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ABSTRACT. This is a survey paper of some known results on the
preservation of Baire and weakly Baire spaces under images and
preimages of some special functions.

1. INTRODUCTION

A subset A of a topological space X is said to be of the second
category if it is contained in the union of countable collection of closed
subsets of X with empty interior in X; otherwise A is said to be of
the second category in X. A topological X is said to be a Baire space
if every non-empty open subset of X is of the second category. In
section 2, we discuss the preservation of Baire category under image
and preimage of functions.

Following G. Beer and L. Villar [1], a topological space X is said to
be a weakly Baire space if no non-empty open dense in itself subset
is countable. In section 3, we study basic properties of weakly Baire
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spaces. We give an example to illustrate that the class of weakly Baire
spaces is strictly larger than the class of Baire spaces. A few other
results on weakly Baire spaces are presented.

2. IMAGES AND INVERSE IMAGES OF BAIRE SPACES

In this section, the preservation of Baire category under image and
preimage of some special functions is studied. Hereafter, we will assume
that all spaces are Hausdorff topological spaces.

Definition 2.1. A function f from X to Y is called

(a) feebly open if for every open subset U of X, int(f(U)) is nonempty.

(b) quasi-open if for every open set V C X, f(U) Cintf(U).

(c) feebly continuous if for every open subset W of Y, int(f~(WW))
is nonempty.

(d) quasi-continuous at xy € X if for every neighborhood U of x
and every neighborhood W of f(x), there is a nonempty open
subset U’ of U such that f(U") C W.

The following results may be found in [3] and [4].

Lemma 2.2. (Frolik’s preservation Lemma). Let f : X — Y be
a quasi-continuous and feebly open surjection. If V' is a dense open
subset of Y, then f~1(V) is a dense subset of X.

Theorem 2.3. (Frolik’s preservation Theorem). Let f: X — Y
be a quasi-continuous and feebly open surjection. If X s Baire then so
1sY.

But what if; we interchange the condition upon f. I mean if we
assume that f : X — Y is feebly continuous and quasi-open. More
precisely, one may ask the following questions:

1. Can we have an analogue of Frolik’s preservation Lemma?
2. Can we have an analogue of Frolik’s preservation Theorem?

The following result gives a positive answer to the first question.

Lemma 2.4. (Preservation Lemma). Let f : X — Y be a feebly
continuous and quasi-open function from X onto Y. Let U be an open
dense subset of X. Then intf(U) is a dense open subset of Y.

Proof. Since f is feebly continuous, f(U) is dense in Y. As U is open
and f is quasi-open, we have

int f(U) € f(U) Sint f(U).
So that Y = f(U) Cint f(U). O
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Now, let us start “producing” new anti preservation theorems.

Method. Let {U;} be a countable family of open dense subsets of
X. By our new preservation lemma, if f is a feebly continuous and
quasi-open function from X onto Y, then intf(U;) is open and dense
in Y for each i. If Y is Baire, then (-, intf(U;) is dense and feebly
openness implies that f~'((2,intf(U;)) is dense. Now, we have to
show that

P (intf ) € s (2.1)

Recall that in the Baire preservation Theorem we used the fact that
f(f~1(C)) = C. But here we have A C f~!(f(A)) for each A C X.
The latter formula holds only for injections. This is why the method
fails and we cannot obtain an analogue of Theorem 2.3.

The following example shows that the Baire anti-preservation is not
true in general.

Example 2.5. Let X = J;2,[2,2i + 1]U (QN0,1]) and Y = N. Let
{¢1,q2,...} =Qn0,1]. Define f: X =Y by:
fle)=iifx e [2i,2i+ 1] U{q}, i=1,2,....

Then f is clearly open and feebly continuous. Y is Baire but X
is not. We can construct a sequence of dense open sets {U;} of X
such that f~1(N;2,intf(U;)) is dense but ();2, U; is not dense. In
fact, if U; = X \ {¢:} for i = 1,2, ... then U; is dense and open in X
and f(U;) =Y for every i = 1,2,.... So int(f(U;)) =Y. We have
X = fY) = fU, intf(U7): But

N = NX N\ {ah) = Jizi,2i +1

i=1 i=1 i=1
and the latter set is not dense in (0, 1) N Q which is an open subspace
of X in the relative topology.

3. WEAKLY BAIRE SPACES

Let X be a Tj-space Baire space. Since singletons are closed in
X, each countable dense-in-itself subset is necessarily meager. Hence
Baire spaces belong to the class of weakly Baire spaces. The following
example shows that the converse is not true in general.

Example 3.1. [1] and [5]. Let X = ([0,1] N Q) x [0, 1], as a subspace
of R? with the usual topology. Every non-empty open subset of X is
clearly uncountable; so X is weakly Baire. However, the space X is
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itself meager, hence it is not Baire. Let p: X — [0,1] N Q be the pro-
jection on the first variable. Then f is continuous and open surjective
onto a countable meager space. This shows that unlike Baireness, weak
Baireness is not preserved by continuous open surjections.

But still some basic properties are shared by both classes. Every
non-empty open subspace of a Baire space is Baire. The same is true
for weakly Baire spaces, that is, every non-empty open subset V' of a
weakly Baire space X is weakly Baire.

In 1979, W. Fleissner and K. Kunen [2] proved that there is a metric
Baire space whose Cartesian square is of the first category. However,
for weakly Baire spaces, the situation is different:

Theorem 3.2. [1, Theorem 1] The product of an arbitrary family of
weakly Baire spaces is weakly Baire.

In [5], the authors gave the following equivalent definition of a weakly
Baire space. Let (X,7) be a Tj-space. Let M(7) and C(X) de-
note meager and countable subsets of X, respectively. Define X, =
Jcx)ynr) =WHU : U e C(X)Nn7} and 7. = 7|X.. Then (X,7)
is called weakly Baire if M(7) N C(X) N7 = (. The authors used this
definition to prove the following results.

Theorem 3.3. [5, Theorem 1] The space (X, 1) is weakly Baire if and
only if (X, T.) is Baire.

The above link between Baire and weakly Baire category explained
above enable us to prove the following.

Theorem 3.4. [5, Theorem 4] If f : X — Y is a quasi-continuous
feebly open surjection with countable fibers over V., i.e. f~1(y) € C(X)
for each y € Y., then Y is weakly Baire if X is weakly Baire.

Remark 3.5. Pertaining to the preimages of Baire spaces, a much
stronger result related to the continuity and openness can be derived
by using W.Fleissner and K.Kunen example mentioned in part 3.
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