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Abstract Depth image-based rendering techniques for
multiview applications have been recently introduced for
efficient view generation at arbitrary camera positions. The
rate control in an encoder has thus to consider both texture
and depth data. However, due to different structures of depth
and texture data and their different roles on the rendered
views, the allocation of the available bit budget between
them requires a careful analysis. Information loss due to tex-
ture coding affects the value of pixels in synthesized views,
while errors in depth information lead to a shift in objects
or to unexpected patterns at their boundaries.In this paper,
we address the problem of efficient bit allocation between
texture and depth data of multiview sequences.We adopt a
rate-distortion framework based on a simplified model of
depth and texture images, which preserves the main features
of depth and texture images. Unlike most recent solutions,
our method avoids rendering at encoding time for distor-
tion estimation so that the encoding complexity stays low.
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In addition to this, our model is independent of the underly-
ing inpainting method that is used at the decoder for filling
holes in the synthetic views. Extensive experiments validate
our theoretical results and confirm the efficiency of our rate
allocation strategy.
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1 Introduction

Multiview coding is a research field that has witnessed many
technological revolutions in the recent years. One of them
is the significant improvement in the capabilities of cam-
era sensors. Nowadays, high-quality camera sensors that
capture color and depth information are easily accessible
[1]. Obviously this brings important modifications in the
data that the 3D transmission systems have to process. A
few years ago, transmission systems used disparity esti-
mation to improve the compression performance [2, 3].
Nowadays, 3D systems rather employ depth information to
augment compression performance or to improve the qual-
ity of experience by increasing the number of views that
could be displayed at the receiver side [4, 5]. This is possible
using depth image-based rendering (DIBR) techniques [6,
7] that project one reference image onto virtual views using
depth as geometrical information. Figure 1 shows the over-
all structure of a DIBR multiview coder that is considered
in this paper. It includes the following steps. First, the cap-
tured views along with their corresponding depth maps are
coded at the bit rates assigned by a rate allocation method.
Then, the coded information is transmitted to the decoder.
Finally, the reference views are decoded, and virtual views
are synthesized using the depth information at the decoder.
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Fig. 1 A DIBR multiview
system with p reference
cameras and q equally spaced
virtual views between each two
reference views

View synthesis consists of two parts, namely the projec-
tion into the virtual view location using the closest reference
views, and inpainting for filling the holes [8, 9] or pixels
that remain undetermined after projection.

DIBR techniques offer new exciting possibilities but also
impose new challenges. One of these important questions
relies on the effect of depth compression on the view syn-
thesis performance [10]; in particular, for a given bit budget
R, what is the best allocation between depth and texture
data? In other words, how can we distribute the total bit
rate between color and geometrical information in order to
maximize the rendering quality? It is important to note that
the quality of the rendered view is of interest here, and not
the distortion of depth images [10, 11]. This renders the
problem of rate allocation particularly challenging.

In this paper, we propose a novel rate-distortion (RD)
model to solve the rate allocation problem in DIBR sys-
tems with arbitrary number of reference and virtual views
and without rendering at the encoder side. Inspired by [12–
14], we first simplify different aspects of a multiview coder
and keep only its main features. In particular, we make
simple models for depth and texture coders, camera setup,
and under observation scene. Then, we introduce a RD
framework, where a RD function is used for optimizing
the rate allocation in multiview coding. An important prop-
erty of our allocation method is that we do not consider
any specific inpainting step for virtual view synthesis at the
decoder. There are two reasons for this choice: first, we
want to design an allocation strategy that is independent
of the actual inpainting method; second, we focus on the
effect of view projections, which is mostly related to the
geometry of the scene. To this aim, our RD analysis and
later in experiments, distortion calculations are performed
over nonoccluded regions. Experimental results show that
our model-based rate allocation method is efficient for dif-
ferent system configurations. The approach proposed in
this paper has low complexity and simultaneously provides
a distortion that is not far from optimum. In particular,
it outperforms a priori rate allocation strategies that are
commonly used in practice.

The rate allocation problem has been the topic of many
researches in the past few years. Allocating a fixed per-
centage of a total budget to the texture and depth data is
probably the simplest allocation policy in the DIBR coding

methods [15–17]. More efficient methods have, however,
been proposed recently, and we discuss them in more details
below.

First the current multiview coding (MVC) profile of
H.264/AVC [3, 18, 19] uses the distortion of depth maps to
distribute the available bit budget between texture and depth
images. A group of papers try to improve MVC by taking
into account depth properties. In [20], the authors suggest
a preprocessing step based on an adaptive local median fil-
ter to enhance spatial, temporal, and inter-view correlations
between depth maps and, consequently, to improve the per-
formance of MVC. The work in [21] skips some depth
blocks in the coding using the correlation between refer-
ence views and, hence, reduces the required bit budgets for
coding depth maps. Other methods try to estimate the dis-
tortion of virtual views at the encoder side and replace it
with the depth map distortion in the mode decision step
of MVC [18]. In [22], the authors provide an upper bound
for virtual view distortion that is related to the depth and
texture errors and the gradients of the original reference
views. Another upper bound for synthetic view distortion
is proposed using the assumption of access to the original
intermediate views at the encoder [23]. In [24], the authors
calculate the translation error induced by depth coding and
then try to estimate the rendered view distortion from the
texture data. In a similar approach, the work in [25] mod-
els the distortion at each pixel of a virtual view, including
the pixels in occluded regions. These methods only try to
improve the current MVC profile. Without modeling the RD
behavior, however, they cannot be used as general solutions
for the rate allocation problem.

Beside improving the current MVC allocation policy,
other papers build a complete RD model to solve the rate
allocation problem and distribute a bit budget between tex-
ture and depth data in a DIBR multiview coder [26–30].
For example, assuming independency between depth and
texture errors, the work in [26] proposes a RD function to
find the optimal allocation in a video system with one ref-
erence and one virtual view. A region-based approach for
estimating the distortion at virtual views is proposed in [28].
The allocation scheme is an iterative algorithm that needs
to render one virtual view at every iteration for parameter
initialization. This is very costly in terms of computational
complexity. Along the same line of research, we also notice
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the rate allocation and view selection method proposed in
[29]. In this work, the authors first provide a cubic dis-
tortion model for synthetic views; they estimate the model
coefficients by rendering at least one intermediate view
between each reference camera views. Then, using this dis-
tortion model, a RD function is formulated, and a modified
search algorithm is executed to simplify the rate allocation.
Finally, a RD function is provided for a layer-based depth
coder in [30]. The main drawbacks in the above allocation
schemes reside in the rendering of at least one virtual view
at encoding time and in the construction of RD functions
that are view-dependent. Rendering at encoder side dramat-
ically increases the computational complexity of the coder
and is therefore not acceptable for real-time applications. In
addition for view rendering at arbitrary camera positions,
multiview systems require rate allocation strategies that are
independent of actual reference and virtual views and their
exact positions.

The organization of this paper is as follows. The next sec-
tion clarifies the notations, camera and scene models, and
RD framework that are used in Section 3 for calculation of
our allocation model. Section 4 addresses a few optimiza-
tion issues for determining the best rate allocation. Finally,
Section 5 includes the details of our experimental settings
and comparisons to other allocation strategies.

2 Framework and model

In this section, we define a few preliminary concepts that are
used in our rate-distortion study. Our main focus is the prob-
lem of distributing the encoding bit rate between several ref-
erence views and the corresponding depth maps in a DIBR
multiview system, such that the distortion over all reference
and rendered views at the decoder is minimized. In particu-
lar, we are interested in constructing a RD function for rate
allocation without explicit view synthesis at the encoder. We
first construct a RD model for a typical wavelet-based tex-
ture coder and a simple quantization-based depth map coder,
along with a simple model of scene.

Below, we present some general notations and the
wavelet framework. Then we describe our RD analysis
framework, our model of the scene and of the camera.

2.1 Notation

Let φ : R → R and ψ : R → R be the univariate
scaling and wavelet functions of an orthonormal wavelet
transform, respectively [31]. The shifted and scaled forms
of these functions are denoted by ψs,n(t) = 2s/2ψ(2s t − n)

and φs,n(t) = 2s/2φ(2s t − n), where s, n ∈ Z are, respec-
tively, the scaling and shifting parameters, and Z is the
set of integer numbers. The most standard construction of

two-dimensional wavelets relies on a separable design that
uses �1

s,n1,n2
(t1, t2) = φs,n1(t1)ψs,n2(t2), �2

s,n1,n2
(t1, t2) =

ψs,n1(t1)φs,n2(t2), and �3
s,n1,n2

(t1, t2) = ψs,n1(t1)ψs,n2(t2)

as the bases. It is proved in [31] that separable wavelets
provide an orthonormal basis for L2(R

2). Therefore, any
function f ∈ L2(R

2) can be written as

f (t1, t2) =
∑

s,n1,n2

3∑

i=1

Ci
s,n1,n2

�i
s,n1,n2

(t1, t2) ,

where, for every s, n1, n2 ∈ Z,

Ci
s,n1,n2

=
〈
f, �i

s,n1,n2

〉
, i = 1, 2, 3.

Practically, the wavelet transform defines a scale s0

as the coarsest scale. If we call Ci
s,n1,n2

, s > s0 as
the high-frequency bands, at s0, we only have one low-
frequency band 〈f, �s0,n1,n2〉, where �s0,n1,n2(t1, t2) =
φs0,n1(t1)φs0,n2(t2).

2.2 Scene and camera configuration model

We use a very simple model of scene in our analysis, and we
consider foreground objects with arbitrary shapes and flat
surfaces on a flat background.1 Additionally, even though a
real scene is three-dimensional, our model is a collection of
2D images as we consider projections of the 3D scene into
cameras’ 2D coordinates.

Let HQ(�) be the space of 2D functions, f : R2 → R,
on the interval [0, 1]2 ⊂ R

2, where Q is the number of
foreground objects and � = {�i, i = 0, . . . , Q−1} denotes
the foreground objects. We define f ∈ HQ(�) as follows:

f (t1, t2) =
{

1, if ∃i : (t1, t2) ∈ �i

0, otherwise
(1)

Our RD analysis is first performed on H1(�) where
� = {�0}. The extension to multiple foreground objects
follows naturally. For the sake of clarity, we skip the super-
script notation and represent this class by H(�). Figure 2
shows a sample function from H(�). This figure shows one
arbitrarily shape foreground object on a flat background as
it is projected into a 2D camera plane.

In addition to our simple scene model, we describe now
our camera configuration model. Let us denote as Bp

q (P)

a configuration with p reference cameras and q equally
spaced intermediate views between each two consecutive
reference views. Then, P is the set of intrinsic and extrinsic
parameters for reference and virtual cameras. It is defined
as P = {(Ai, Ri, Ti) : i = 0, . . . , p − 1} ∪ {(A′

j , R
′
j , T

′
j ) :

1The extension of our analysis to the scenes with Cα regular surfaces
are straightforward.
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Fig. 2 A sample function in H1(�)

j = 0, . . . , (p − 1)q − 1}, where Ai and Ri are, respec-
tively, the intrinsic and rotation matrices of the ith reference
camera, and Ti is its corresponding translation vector. The
similar parameters for virtual cameras are given by A′

j , R′
j ,

and T ′
j . Figure 1 shows a multiview system that corresponds

to a Bp
q (P) configuration. In this paper, we consider that a

texture image and a depth map are coded and are sent to the
decoder for each reference view. In our camera configura-
tion Bp

q (P), we have p pairs of texture images and depth
maps to be coded. The number of coded views is given by
system design criteria or RD constraints [29].

2.3 Rate-distortion framework

Let us define three classes of signals T ⊂ L2(R
2), V ⊂

L2(R
2) and D ⊂ L2(R

2) as reference images, virtual views,
and depth maps, respectively. Then, define F as the class of
all

f = {(ti , di) : ti ∈ T , di ∈ D, i = 0, . . . , p − 1}
and similarly, G as the class of all

g = {(
ti , vj

) : ti ∈ T , vj ∈ V, i = 0, . . . , p − 1,

j = 0, . . . , (p − 1) q − 1} .

Here, F represents all the coded data, and G indicates the
set of all reference and virtual views that are reconstructed
at the decoder.

A typical multiview coding strategy consists of at least
three building blocks, namely encoder, decoder, and ren-
deringalgorithm. Consider a texture encoding scheme ET :
T → {1, 2, . . . , 2RT } and similarly, a depth encoding
scheme ED : D → {1, 2, . . . , 2RD }, where RT = ∑p−1

i=0 Rti

and RD = ∑p−1
i=0 Rdi

are the total number of bits allo-
cated to the texture and depth information, respectively. This
represents a total rate R = RT +RD bit at the encoder. Cor-
respondingly, we call the texture and depth decoders as�T :
{1, 2, . . . , 2RT } → T and �D : {1, 2, . . . , 2RD } → D.
Finally, we denote the rendering scheme as ϒ : F → G.
Each rendering scheme has two parts: first, the projection

into intermediate view using a few close reference views
and their associated depth maps and second, filling the
holes that are not covered by any of these reference views.
In this paper, we are using only the two closest reference
views for rendering. Furthermore, we assume in our theo-
retical analysis that we have no hole in the reconstructed
images. Thus, rendering becomes a simple projection of
the closer reference views on an intermediate view using
depth information. As we explained in Section 1, the main
reason behind this decision is designing a rate alloca-
tion method that is independent of underlying inpainting
method.

Let us denote the decoded data as f̂ = �R(ER(f )). The
distortion2 in the rendered version of the data, ĝ = ϒ(f̂ ),
and the original version, g = ϒ(f ), is given by

D
(
g, ĝ

) =
p−1∑

i=0

‖ti − t̂i‖2 +
(p−1)q−1∑

j=0

‖vj − v̂j‖2. (2)

We finally define the distortion of the coding scheme as the
distortion of the encoding algorithm in the least favorable
case, i.e.,

DE,�,ϒ(R) = sup
g∈G

D
(
g, ĝ

)
. (3)

When the encoding, decoding, and rendering strategies are
clear from the context, we use a simpler notation, D(R), and
call it the RD function.

3 Theoretical analysis

In this section, we propose a RD function based on our
simple model of scenes HQ(�). We first consider a simple
camera configuration B1

1(P) with only one reference view
and one virtual view. Then we extend analysis to more vir-
tual views with camera configuration B1

q(P) and to more
reference views with configuration Bp

q (P). For each class
of functions, the RD analysis is built in the wavelet domain
where the distortion is the distance between the original
and coded wavelet coefficients. The distortion in wavelet
domain is equal to the distortion in the signal domain when
wavelets form an orthonormal basis, and the wavelet repre-
sentation of our virtual and reference views simplifies the
RD analysis. Assuming that coding has negligible effect on
the average signal value, then we can ignore the distortion
in the lowest frequency band. Therefore, in the following
analysis, we only focus on the distortion of coefficients of
high frequency bands. In all the proofs, we assume that the
wavelets have a finite support of length 
 and that their first
moments are equal to zero.

2In this paper, we consider the 
2 distortion. However, extensions to
other error norms are straightforward.
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Theorem 1 The coding scheme that uses wavelet-based
texture coder and uniform quantization depth coder, ach-
ieves the following RD function on scene configuration
H1(�) and camera setup: B1

1(P):

D (Rt , Rd) ∼ O

(
2μσ 22αRt + K

�Z

Z[Z2βRd + �Z]
)

,

where Rt and Rd are the texture, and depth bit rates,
K = A′R′|T − T ′| depends on camera parameters, �Z =
Zmax − Zmin, Zmax , and Zmin are the maximum and min-
imum depth values in the scene, Z is the foreground object
depth value, σ 2 is the reference frame variance, and μ, α,
and β are positive constants.

Proof For the camera configuration B1
1(P), we have g =

{(t0, v0)} with one reference view and one virtual view. In
all the proofs, we consider for the sake of simplicity that
there is no occluded region. Inspired by [32], we consider
the same quantization level for each wavelet coefficient.
This suboptimal choice of quantization will only affect
constant factors of the RD function and will not change
the final upper bound equation. In addition, we consider a
quantization-based coder for depth map coding that sim-
ply splits depth image into uniform square areas; for each
square, the average depth is quantized and coded. Therefore,
if we assign b bits for coding each wavelet coefficient in
the reference frame and b′ bits for coding each depth value,
there will be three sources of distortion after decoding and
rendering at the decoder side.

First, at every scale s, the number of nonzero wavelet
coefficients is 3 × d�
2s , where d� is the boundary length
of � in v0, and the factor 3 is related to the three wavelet
bands. Using the definitions of Section 2.1, the magnitude of
coefficients at scale s of a standard wavelet decomposition
is bounded by

∣∣C1
s,n1,n2

∣∣ ≤
∫ t0+
2−s

t0

∫ t ′0+
2−s

t ′0

∣∣f (t1, t2)
∣∣∣∣�1

s,n1,n2
(t1, t2)

∣∣dt1dt2 ≤

2s

∫ t0+
2−s

t0

∫ t ′0+
2−s

t ′0

∣∣φ
(
2s t1 − n

)
ψ

(
2s t2 − n

) ∣∣dt1dt2 ≤

2−s . (4)

We have similar results in case of |C2
s,n1,n2

| and |C3
s,n1,n2

|.
By assigning b bits for coding each coefficient, all the
coefficients at scale s with 2−s < 2−b−1 will be mapped
to zero. Therefore, the first source of coding distortion
D1 is

D1 = 3
d�

∞∑

s=b+2

2s × (
2−s

)2 = c12−b (5)

where c1 = 12
d�. Note that a factor of 2 is added here
because the error due to skipping small wavelet coefficients
similarly affects the distortion in both t0 and v0.

Then, the depth map quantization also introduces distor-
tion as it leads to shifts in foreground objects. Recall that
we are calculating distortion in the wavelet domain. Con-
sider s1 as the largest scale with wavelet support length
that is smaller than the amount of shift in the foreground
object. Nonzero wavelet coefficients at scales larger than or
equal to s1 suffer from position changes due to depth cod-
ing. Assume that �0 is the maximum position error in v0

with a b′ bits quantization-based depth coder. Then we have

2−s1−1 < �0 < 
2−s1 . Hence, our second source of error,
D2, is

D2 = 2 × 3
d�

b+1∑

s=s1+1

2s
(
2−s

)2 = c1

(
2−s1 − 2−b−1

)
.

(6)

Here, the factor 2 is due to the shift of significant coeffi-
cients and to the distortion at its main and shifted location.

Finally, additional distortion is generated by quantization
of nonzero coefficients. Using the definitions of b and s1 for
the reference frame t0, we have large coefficients quantiza-
tion error at s ≤ b + 1, while for the virtual view v0, this
happens at s ≤ s1. Thus, according to Eq. 2, for this third
source of distortion, we have

D3 = 3
d�

[
b+1∑

s=1

2j
(

2−b−1
)2 +

s1∑

s=1

2s
(

2−b−1
)2

]

= c1

(
2−b + 2s12−2b

)
.

(7)

Using Eqs. 5, 6, and 7 and our additive distortion model
at Eq. 2, the total distortion is

D = c1

[
2−b + 2−s1 − 2−b−1 + 2−b + 2s12−2b

]
. (8)

From the definitions of s1 and �0, we have s1 ≤ b and
s1 ≥ log �−1

0 − 1. Therefore, we can simplify the above
equation and estimate the distortion as

D = O
(

2b + �0

)
.

The first term only depends on texture coding errors and the
second term on depth quantization. We replace the texture
coding term with a simple distortion model μσ 22−αR [33],

Author's personal copy



632 Ann. Telecommun. (2013) 68:627–640

where μ and α are model parameters, σ 2 is the source vari-
ance, and R is the target bit rate. Using the formulation of
maximum shift error �0, in [24], for the depth distortion
term, we finally have

D (Rt , Rd) =
O

(
2μσ 22−αRt +A′R′∣∣T − T ′∣∣ Zmax−Zmin

Z
[
Z2βRd +Zmax−Zmin

]
)

(9)

where β is another model parameter that depends on depth
coding method, and Z is the foreground object depth value.

We now extend the above analysis to more complex cam-
era configurations. We first consider q virtual views in a
B1

q(P) configuration.

Theorem 2 The coding scheme that uses wavelet-based
texture coder and a uniform quantization depth coder
achieves the following RD function on scene configuration
H1(�) and camera setup B1

q(P):

D(Rt , Rd) ∼ O

⎛

⎝(q + 1)μσ 22αRt +
q−1∑

j=0

Kj

�Z

Z[Z2βRd + �Z]

⎞

⎠ ,

where RT and RD are the texture and depth coding rates;
Kj = A′

jR
′
j |T − T ′

j |, for j = 0, . . . , q − 1 depends on
camera parameters; �Z = Zmax − Zmin, Zmax , and Zmin

are the maximum and minimum depth values in the scene;
Z is the foreground object depth value; σ 2 is the reference
frame variance; and μ, α, and β are positive constants.

Proof With q virtual cameras and aggregating the virtual
view distortions in the three sources of distortion in the
proof of Theorem 1, we have

D1 = c1(q + 1)2−b, (10)

D2 = 2 × 3
d�

q−1∑

j=0

b+1∑

s=sj +1

2s
(
2−s

)2

= c1

⎛

⎝
q−1∑

j=0

2−sj − q2−b−1

⎞

⎠ (11)

and

D3 = c1

⎛

⎝2−b + 2−2b

q−1∑

j=0

2sj

⎞

⎠ . (12)

We also have sj ≤ b and sj ≥ log �−1
j −1 for j = 0 . . . q −

1; thus, using Eq. 2, we have

D = O

⎛

⎝(q + 1)2b +
q−1∑

j=0

�j

⎞

⎠ .

The RD function is then obtained by following exactly
the same replacements as in the proof of Theorem 1.

Finally, we extend the analysis to configurations with
more reference views. We assume that we have equally
spaced reference cameras and virtual views, and that the
number of intermediate views is identical between every
two consecutive reference cameras. A weighted interpo-
lation strategy using the two closest reference views is
employed for synthesis at each virtual view point. The
weights are related to the distances between the virtual view
and the corresponding right and left reference views simi-
larly to that in [22]. Theorem 3 provides the RD function in
a general camera configuration with p reference views and
(p − 1)q virtual views.

Theorem 3 The coding scheme that uses wavelet-based
texture coder and a uniform quantization depth coder
achieves the following RD function on scene configuration
H1(�) and camera setup Bp

q (P):

D
(
Rt0 , . . . , Rtp−1 , Rd0 , . . . , Rdp−1

) ∼

O

⎛

⎝
p−1∑

i=0

μσ 2
i 2αRti +

(p−1)q−1∑

j=0

(
dj,r

d

)2

×
⎡

⎣μσ 2
l 2αRtl +Kj,l

�Z

Z
[
Z2βRdl + �Z

]

⎤

⎦+
(
dj,l

d

)2

×
[
μσ 2

r 2αRtr + Kj,r

�Z

Z
[
Z2βRdr + �Z

]
])

,

where Rti and Rdi
are the texture and depth coding rates for

the ith reference view; �Z = Zmax −Zmin, Zmax , and Zmin

are the maximum and minimum depth values in the scene;
Z is the foreground object depth value; σ 2

i is variance of the
ith reference view; and μ, α, and β are positive constants.
Also, d indicates the distance between each two reference
views, and dj,l and dj,r are the distances between j th virtual
view and its left and right reference camera views. Similarly,
we have Kj,l = A′

jR
′
j |Tl − T ′

j | and Kj,r = A′
jR

′
j |Tr − T ′

j |
that depend on the camera parameters.
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Proof First, using Theorem 2, we can write the distortion
of a reference view, r , and the q virtual views on its left as

D
(
Rtr , Rdr

) = O

⎛

⎝μσ 2
r 2αRtr +

q−1∑

j=0

[
μσ 2

r 2αRtr +Kj,r

�Z

Z
[
Z2βRdr + �Z

]
])

(13)

Clearly, the first and second terms define the distortion
of the reference and virtual views, respectively. By adding
another reference view, l, and using a weighted average of
the two closest reference views for synthesizing the virtual
views, we have

D
(
Rtr , Rtl , Rdr , Rdl

) =

O

⎛

⎝μσ 2
r 2αRtr + μσ 2

l 2αRtl +

q−1∑

j=0

(
dj,r

d

)2
⎡

⎣μσ 2
l 2αRtl + Kj,l

�Z

Z
[
Z2βRdl + �Z

]

⎤

⎦ +

(
dj,l

d

)2
[
μσ 2

r 2αRtr + Kj,r

�Z

Z
[
Z2βRdr + �Z

]
])

(14)

where d indicates the distance between the two reference
cameras, and dj,l and dj,r are the distances between the j th
virtual view and its left and right reference camera views.
Our weights are simply related to the distance between
virtual view and its neighbor reference views. Finally, sum-
ming up the terms of Eq. 14 for all reference views leads to
the distortion in Theorem 3.

The above RD analysis is performed on H1(�). How-
ever, the extension to multiple foreground objects is
straightforward by setting Z = Zmin.

4 RD optimization

In this section, we show how the analysis in Section 3 can
be used for optimizing the rate allocation in multiview cod-
ing. Using Theorem 3, the rate allocation problem turns into
the following convex nonlinear multivariable optimization
problem with linear contraints:

arg min−→
R t ,

−→
R d

gt

(−→
R t

)
+ gd

(−→
R d

)

such that
∥∥−→

R t + −→
R d

∥∥
1 ≤ R

(15)

where

gt

(−→
R t

)
=

p−1∑

i=0

(q + 1)μσ 2
i 2αRti ,

gd

(−→
R d

)
=

(p−1)q−1∑

j=0
⎡

⎣
(

dj,l

d

)2

Kj,r

�Z

Zmin
[
Zmin2βRdr + �Z

]

+
(

dj,r

d

)2

Kj,l

�Z

Zmin

[
Zmin2βRdl + �Z

]

⎤

⎦

and R is the total target bit rate. The convexity proof is
straightforward since the above optimization problem is the
sum of terms in the form a2−bx , which are convex. There-
fore, it can be solved efficiently using classical convex
optimization tools. Note that the above optimization prob-
lem is for the general camera configuration Bp

q (P). The rate
allocation for simpler configurations is straightforward by
replacing the objective functions with terms from Theorem
1 and 2. We can finally note that the rate allocation strategy
is only based on encoder data.

The last issue that we have to address is the choice of
the model parameters. There are three parameters—μ, α,
and β in Eq. 15—that we estimate using the following
offline method. Using the first texture and depth images,
we estimate the model parameters by solving the following
regression problem

[
μ�, α�, β�

] = arg min
μ,α,β

n−1∑

k=0

∣∣D (Rk) − D∗ (Rk)
∣∣ (16)

where n is the number of points in the regression problem; it
is further discussed in the next section. D(Rk) is the distor-
tion obtained by our rate allocation strategy in Eq. 15 with
target bit rate Rk , and D∗(Rk) is the best possible allocation
obtained by a full search method at the same bit rate.

5 Experimental results

In the previous sections, we have studied the bit alloca-
tion problem on simple scenes and have extracted a model
for estimating RD function of a DIBR multiview coder
with wavelet-based texture coding and a quantization-based
depth coding. This section studies the RD behavior and
the accuracy of the proposed model on real scenes where
JPEG2000 is used for coding depth and reference images.
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We use 12 datasets as it is shown in Fig. 3. Here, Bal-
let and Breakdancers datasets are from Interactive Visual
Group of Microsoft Research [34], and the others are
selected from Middlebury stereo datasets [35, 36]. In our
simulations, gray-scale versions of the images in these
datasets are used. Each view in the Ballet and Breakdancers
datasets contains 100 temporally consecutive frames, and
all the numerical results in this section are the average
of the frames with temporal indices 0, 49, and 99. The
camera intrinsic and extrinsic parameters P , and the scene
parameters Zmin and Zmax, are set to the values given by
datasets. In cases where the parameters are changed to
study the model under some special aspects, we mention the
parameter values explicitly.

In an offline stage using Eq. 16, we adjust the param-
eters μ, α, and β in Eq. 15 at four regression points, i.e.,
n = 4, for each dataset. Note that in all tests, the parameter
estimation is performed over frames that are not included in
the performance evaluation. For instance, in the case of Bal-
let and Breakdancers, the parameters are calculated using
a random frame that is different from frames with indices
0, 49, or 99. The parameter values are fixed for the differ-
ent camera configurations. In the following, we study the
RD model of Eq. 15 for rate allocation in different cam-
era configurations, namely B1

1(P), B1
6(P), and B2

3(P). As a

Fig. 4 Comparison of the coding performance for B1
1(P) using the

proposed allocation method and the best allocation in terms of PSNR at
rates ranging from 0.05 to 0.4 bpp. The performance has been averaged
over our 12 datasets

comparison criterion, we use the optimal allocation that is
obtained by rendering all the intermediate views and search-
ing the whole RD space for the allocation with minimal
distortion.

Fig. 3 Test datasets (from top-left to bottom right): Aloe, Art, Baby, Ballet, Bowling, Breakdancers, Cloth, Cones, Midd, Rocks and Wood
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Fig. 5 Rate allocation results of B1
1(P) using our proposed method

and the optimal allocation in terms of Rt percentage of total rates,
ranging from 0.05 to 0.4 bpp. The results have been averaged over 12
datasets

Finally, as we want to keep our model independent of any
special strategy for filling occluded regions, all occluded
regions are ignored in the distortion and peak signal-to-
noise ratio (PSNR) calculations.

5.1 B1
1(P) configuration

We start with the B1
1(P) camera setup which is a simple

configuration with one reference view and only one virtual
view. We use the cameras 0 and 1 of the datasets as ref-
erence and target cameras, respectively. All camera-related
parameters in Eq. 15 are set accordingly.

A RD surface is first generated offline for the desired bit
rate range to generate the distortion benchmark values. In
our study, Rt and Rd are set between 0.02 and 0.4 bpp with
0.02-bpp steps. It means that Rt and Rd axes are discretized

into 20 values. Since we are coding only one reference view
and one depth map, this range of bit rate is pretty reasonable.
The RD surface is generated by actual coding of the texture
and depth images at each (Rt , Rd) pair and by calculating
the distortion after decoding and synthesis.

Then, for each target bit rate, R, the optimal rate alloca-
tion is calculated by cutting the above surface with a plane
Rt + Rd = R and minimizing the distortion. If the mini-
mum point occurs between grid points (because we have a
discretized surface), a bicubic interpolation is used to esti-
mate the optimal allocation. Here, R is set between 0.05
and 0.4 bpp with a 0.02-bpp step. Figure 4 provides com-
pression performance of DIBR coder in terms of the PSNR
averaged over all datasets. The estimated curve is gener-
ated by solving the optimization problem provided in Eq. 15
with the proposed RD model. The average and maximum
difference between the model-based and optimal curves are
0.09 and 0.30 dB, respectively. Figure 5 shows the Rt per-
centage of the best and model-based allocations versus the
bit rate where the percentage has been averaged over the
12 test datasets. Clearly, our model-based allocation follows
closely the best allocation.

We study now the performance of a priori fixed rate
allocations, which are commonly adopted in practice. We
consider Rt relative to the total budget fixed at 80 % as
the common a priori allocation [15–17]. Table 1 shows the
average PSNR loss compared to the best allocation for our
12 test datasets. We compare the performance of the rate
allocation estimated with our RD model, and we show that
our allocation is always better. Figure 5 further shows that,
using a model-based allocation instead of a priori alloca-
tion is more important at low bit rates (on average less than
0.15 bpp). This is the reason why we have significant dif-
ferences between average and maximum PSNR loss in fixed
allocation results. In our proposed allocation, the results
are close to optimal in all datasets as the model adapts to

Table 1 Performance penalty in B1
1(P)

Dataset Aloe Art Baby Ballet Bowling Break Cloth Cones Lamp Midd Rocks Wood Overall

Rt = 80 %

Avg 0.12 0.12 0.15 0.21 0.22 0.10 0.13 0.14 0.07 0.08 0.13 0.28 0.15

Max 0.50 0.84 1.17 1.12 0.51 0.91 1.18 1.03 0.31 0.24 0.44 1.90 0.85

DMDA

Avg 0.65 0.69 0.75 0.97 1.09 1.44 1.05 0.67 0.84 1.37 1.09 1.05 0.97

Max 0.80 1.00 1.06 1.30 1.60 1.80 1.27 0.95 1.35 1.94 1.50 1.67 1.35

Our model

Avg 0.06 0.07 0.06 0.14 0.17 0.10 0.06 0.08 0.14 0.06 0.09 0.11 0.09

Max 0.29 0.22 0.30 0.34 0.33 0.25 0.21 0.24 0.28 0.17 0.48 0.49 0.30

Comparison between the proposed model, a priori allocation policy, and depth map distortion-based allocation in terms of average and maximum
differences to the best achievable PSNR at total rates ranging from 0.05 to 0.4 bpp
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the scene content. In datasets with highly textured regions
or close-to-camera objects, like Wood and Ballet, we have
more significant benefits with our adaptive allocation. In
the cases of Wood and Ballet, the model-based approach
performs better than fixed allocation by 1.41 and 0.78 dB,
respectively. The last column of shows the average benefit
of our model compared to a fixed rate allocation with 80 %
of rate in texture coding. In addition to fixed allocation, we
provide the results of a rate allocation strategy similar to
H.264/AVC coder [18]. In this coder rate, allocation is per-
formed directly based on the depth map distortion. We call
this allocation method depth map distortion-based alloca-
tion (DMDA). Table 1 shows the significant improvement
of using our model in contrast to DMDA, which is expected
due to the indirect effect of depth map distortion on the final
view quality.

Finally, to study the performance of our proposed model
on various frames of one sequence, Table 2 provides PSNR
loss results of frames 10 to 90 from the Ballet dataset.
Frame 0 is used for parameter estimation. The overall
gain of using our model in contrast to fixed allocation
reaches 0.4 dB.

5.2 B1
q(P) configuration

In this section, we study the allocation problem for cam-
era configurations with multiple virtual views. The camera
4 of the Ballet and Breakdancers datasets is used as the ref-
erence camera, and six virtual cameras separated by 1 cm
are considered, three at each side of the reference cam-
era. At each side, the parameters of the virtual cameras are
set according to cameras 3 and 5 in the dataset, respec-
tively. For the other datasets, the settings are the same except
that we are using the parameters of the first stereo camera
in all cases.

The optimal allocation process is obtained similarly to
Section 5.1. The optimal RD surface is generated offline,
for Rt and Rd rates between 0.05 and 0.4 bpp with 0.02-
bpp steps. Then, at each total bit rate R, the best allocation
is calculated using interpolation over this RD surface. The

Fig. 6 Comparison of the coding performance for B1
6(P) using the

proposed allocation method and the best allocation in terms of PSNR
at rates, ranging from 0.05 to 0.4 bpp. The results have been averaged
over 12 datasets

model-based allocation is the result of solving Eq. 15 for
B1

6(P). The reported distortion is the average distortion over
all six virtual views and the reference view and also, in the
case of the Ballet and Breakdancers datasets, over the three
representative frames in each set, i.e., frames 0, 49, and 99.

Figure 6 represents the performance in terms of PSNR
with respect to target bit rate, R, where R varies between
0.05 and 0.4 bpp. The two curves correspond to the best
allocation and the model-based allocation averaged over all
12 test datasets. The average and maximum amount of loss
due using our model is 0.11 and 0.34 dB, respectively. The
corresponding performance penalties are 0.17 and 0.91 dB
for the Rt percentage at 80 % and 0.88 and 1.27 dB for the
rate allocation based on depth map distortion. Although the
average of the fixed allocation is close to our model, it has
large variances, which is mainly due to inefficient allocation
at low bit rates. Figure 7 clarifies this claim by presenting
the best and the model-based allocation in terms of percent-
age of the total rate allocated to Rt , for different values of

Table 2 Performance penalty in B1
1(P)

Frame number 10 20 30 40 50 60 70 80 90 Overall

Rt = 80 %

Avg 0.26 0.19 0.27 0.26 0.24 0.21 0.20 0.25 0.22 0.23

Max 0.93 0.84 0.74 1.00 0.93 0.72 0.59 0.97 0.99 0.86

Our model

Avg 0.22 0.13 0.18 0.12 0.17 0.17 0.19 0.19 0.21 0.18

Max 0.49 0.31 0.55 0.38 0.45 0.49 0.43 0.47 0.51 0.46

Comparison between the proposed model and a priori allocation policy in terms of average and maximum differences to the best achievable PSNR
at total rates ranging from 0.05 to 0.4 bpp over frames 10 to 90 of the Ballet dataset
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Fig. 7 Rate allocation results of B1
6(P) using our proposed method

and the optimal allocation in terms of Rt percentage of total rates,
ranging from 0.05 to 0.4 bpp. The results have been averaged over 12
datasets

R. As it is shown in this figure, for a large portion of bit
rates, approximately higher than 0.1 bpp, the optimal alloca-
tion is around 80 % which is the reason both schemes have
similar PSNR loss. But at lower bit rates, the adaptive allo-
cation plays a more significant role and, due to this different
behavior, we have 0.91 dB in PSNR loss for the fixed allo-
cation. Clearly, our model again performs very close to the
optimal allocation at all bit rates. This yields to improve-
ments over a priori rate allocations as given in Table 3 in
case of B1

6(P). Similar to B1
1(P) configuration, the benefit

of the model-based allocation in contrast to fixed allocation
is more significant in textured images, like Wood, or datasets
with close-to-camera objects, like Ballet. In these two cases,
our proposed method outperforms the fixed allocation by
up to 1.48 and 1.41 dB, respectively. Also, for all datasets,

Fig. 8 Comparison of the coding performance for B2
3(P) using the

proposed allocation method and the best allocation in terms of PSNR
at rates, ranging from 0.1 to 0.5 bpp. The results have been averaged
over 12 datasets

we have significant improvement over DMDA, which uses
depth map distortion for rate allocation.

5.3 Bp
q (P) configuration

We now consider the most general configuration, Bp
q (P),

with two reference cameras (p = 2) and three equally
spaced virtual views between them (q = 3). For the Ballet
and Breakdancers datasets, the cameras 4 and 5 are consid-
ered as the two reference views, and A′

j and R′
j , j = 1, 2, 3,

for virtual views are set as the average of intrinsic and rota-
tion matrices of our reference cameras. For the other ten
datasets, the settings are set according to the provided stereo
cameras. Each virtual view vj is generated in two steps. If
π is the position of vj , then each of the reference views

Table 3 Performance penalty in B1
6(P)

Dataset Aloe Art Baby Ballet Bowling Break Cloth Cones Lamp Midd Rocks Wood Overall

Rt = 80 %

Avg 0.11 0.15 0.15 0.40 0.27 0.08 0.14 0.12 0.11 0.05 0.13 0.29 0.17

Max 0.51 1.13 1.14 1.83 0.46 0.78 1.07 1.02 0.35 0.17 0.42 2.03 0.91

DMDA

Avg 0.67 0.58 0.77 0.57 0.82 1.49 0.95 0.67 0.77 1.30 1.07 0.85 0.88

Max 0.84 1.12 1.10 0.77 1.33 1.83 1.23 0.95 1.25 1.70 1.60 1.57 1.27

Our model

Avg 0.09 0.09 0.05 0.24 0.11 0.11 0.11 0.07 0.14 0.04 0.08 0.14 0.11

Max 0.36 0.36 0.24 0.42 0.30 0.59 0.27 0.21 0.23 0.13 0.42 0.55 0.34

Comparison between the proposed model, a priori allocation policy, and depth map distortion based allocation in terms of average and maximum
differences to the best achievable PSNR at total rates ranging from 0.05 to 0.4 bpp
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Fig. 9 Rate allocation results of B2
3(P) using our proposed method

and the optimal allocation in terms of Rt percentage of total rates,
ranging from 0.1 to 0.5 bpp. The results have been averaged over our
12 datasets

are projected into π using depth map information. This
step produces vj,r and vj,l as projection results from the
right and left cameras, respectively. Next, we construct the
synthetic view as

vj = dj,l

d
vj,r + dj,r

d
vj,l (17)

where d is the distance between two reference cameras,
while dj,l and dj,r are the distances between vj and the left
and right reference cameras, respectively.

The allocation problem in this case consists of distribut-
ing the available bit budget between two reference views
and two depth maps. For comparison purposes, we calculate
a RD hypersurface of the best allocation with Rt1 , Rt2 , Rd1 ,
and Rd2 ranging from 0.05 to 0.5 bpp with 0.02 steps. Then
for each target bit rate R, the best allocation is the minimum

of the resulting curve from cutting this hypersurface with
the hyperplane Rt1 + Rt2 + Rd1 + Rd2 = R.

Figure 8 compares the best allocation and the model-
based allocation in Eq. 15 as an average over all 12 test
datasets of this study, for target bit rates ranging from 0.1
to 0.5 bpp. Our allocation model only yields a 0.09-dB loss
in average and a maximum loss of 0.34 dB compared to the
optimal allocation. Figure 9 shows the best and estimated
allocations in terms of the percentage of the texture bits
(Rt1 + Rt2) relatively to the total bit rate. The advantage of
using our model over the commonly used strategy of a priori
rate allocation is shown in Table 4. In the a priori allocation,
the bit rate assigned to each pair of reference view and depth
map is equal. For instance, in B2

3(P), if the total bit rate is
0.4 bpp for the a priori allocation of 80 %, Rt1 = Rt2 = 0.16
and Rd1 = Rd2 = 0.04 bpp. Our model performs better
than the a priori allocation by up to 0.64 dB, which is due
to adaptivity to content and setup. From Tables 1 to 4, we
can conclude that the best performance of an a priori alloca-
tion strategy depends on the number of reference and virtual
views and on the scene content. However, our model-based
allocation works well in all cases and gives the opportunity
to determine the number of virtual views only at decoder
side. Also, the nonoptimality of using depth map distortion
in rate allocation is proved experimentally in this setting,
too. Our model outperforms the DMDA method by 1.60 dB
on average and up to 1.81 dB at maximum.

6 Conclusion

We have addressed the problem of RD analysis of multi-
view coding in a depth image-based rendering context. In
particular, we have shown that the distortion in the recon-
struction of camera and virtual views at decoder is driven
by the coding artifacts in both the reference images and

Table 4 Performance penalty in B2
3(P)

Dataset Aloe Art Baby Ballet Bowling Break Cloth Cones Lamp Midd Rocks Wood Overall

Rt = 80 %

Avg 0.43 0.19 0.51 0.33 1.29 0.17 0.42 0.49 1.35 0.50 0.28 0.62 0.55

Max 0.72 0.36 0.96 0.68 2.16 0.47 0.87 0.77 2.27 0.87 0.52 1.13 0.98

DMDA

Avg 1.33 1.40 1.24 1.30 2.50 1.95 1.61 1.37 2.69 1.89 1.44 1.59 1.69

Max 1.66 1.69 1.77 1.66 3.50 2.20 1.90 1.74 3.35 2.31 1.71 2.25 2.15

Our model

Avg 0.02 0.10 0.19 0.11 0.02 0.14 0.19 0.11 0.03 0.05 0.08 0.03 0.09

Max 0.20 0.37 1.11 0.35 0.10 0.37 0.41 0.33 0.11 0.21 0.21 0.29 0.34

Comparison between the proposed model, a priori allocation policy, and depth map distortion based allocation in terms of average and maximum
differences to the best achievable PSNR at total rates ranging from 0.1 to 0.5 bpp
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the depth maps. We have proposed a simple yet accurate
model of the RD characteristics for simple scenes and dif-
ferent camera configurations. We have used our novel model
for deriving effective allocation of bit rate between ref-
erence and depth images. One of the interesting features
of our algorithm, beyond its simplicity, consists in avoid-
ing the need for view synthesis at the encoder, contrary
to what is generally used in state-of-the-art solutions. We
finally demonstrate in extensive experiments that our sim-
ple model stays valid to complex multiview scenes with
arbitrary numbers of reference and virtual views. It leads
to an effective allocation of bit rate with close-to-optimal
quality under various rate constraints. In particular, our rate
allocation outperforms common strategies based on a pri-
ori rate allocation, since it is adaptive to the scene content.
Finally, we plan to extend our analysis to multiview video
encoding where motion compensation poses nontrivial chal-
lenges in rate allocation algorithms due to additional coding
dependencies.
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