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Abstract 

 

Unified hybrid censoring is a mixture of generalized Type-I and Type-II 

hybrid censoring schemes. This article presents the statistical inferences on 

Weibull parameters when the data are unified hybrid censored. It is observed 

that the maximum likelihood estimators (MLEs) cannot be obtained in closed 

form. We propose to use the EM algorithm to compute the maximum 

likelihood estimators. We obtain the observed Fisher information matrix using 

the missing information principle and it can be used for constructing the 

asymptotic confidence intervals. We also obtain the Bayes estimates of the 

unknown parameters under the assumption of independence using the Gibbs 

sampling procedure. Simulations are performed to compare the performances 

of the different methods and for illustrative purposes we have analyzed one 

data set.  

 

Keywords: Bayes estimators; EM algorithm; Fisher information matrix; Gibbs 

sampling; Maximum likelihood estimators; Unified hybrid censoring. 
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Introduction 

 

Consider a life-testing experiment in which n  identical units are placed on 

a life-test. Let nnnn XXX ::2:1 ...  denote the corresponding lifetimes from 

an Weibull distribution with probability density function )(xf  and cumulative 

distribution function )(xF .  

Generalized Type-I and Type-II hybrid censoring schemes (HCS) was first 

introduced by Chandrasekar et al., (2004). A mixture of generalized Type-I and 

Type-II HCS is known as the unified HCS and it can be described as follows: 

Suppose n  identical units are put to test under the same environmental 

conditions and the lifetime of each unit is independent and identically 

distribution (i.i.d) random variables. Fix }{1,2,...,, nrk   and )(0,< 21 TT  

such that rk < . If k -th failure occurs before time 1T , the experiment terminate 

at min{ max }},,{ 21: TTX nr ; if the k -th failure occurs between 1T  and 2T , the 

experiment terminate at min },{ 2: TX nr  and if the k -th failure occurs after time 

2T , then the experiment terminate at nkX : . Under this censoring scheme, we 

can guarantee that the experiment would be completed at most in time 2T  with 

at least k  failure and if not, we can guarantee exactly k  failures. Balakrishnan 

et al. (2008), first introduced the unified HCS and analyzed the data under the 

assumption of exponential lifetime distribution of the experimental units. They 

also obtained exact confidence intervals for the mean of the exponential 

distribution under the unified HCS. 

In this paper, we consider the analysis of the unified HCS lifetime data 

when the lifetime of each experimental unit follows two parameters Weibull 

distribution. Weibull distribution is one of the most common distribution which 

is used to analyze several lifetime data. The aim of this paper is two fold. First 

we consider the point and interval estimates of the unknown parameters, based 

on the frequentist approach. It is observed that the MLEs can be obtained by 

solving two non-linear equation, but they can not be obtained in closed form. 

Although, the standard Newton-Raphson algorithm can be employed to solve 

the non-linear equation, but unfortunately it does not converge all the time 

even from good starting values. We propose to use the EM algorithm to 

compute the MLEs. Using the missing information principle we calculate the 

observed Fisher information matrix, which can be used for constructing the 

asymptotic confidence intervals of the unknown parameters. The second aim of 

this paper is to consider the Bayesian inference for the unknown parameters 

when the data are unified HCS. The Bayes estimates can not be obtained in 

closed form. Using the Gibbs sampling procedure we obtain the Bayes 

estimates and also the highest posterior density (HPD) credible intervals under 

the assumptions of independent of both the shape and scale parameters. 

Simulations are performed to compare the performances of the different 

methods. 
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Model Description  

 

Suppose the lifetime random variable X  has a Weibull distribution with 

the shape and scale parameters as   and   respectively, probability density 

function (pdf) of X  is;  
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where 0> , 0>  are the natural parameters space. If the random variable 

X  has the density function (1), then XY ln=  has the extreme value 

distribution with pdf;  
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where  ln= , 



1

= . Models (1) and (2) are equivalent models in the sense, 

the procedure developed under one model can be easily used for the other 

model. Although, they are equivalent models, sometimes it is easier to work 

with the model (2) than (1), because in the model (2), the two parameters   

and   appear as location and scale parameters, respectively. In fact, it is 

observed that the approximate MLEs can be obtained quite easily using model 

(2) than model (1). 

Now we describe the data available under the unified HCS. Note that, 

under the unified HCS, it is assumed that }{1,2,...,, nkr  , )(0,< 21 TT  such 

that rk <  are known in advance. Thus, under this censoring scheme we have 

six cases:  

.  t<<<<0(6)
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Maximum Likelihood Estimators  

 
In this section we provide the MLEs of the unknown parameters based on 

the observation given in Section 2. First we write down the likelihood function 

in six cases separately. Let jD  denote the number of failures until time jT , 

1,2=j . Then, the likelihood function of unified HCS is  as follow: 
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 Note the likelihood function in six cases can be combined as follow  
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Taking the logarithm of (3), we obtain  
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and derivatives with respect to   and   of  (4)  are 
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It is clear that the likelihood equations in (5) are implicit, we need some 

numerical techniques to solve the simultaneous equations. We suggest to use 

the EM algorithm to compute the MLEs and it is described below. The EM 

algorithm, originally proposed by Dempster et al. (1977), is a very powerful 
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tools in handling the incomplete data problem. We treat this problem as a 

missing value problem similarly as in Ng et al. (2002). Let us denote the 

observed and the censored data by ),...,,(= ::2:1 ndnn XXXX  and 

),...,,(= 21 dnZZZZ   respectively. Here for a given d  and dnZZZ ,...,, 21  are 

not observable. The censored data vector Z  can be thought of as missing data. 

The combination of ),(= ZXW  forms the complete data set. The log-

likelihood function based on the complete log-lifetime W  is  
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 In E-step one needs to compute the pseudo log-likelihood function as 
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The conditional distribution of iZ  given xX   is a truncated extreme 

value distribution with left truncation at c  have pdf (Ng et al., 2002)  
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The ML estimation of the parameters based on the complete data from the 

extreme value distribution can not be solved explicitly. However, this problem 

has been well studied (Lawless, 1982). Thus, in the M-step of the (h+1)-th 

iteration of the EM algorithm, the value of 1)( h  is first obtained by solving 

the equation  
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 and then obtain 1)( h  by  
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Fisher Information Matrices  

 
In this section we present the observed Fisher information matrix obtained 

using the missing value principle of Louis (1982). The observed Fisher 

information matrix can be used to construct the asymptotic confidence 

intervals. The idea of missing information principle is as follows;  

Observed information =  Complete information -  Missing information.  

Let us use the following notation; ),(=  , dataobservedheX   t= , 

datacompleteheW   t= , ninformatioobservedheIW   t=)( , 

ninformatiomissingheI XW   t=| , then ).()(=)( |  XWWX III   From the 

classical results on the extreme value distribution, the complete data 

information matrix is (Stephens, 1977)  

 ,
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where 50.57721566=  is the Euler’s constant and 2c  is 

11.82368066=)(1/6 22   . The Fisher information matrix of the censored 

observation can be written as  
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 The asymptotic variance covariance matrix of ̂  can be obtained by 

inverting )ˆ(XI .  

 

 

Bayes Estimates  

 
In this section, we consider the Bayes estimations of the unknown 

parameters and also constructions of the credible intervals. We re-parametrize 

the model as follows 



1

= . Based on the new parametrization, we consider 

the Bayes estimates of   and  . Unfortunately, when both the parameters are 

unknown then there is not exist any natural conjugate priors. Similarly as in 

Berger and Sun (1993), it is assumed that   has a gamma prior, ),( ba , for 

0>,ba , i.e.  
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1  ba e                               (12) 

No specific form of priors )(2   on   is assumed here. It is only 

assumed that the support of )(2   is )(0,  and it is independent of  . Based 

on the above prior assumptions, the joint posterior density function   and    

is 
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Therefore, the Bayes estimate of any function of   and  , say ),(   under 

the squared error loss function is 

 

.
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It is not possible to compute (15) analytically in this case. We will provide 

the Gibbs sampling procedures to compute the point estimate of any function 

of   and  . To perform the Gibbs sampling procedure, we further assume that 

)(2   is log- concave. It may be mentioned that the well known distributions 

like Weibull and gamma have log-concave density functions if the 

corresponding shape parameters are greater than or equal to one, whereas 

normal and log-normal have always log-concave density function. The 

posterior density function of   is as follow: 
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Also, the conditional density of  , given data, is log-concave (see Kundu, 

2007). So, we observe that the conditional density of   given the data is  

.
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Now we obtain the Bayes estimates and the credible intervals of   and  , 

Similarly as in Geman and Geman, (1984). 

 

 

Simulation 

 
In this section, we present some simulation results to compare the 

performances of the different methods proposed in the previous sections. We 

mainly compare the performances of the MLEs and Bayes estimations of the 

unknown parameters, in terms of their bias, mean squared errors ( MSEs ) and 

their coverage percentages. It should be mentioned that all the programs are 

written in R.  

In each case, we generated a sample from Weibull distribution with 1= , 

1=  and 50=n . The simulation is carried out for different choices of k , r , 

1T  and 2T  values. We have estimated the   and )
1

( 


  using the MLEs. For 

computing the MLEs, we have used the EM algorithm and computed the 

coverage percentages of the confidence intervals using the observed Fisher 

information matrix.  

We have estimated the   and   using the Bayes estimates. For computing 

the Bayes estimators, it is assumed that   and   have ( a , b )  and ( c , d )  

priors, respectively. Moreover, we used the non-informative gamma priors for 
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both the shape and scale parameters, that is, when the hyper parameters are 0, 

( 0==== dcba ). The Bayes estimators are computed under the squared 

error loss function and with respect to the above priors. For comparison 

purposes, we also compute the 95%  HPD credible intervals from the Gibbs 

samples. We replicate the process 10000  times and report the Bias, MSEs and 

coverage percentages in Tables 1-6. 

From Tables 1-6 the following general observations can be made. For two 

methods, (i) for fixed r , k  and 2T  when 1T  increases from 0.1 to 2, the bias 

and MSEs  decrease (Tables 1 and 2) and the coverage percentages increase 

(Table 3), (ii) for fixed r , k  and 1T  when 2T  increases from 0.5 to 4, the bias, 

MSEs  decrease (Tables 4 and 5) and the coverage percentages increase (Table 

6). 

The bias and MSEs  of the Bayes estimators are marginally larger than 

MLEs for small 1T  or 2T  but for large 1T  or 2T  thay are more similar. The 

coverage percentages of the credible intervals are usually larger than the 

confidence intervals in most cases, because the average credible lengths are 

larger than the average confidence lengths in all the cases considered. 

Also, for computing bias, MSEs  and 95%  HPD credible intervals for 

Bayes estimators, other than non-informative priors, we also used informative 

priors. We have taken the following hyper parameters for informative priors 

0.8= 0.9,= ba  and 1= 1.05,= dc , the results are reported for   and   

parameters in Tables 7 and 8, respectively. Comparing the two Bayes 

estimators based on non-informative priors )( noBayes  and informative priors 

)( wBayes  shows that in some schemes the Bayes estimators based on 

informative priors perform better than the Bayes estimators based on non-

informative priors in terms of bias, MSEs  and 95%  HPD credible intervals, 

and in the most schemes their performances are similar. 

 

Table 1.  Bias of the ),(   for Unified HCS when 2T  is 2.3 

r k 
 1T  

 0.1 0.8 1.5 2 

17 5 
MLE (0.1203,0.2950) (0.0348,0.0259) (0.0273,0.0163) (0.0245,0.0133) 

Bayes (0.1838,0.4928) (0.0669,0.0424) (0.0434,0.0116) (0.0389,0.0051) 

24 11 
MLE (0.0743,0.0119) (0.0356,0.0338) (0.0269,0.0154) (0.0220,0.0105) 

Bayes (0.1153,0.1536) (0.0672,0.0445) (0.0434,0.0089) (0.03629,0.0085) 

47 

11 
MLE (0.0245,0.0169) (0.0271,0.0143) (0.0262,0.0146) (0.0243,0.0098) 

Bayes (0.0383,0.0071) (0.0403,0.0074) (0.0373,0.0079) (0.0375,0.0054) 

29 
MLE (0.0256,0.0135) (0.0255,0.0134) (0.0274,0.0126) (0.0252,0.0142) 

Bayes (0.0374,0.0111) (0.0396,0.0103) (0.0408,0.0066) (0.0374,0.0089) 

41 
MLE (0.0237,0.0133) (0.0242,0.0151) (0.0274,0.0141) (0.0253,0.0126) 

Bayes (0.0410,0.0084) (0.0386,0.0075) (0.0393,0.0105) (0.0411,0.0063) 
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Table 2. MSEs  of the ),(   for Unified HCS when 2T  is 2.3 

r k 
 1T  

 0.1 0.8 1.5 2 

17 5 
MLE (0.0953,0.8715) (0.0356,0.0461) (0.0223,0.0282) (0.0185,0.0259) 

Bayes (0.1278,2.1021) (0.0410,0.0489) (0.0239,0.0289) (0.0202,0.0259) 

24 11 
MLE (0.0519,0.1332) (0.0348,0.0450) (0.0218,0.0288) (0.0186,0.0257) 

Bayes (0.0647,0.1771) (0.0406,0.0458) (0.0234,0.0287) (0.0193,0.0025) 

47 

11 
MLE (0.0178,0.0269) (0.0184,0.0259) (0.0185,0.0264) (0.0178,0.0262) 

Bayes (0.0187,0.0257) (0.0196,0.0230) (0.0188,.0265) (0.0183,0.0258) 

29 
MLE (0.0181,0.0264) (0.0181,0.0259) (0.0180,0.0263) (0.0180,0.0257) 

Bayes (0.0185,0.0272) (0.0195,0.0257) (0.0197,0.0263) (0.0184,0.0254) 

41 
MLE (0.0178,0.0269) (0.0176,0.0262) (0.0179,0.0269) (0.0176,0.0259) 

Bayes (0.0192,0.0261) (0.0187,0.0261) (0.0191,0.0269) (0.0196,0.0258) 

 

Table 3. Coverage Percentages of the ),(   for Unified HCS when 2T  is 2.3 

 r k 
 1T  

 0.1 0.8 1.5 2 

17 5 
MLE (0.5784,0.5207) (0.7757,0.6862) (0.8669,0.8865) (0.8732,0.9126) 

Bayes (0.9112,0.9282) (0.9419,0.9471) (0.9449,0.9419) (0.9405,0.9429) 

24 11 
MLE (0.7227,0.6519) (0.7898,0.6931) (0.8724,0.8815) (0.8715,0.9141) 

Bayes (0.9273,0.9347) (0.9444,0.9536) (0.9452,0.9431) (0.9463,0.9474) 

47 

11 
MLE (0.8636,0.9038) (0.8601,0.9066) (0.8599,0.8996) (0.8695,0.9053) 

Bayes (0.9440,0.9404) (0.9390,0.9432) (0.9449,0.9394) (0.9463,0.9410) 

29 
MLE (0.8622,0.9004) (0.8647,0.9023) (0.8676,0.9014) (0.8625,0.9020) 

Bayes (0.9465,0.9379) (0.9387,0.9406) (0.9400,0.9409) (0.9427,0.9466) 

41 
MLE (0.8631,0.8920) (0.8661,0.8975) (0.8631,0.8934) (0.8653,0.8965) 

Bayes (0.9449,0.9411) (0.9435,0.9393) (0.9406,0.9402) (0.9402,0.9413) 

 

Table 4.  Bias of the ),(   for Unified HCS when 1T  is 0.2 

r k 
 2T  

 0.5 1 2.5 4 

29 

11 
MLE (0.0514,0.6864) (0.0501,0.0672) (0.0492,0.0656) (0.0428,0.0719) 

Bayes (0.1036,0.1317) (0.0885,0.0865) (0.0899,0.0896) (0.0977,0.0913) 

21 
MLE (0.0720,0.9822) (0.0568,0.0667) (0.0609,0.0668) (0.0627,0.0741) 

Bayes (0.1200,0.1520) (0.0887,0.0832) (0.0929,0.0926) (0.0976,0.0903) 

38 

11 
MLE (0.0489,0.0681) (0.0299,0.0226) (0.0443,0.0372) (0.0431,0.0223) 

Bayes (0.1018,0.1339) (0.0564,0.0267) (0.0634,0.0330) (0.0660,0.0327) 

33 
MLE (0.0483,0.0467) (0.0420,0.0366) (0.0414,0.0320) (0.0424,0.0319) 

Bayes (0.0790,0.0565) (0.0673,0.0374) (0.0648,0.0321) (0.0611,0.0312) 

41 39 
MLE (0.0456,0.0320) (0.0422,0.0289) (0.0385,0.0264) (0.0390,0.0263) 

Bayes (0.0604,0.0289) (0.0591,0.0271) (0.0577,0.0261) (0.0553,0.0226) 
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Table 5.  MSEs  of the ),(   for Unified HCS when 1T  is 0.2 

r k 
 2T  

 0.5 1 2.5 4 

29 

11 
MLE (0.0583,0.0108) (0.0404,0.0688) (0.0393,0.0654) (0.0400,0.0688) 

Bayes (0.0745,0.1384) (0.0459,0.0809) (0.0458,0.0841) (0.0482,0.0814) 

21 
MLE (0.0573,0.0971) (0.0392,0.0704) (0.0402,0.0644) (0.0406,0.0716) 

Bayes (0.0712,0.1288) (0.0466,0.0814) (0.0473,0.0838) (0.0482,0.0797) 

38 

11 
MLE (0.0595,0.1086) (0.0302,0.0381) (0.0253,0.0345) (0.0251,0.0340) 

Bayes (0.0736,0.1408) (0.0339,0.0404) (0.0283,0.0364) (0.0294,0.0368) 

33 
MLE (0.0319,0.0459) (0.0284,0.0353) (0.0248,0.0349) (0.0249,0.0328) 

Bayes (0.0377,0.0505) (0.0334,0.0371) (0.0288,0.0367) (0.0277,0.0362) 

41 39 
MLE (0.0248,0.0332) (0.0244,0.0314) (0.0217,0.0306) (0.0220,0.0302) 

Bayes (0.0270,0.0343) (0.0269,0.0333) (0.0245,0.0319) (0.0248,0.0313) 

 

Table 6. Coverage Percentages of the ),(   for Unified HCS when 1T  is 0.2 

 r k  
2T  

 0.5 1 2.5 4 

29 11 MLE (0.6322,0.5739) (0.7800,0.7307) (0.7918,0.7486) (0.7988,0.7441) 

Bayes (0.9420,0.9471) (0.9448,0.9351) (0.9332,0.9349) (0.9301,0.9344) 

21 MLE (0.6854,0.6354) (0.7769,0.7237) (0.7917,0.7520) (0.7935,0.7432) 

Bayes (0.9353,0.9503) (0.9339,0.9361) (0.9305,0.9351) (0.9300,0.9350) 

38 11 MLE (0.6320,0.5668) (0.8181,0.7596) (0.8611,0.9127) (0.8664,0.9150) 

Bayes (0.9418,0.9435) (0.9409,0.9388) (0.9384,0.9392) (0.9380,0.9387) 

33 MLE (0.8390,0.9626) (0.8533,0.9716) (0.8627,0.9154) (0.8665,0.9185) 

Bayes (0.9310,0.9369) (0.9394,0.9429) (0.9363,0.9386) (0.9414,0.9411) 

41 39 MLE (0.8592,0.9102) (0.8646,0.9163) (0.8666,0.8961) (0.8630,0.8979) 

Bayes (0.9410,0.9402) (0.9484,0.9402) (0.94815,0.9398) (0.9587,0.9415) 

 

 Table 7.  Bias )(MSEs  Coverage Percentages of the   for Unified HCS 

r k  0.7=0.2,= 21 TT  1.5=0.5,= 21 TT  1.5=1,= 21 TT  2.5=1.2,= 21 TT  

19 11 
noBayes  0.105(0.0747)0.945 0.053(0.0494)0.961 0.027(0.0283)0.942 0.0188(0.0232)0.955 

wBayes  0.084(0.0553)0.967 0.061(0.0492)0.962 0.033(0.0288)0.945 0.017(0.0235)0.958 

21 

7 
noBayes  0.080(0.0566)0.954 0.069(0.0537)0.949 0.023(0.0258)0.958 0.028(0.0255)0.948 

wBayes  0.069(0.0472)0.965 0.074(0.0516)0.950 0.028(0.0277)0.954 0.023(0.0227)0.955 

18 
noBayes  0.086(0.0606)0.955 0.064(0.0481)0.960 0.023(0.0272)0.952 0.015(0.0225)0.950 

wBayes  0.068(0.0464)0.967 0.059(0.0486)0.954 0.029(0.0289)0.950 0.018(0.0225)0.955 

38 19 
noBayes  0.033(0.0382)0.959 0.033(0.0226)0.953 0.036(0.0242)0.951 0.043(0.0250)0.948 

wBayes  0.040(0.0373)0.942 0.036(0.0258)0.937 0.035(0.0237)0.952 0.036(0.0219)0.945 
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Table 8. Bias )(MSEs  Coverage Percentages of the   for Unified HCS 

r k  0.7=0.2,= 21 TT  1.5=0.5,= 21 TT  1.5=1,= 21 TT  2.5=1.2,= 21 TT  

19 11 
noBayes  0.246(0.5831)0.946 0.093(0.0976)0.956 0.009(0.0341)0.944 0.025(0.0346)0.947 

wBayes  0.186(0.2045)0.947 0.094(0.0853)0.953 0.015(0.0328)0.952 0.020(0.0304)0.944 

21 

7 
noBayes  0.154(0.1976)0.944 0.116(0.1061)0.953 0.012(0.0325)0.954 0.017(0.0308)0.949 

wBayes  0.118(0.1218)0.960 0.106(0.0879)0.954 0.0175(0.0343)0.941 0.016(0.0283)0.956 

18 
noBayes  0.181(0.2701)0.936 0.102(0.0937)0.959 0.019(0.0369)0.939 0.011(0.0297)0.948 

wBayes  0.124(0.1272)0.954 0.089(0.0811)0.954 0.025(0.0337)0.956 0.017(0.0298)0.944 

38 19 noBayes  0.032(0.0522)0.962 0.026(0.0354)0.941 0.032(0.0344)0.940 0.028(0.0313)0.951 

  wBayes  0.061(0.0599)0.947 0.031(0.0343)0.944 0.021(0.0313)0.948 0.032(0.0267)0.951 

 

Data Analysis  

In this section, we present one example to illustrate the methods of 

inference developed in the preceding section. The data set is from Lawless 

(1982, page 228) that were given by Thoman et al. (1969), who attributed them 

to test on the endurance of deep-groove ball bearings discussed by Lieblein and 

Zelen (1956). The observations are the number of million revolutions before 

failure for each of 23 balls bearings, the individual bearings were inspected 

periodically to determine whether "failure" had occurred, but we treat the 

failure times as continuous. The 23 failure times are: 17.88, 28.92, 33, 41.52, 

42.12, 45.6, 48.4, 51.84, 51.96, 54.12, 55.56, 67.9, 68.64, 68.64, 68.88, 84.12, 

93.12, 98.64, 105.12, 105.84, 127.92, 127.04, 173.4. 

One question arises whether the data fit Weibull distribution or not. To 

check for goodness-of-fit we compute the Anderson-Darling statistic, it is 

0.329 and the associated p value is 0.250. Since the p value is quite high, we 

cannot reject the null hypothesis that the data are coming from the Weibull 

distribution. 

We have created six artificially unified HCS data sets from the above 

uncensored data set, and consider the following sampling schemes 1-6. 

1: 16.= 14,= 100,= 90,= 21 rkTT     2: 17.= 14,= 105,= 90,= 21 rkTT   

3: 18.= 14,= 95,= 70,= 21 rkTT      4: 15.= 12,= 95,= 60,= 21 rkTT  

5: 19.= 14,= 100,= 60,= 21 rkTT     6: 21.= 17,= 85,= 70,= 21 rkTT  

For schemes 1-6 we have estimated the unknown parameters using the 

MLEs and the Bayes ( noBayes  and wBayes ) estimations. The estimations for 

  and   are reported in Tables 9 and 10, respectively. 

Based on the uncensored sample the MLEs of   and 
 1/=  are 2.103 

and 
5109.5  , respectively. For computing the Bayes estimators, we mainly 

consider squared error loss functions and gamma priors on both   and   same 

as the previous section. Based on the above assumptions we obtain the non-

informative Bayes estimators of   and   as 2.143 and 
4102.1  , respectively. 

also, the informative Bayes estimators of   and   as 2.08 and 
4102.9  , 
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respectively. 

From Tables 9 and 10, it is observed that the values of 1T  and 2T  play a 

major role for the estimations of   and  , the scheme 4, shows this fact. 

 

Table 9. The MLEs and Bayes Estimations of the   for Schemes 1-6 

 Schemes  MLEs  
sEstimationBayes  

noBayes  wBayes  

1  2.253 2.348 2.214 

2  2.293 2.365 2.272 

3  2.240 2.318 2.222 

4  3.188 3.384 3.003 

5  2.240 2.304 2.210 

6  2.293 2.383 2.254 

  

Table 10.  The MLEs and Bayes Estimations, of the   for Schemes 1-6 

 Schemes  MLEs  
sEstimationBayes  

noBayes  wBayes  

1  0.000051 0.00021 0.00028 

2  0.000044 0.00021 0.00022 

3  0.000054 0.00019 0.00025 

4  0.000001 0.00002 0.00005 

5  0.000054 0.00019 0.00026 

6  0.000044 0.00017 0.00024 

 

 

Conclusions  

 
In this paper, we have considered the classical and Bayesian inference 

procedures for Weibull parameters based on the unified HCS. It is observed 

that the maximum likelihood estimates can be obtained by solving two non-

linear equations, but they can not be obtained in closed form. We proposed to 

use the EM algorithm to compute the MLEs. We also obtain the Bayes 

estimates of the unknown parameters under the assumption of independence 

using the Gibbs sampling procedure. We compared The performances of the 

Bayes estimators under the assumption of the non-informative priors with the 

corresponding MLEs and found that their behaviors were similar, as expected. 

Also, we compared the performances of the Bayes estimates based on 

informative priors and non-informative priors. Finally, as an illustration, we 

have presented one numerical example to carry out the performance of the 

procedures obtained. 
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