultures. Burmeister and Hesseltine [25] used a crude extract of 
aflatoxin that contained 36 percent total aflatoxin and 24 percent aflatoxin B1 to determine 
the sensitivity of microorganisms to aflatoxin. Of 329 microorganisms surveyed, 12 species 
of Bacillus, a Clostridium spp., and a Streptomyces spp. were inhibited. Although crude 
extracts of A. flavus may contain several antimicrobial agents, their experiments indicated 
that aflatoxin B1 was the principal antimicrobial agent.  
 
One limitation of this study is that the fermentation results observed with AFB1 may only be 
applicable to inordinate amounts of AFB1, which may not be naturally encountered. For 
example If aflatoxin is removed from the rumen at a rate similar to average rumen contents, 
a 600-kg cow consuming 20 kg of feed containing high AFB1 level as 900 ppb, would have 
approximately 200 ng aflatoxin Bl per milliliter of rumen contents. 
 
Although our results are in agreement with some previously reports, some other studies 
report contradicting data. The discrepancy between these reports may be due to differences 
in technique, different AFB1 levels and sources of aflatoxins. For instance the procedure of 
Fehr and Delage (5) used 20 ml of inoculum incubated for 24 h, while Pettersson and 
Kiessling (6) used a procedure that incubated 1 ml of rumen fluid inoculum with the substrate 
for 96 h. The long incubation period and low level of initial inoculum could result in a selected 
microbial population that may not represent rumen conditions. In addition, long-term 
fermentation obscures the results of in vitro systems, since early differences in rate or extent 
of digestion would be obliterated. In other hand, there were almost certainly some other 
antimicrobial agents and mycotoxins, other than AFB1, as well as some nondetectable 
mycotoxins in the diets or crude extracts of A. flavus used. This may explain the variety of 
effects observed in studies with naturally contaminated feed compared with experiments with 
pure mycotoxins [26,27,28]. 
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4. CONCLUSION 
 
Results of present study demonstrated that the addition of different levels of AFB1 affected 
in vitro fermentation characteristic, as represented in reduced gas production, dry matter 
digestibility and ammonia-N concentrations. Therefore it is necessary to control and manage 
aflatoxin contaminations in ruminants. 
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