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Abstract

In some practical inferential situations, it is needed to mix some adequate
sorts of distributions to fit a robust model for multimodal observations. In
this paper, we study the behavior of mixture proportion in a mixture of two
asymmetric normal distributions with the interpretation of data as evidences.
In this approach, for visualizing and understanding model of interest, the
profile likelihood has been used to eliminate the nuisance parameter.
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1 Introduction and Preliminaries

Introduction and summary mixtures of normal distributions have a long history
in statistics, dating back to the late 19th century and the writings of Newcomb
(1886) and Pearson (1894). Since then, they appear as models in diverse areas of
applied research. However, even in the simplest of cases, the two-component normal
mixture, one encounters serious theoretical as well as computational difficulties when
attempting to perform basic statistical analysis such as parameter estimation and
goodness-of-fit. Following Rao’s (1948) paper likelihood estimation appears not
to have been pursued further until Hasselblad (1966, 1969) addressed the problem,
initially for a mixture of g univariate normal distributions with equal variances. The
likelihood approach to the fitting of mixture models, in particular normal mixtures,
has since been utilized by several authors, including dick and Bowden (1973), Hosmer
(1973a and b, 1974, 1978), O’neill (1978), Ganesalingam and Mclachlan (1978,1979a,
1980a), and Aitkin (1980a).

In many common statistical problems, we encounter observations with more

than one mode. Particularly, when we focus on what the data say, it is important to
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choose a robust model which fits well. Then, we mix two or more suitable distribu-
tions for reasonable justification of observables. Because of applicability of normal
distribution, in this approach, we use mixture of two asymmetric normal distribu-
tions and study the behavior of mixture proportion in order to distinguish accurate
model for bimodal observations.

The asymmetric normal is a class of distributions that includes the normal one
as a special case, and skew normal as a special subclass. A random variable X is
said to be asymmetric normal type I with location, scale and shape parameters u,
o, ¢ respectively, denoted by X ~ ANI(u,0,(), and its probability density function
(pdf) is

202

fx(w;p,0,¢) = 0 exp {—(x_M)Q G<x;M,C>], (1.1)

where G(z,() = exp[—2 arctan(z)], and Z arctan(z) is cauchy pdf. See Evans et al
(2000).

For ¢ = 0 it coincides with Standard Normal distribution, and for { > 0, it has right
skewness and for ( < 0 it has left skewness.

The mixture of two ANIs with different shape parameters, which lead skewness of

opposite sites, is given by

g(:C, K, 1707 ¢) = ¢ANI(M7 17C1) + (1 - ¢)ANI(M7 ]-7 CQ)? (12)

where ( = ((1,¢2) and 0 < ¢ < 1.

Data drawn from a statistical model, make realistic and available evidence in
interpreting and examining the distribution. In some sense, given body of data
represent evidence supporting statistical hypotheses about parameters of the model
against another. Criteria use in competition between one hypothesis about the
parameter of interest against another is likelihood performance. Emadi and Arghami
(2003), Emadi et al (2005) and Arashi and Emadi (2006) have studied some measures
of support for statistical hypotheses. An interesting question is how a number of
observations verify the mixture of normal distributions , in terms of the amount
of statistical evidence they provide about the unknown parameter(s). We use the
probabilities of observing strong misleading evidence and weak evidence for the
numbers of iid observation. We assume that f; is the probability density function of
a continuous random variable X under simple hypotheses H;, (i = 1,2). Suppose
we can observe the sequence of iid observations X7, X5, ..., where each is distributed
as X.

Let n be any measure of support for one hypothesis against another with values in

the unit interval. Then the probabilities of observing strong misleading evidence

1069



Proceedings of The 9th Islamic Countries Conference on Statistical Sciences 2007
ICCS-IX 12-14 Dec 2007

under Hy, Hy are M} = Pi(n < 1—¢) = Ki(1 —¢) and My = Py(n > ¢) =
1—K5(c), respectively, and the probabilities of weak evidence under H; and H, are
Wi=P(l—-c<n<c)=Ki(c)—-Ki(1—c)and Wy = Py(1—c<n<ec)=Ksy(c)—
K>(1—¢), respectively (see, Royall (2000)). Here ¢, 0.5 < ¢ < 1, is a threshold of
strong evidence, and K; and K, are cdf’s of n under H; and Hs, respectively. We
argue that since both misleading and weak evidence are undesirable, and obtaining
strong misleading evidence is more important than obtaining just weak evidence, a

pre experimental measure desirability of a measure of evidence can be taken to be

1

e(n) = 1- {v[Mi(t) + My (t)] + Wi(t) + Wa(t)} dt. (1.3)

0.5
where v > 1 and M; and W; are respectively the probabilities of strong misleading
evidence and weak evidence under H;, (i = 1, 2). The following theorem gives e(n)

in terms of K; and K.

Theorem 1. (Emadi et al 2005)Under the assumptions of this section, we have

0.5 1

e(n):/o (Ko(t) — Ky (8))dt + (2 — ) <%+ Ky (t)dt — Kg(t)dt>.

0 0.5

Corollary 1. Under the assumptions of theorem 1, for v = 2 we have

e(n) = / K (t) — K, ()t
= EH1(77)_EH2(77)'

It is interesting to note that for v = 2, e(n) (which was introduced and used by
Emadi and Arghami (2003)) has another interpretation, this being the area (with
unit square) between the curves of K;(t) and Ky(t).

Let A be the likelihood ratio for the competing hypotheses H; : § = 6, and H, : 6 =
f, so that

— H AXi) (1.4)

=
s

Through out the paper we shall use n = A\/(\ + 1) as a measure of support for H;
against Hs.
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2 Model Selection

In this section we compute M1, M2, W1 and W2 for two groups of hypotheses
about the mixture proportion ¢ in making evidential selection of true model.
Impossibility of analytical derivatives of latter results based on the mixture model
(1.2), via a simulation, we make decision for the following two special groups of
hypotheses.

_ H1¢:05 _ H1¢:05
Groupl = { Hy 6= 0.75 and Group2 = { Hy =025 (2.1)

Without loss of generality, let ¢ = 1 and thought the best values for better adoption
of mixture model due to the data set, let {(; = 2 and ( = —2 in (1.2). Then the

model of interest is given by

97 1,C.6) = desp—(r — ) exp[— axctan(z — )]}
+(1 = @) exp{—(z — p)? exp[% arctan(z — )]}, (2.2)

It is desirable to select accurate model just by recognizing how amount of weight
can be given to each ANI. In other words, in order to understand what the data
say about the model by (1.4), we have to look at likelihood function when the
parameter space has two dimensions, (1, ¢). Then it is not as easy to appreciate the
likelihood function. Our problem is that we want to represent, interpret and report
the evidences about ¢ alone, not for p. So p is a nuisance parameter.

By the form of the model (2.2), one adequate technique to remove pu from the model,
is using profile likelihood. See Royall (1999).
In n random variables drawn from the model (2.2), profile likelihood for known

(, is given by

Ly(¢) = Maz,L(¢,p)

n

= MG,QT#HQ(Q?i;/JJ,l,g, ¢), (23)

i=1

where L(¢, 1) is the likelihood function.
The function in (2.3) can not be generally obtain in a closed form. Then, in such

situations, one can use numerical techniques.
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3 Simulation

For each group of hypotheses, n=12, 20 and 60 random variables are taken from
the model (2.2). The function in (2.3) is computed and the whole process repeated
r=1000 times. Values of M1, M2, W1 and W2 are achieved. We have used packages
Maple9.5 and Minitab14 to do numeric computations.

Note that, in general, the data set can not obtain from the model (2.2). Thus the
data arise from symmetric normal distributions with different location parameters
in order to use in the model (2.2). The method of sampling is very important. It
changes due to hypotheses as follows.

1) For ¢ = 0.5, we take one digit in random form {0, 1}. If it obtains 0, we will take
one random sample from N (0, 1) otherwise from N(4,1).

2) For ¢ = 0.75, we take one digit in random form {0, 1,2,3}. If it obtains 0, we
will take one random sample from N (4, 1) otherwise from N (0, 1).

3) For ¢ = 0.25, we take one digit in random form {0, 1,2,3}. If it obtains 0, we
will take one random sample from N (0, 1) otherwise from N (4, 1).

The graphical results are given in Figures 1 and 2.

4  Concluding Remarks

(1) If £ > 8 = M1 < 0.14; so the probability of observing strong misleading of H;
when H; is true is quite low. In the other word, In 1000 times repetition of process,
when the hypothesis H; is true, 14 times the data have strong misleading evidence

from H; or the probability of strong misleading evidence is at most 0.14.

(2) If £ > 8 = M2 = 0; so the probability of observing strong of H; when H,
is true is approximately equal to zero. In the other word, when the hypothesis H,
is true the data could not have strong evidence from H;; which means that the

probability of weak evidence or strong misleading evidence is quite high.

(3) If £ > 8 = W1 > 0.84; so the probability of weak evidence from hypothe-

sis H; when it is true is high.

(4) If £ > 8 = W2 > 0.96; so the probability of weak evidence from hypothe-

sis Hy when it is true is very high.
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(5) Emadi et al (2005) introduced the measure of Total Error (TE) or the error

of evidential inference which is followed as
TE = 2(M1+ M2)+ (W1+W2).

Note that the above statement is a special form of e(n) introduced in 1.3.

In the table below the average of TE is computed for each group of hypotheses

Groupl | Group2
n=12 2.0 2.0
n=20 | 2.0 2.0 (4.1)
n=60 1.9 1.8

In details one could obtain the following plots for different values of k.

We can coclude that when the number of observations (n), increases, the value
of TE for each k in the average of 1000 times repetition decreases. When n gets
bigger the exact value of k where the TE goes the be smaller increases; and as if its
value is smaller it is better, we can conclude that as n increases the TE of evidential

analysis decreases.
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Figure 1: Plots for Groupl

1074



Proceedings of The 9th Islamic Countries Conference on Statistical Sciences 2007
ICCS-1X 12-14 Dec 2007

M1 for Group2 M2 for Group2

15 20
- n=12 — n=12
— 0 — =
n=60 n=60
W1 for Group2 W2 for Group2
1 1 g =
" o
" o
" "
. ‘// o
0.8 08
o8 .,,‘,ﬂlm"'""mwmmu 06 - e
M_,,,.mw""’" "“,M
P o
04 - 04 ol
0.2 0.2
0 . H—-—
10 15 2 5 10 15 2
- n=12 — n=12
— =0 —_— =0
— n=60 S— n=60

Figure 2: Plots for Group2
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