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ABSTRACT 
In this paper, we propose a novel block-based approach for global 
motion estimation (GME) and panorama image construction in 
encoded MPEG-1 video streams. Direct extraction of motion 
vectors (MV) from MPEG stream greatly improves efficiency of 
our method against pixel-based methods. However, some MVs in 
MPEG stream do not indicate real object or camera motion in the 
scene. Therefore, we introduce a reliability measure to 
discriminate real MVs from noisy or outlier MVs. In addition, an 
iterative reweighting process is applied to increase accuracy of 
GME. Finally, panorama image of several sequences is 
constructed by using estimated camera motion. Experiments show 
that the proposed method has high accuracy and can produce high 
quality panorama images for compressed videos faster than real-
time.   

Categories and Subject Descriptors 
I.4.7 [Image Processing and Computer Vision]: Feature 
Measurement – Feature representation. I.4.8 [Image Processing 
and Computer Vision]: Scene Analysis – Motion. I.2.10 
[Artificial Intelligence]: Vision and Scene Understanding – 
Video analysis. 

General Terms 
Algorithms, Reliability. 

Keywords 
global motion estimation, motion vector reliability, MPEG, IRLS, 
panorama image construction. 

1. INTRODUCTION 
Rapid growth of archived video content has lead to huge video 
databases worldwide. Effective and efficient video processing 
algorithms in compressed domain are needed to process these 
archives. Global motion is one of the most promising semantic 
features in video analysis, indexing and retrieval applications. 
Two main approaches for global motion estimation (GME) are 
pixel domain and compressed domain [10]. The compressed 
domain approaches diminish computational complexity of GME 
by exploiting block-based motion vector (MV) field from 

compressed video. However, MVs in the compressed video 
stream are often noisy and inconsistent with real motion, and need 
to examine by a filtering process [1]. 

Several works are done to estimate global motion from block 
motion vectors in compressed or pixel domain. Chen in [1] 
proposed a cascade of MV filters to reject outliers among block 
based MVs extracted from raw images in pixel domain. No 
iterative enhancement stage is used in this method to increase 
accuracy of GME. An iterative least square error minimization 
method is proposed in [10] to extract global motion form coarsely 
sampled MV field. However, in this method block motion vectors 
are not extracted from compressed video and outlier MVs are not 
filtered before iterative GME process; this causes necessity for 
more iterations in the iterative GME process and expands 
computational burden of the proposed method. Haller in [9] 
proposed an iterative GME method for motion vector field from 
variable size blocks. Different motion models are examined in 
their work and profits of using appropriate motion model for each 
problem domain are discussed. These methods are not directly 
applicable to compressed video processing because they extract 
MVs by block based MV estimation in pixel domain. Panorama 
image construction is a qualitative way of camera motion 
evaluation [3,7]. Moreover, panorama image has used as a static 
summary for video [11,19]. 

In this research work, we propose a method for global motion 
estimation and panorama image construction in encoded MPEG-1 
videos by directly exploiting MV field of compressed domain. 
Section 2 describes process of motion vectors extraction from 
MPEG bit-stream. In section 3, a reliability measure is introduced 
to discriminate unreliable MVs form real motion vectors in the 
scene. A simple yet applicable motion model is proposed in 
section 4 and initial camera parameters are estimated based on 
reliable motion vectors. In section 5, an iterative reweighting 
method is applied to enhance accuracy of GME. Section 6 is 
dedicated to panorama image construction and experiments. The 
block diagram for the proposed method is shown in Figure 1. 

2. MOTION VECTOR EXTRACTION 
In the first step, motion vectors are extracted from forward coded 
macro-blocks (MBs) in each P-Picture of the MPEG stream as 
follows: 

),(),(),( nmMVnmxnmx x
 (1)
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Where x(m,n) and y(m,n) are center point location of block (m,n) 
in current picture, x’(m,n) and y’(m,n) are center point location of 
most similar area in previous picture. 
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The MVx(m,n) and MVy(m,n) are horizontal and vertical 
components of MB (m,n) motion vector in current picture. A zero 
motion vector is assigned to intra-coded MBs. We modified a 
MPEG-1 video decoder in Java to extract these motion vectors by 
partial decoding of the MPEG bit-stream. 

3. MOTION VECTOR RELIABILITY 
MEASUREMENT 
Accidental similarity of MBs in current and reference picture 
around moving object boundaries leads to outlier MVs in the 
MPEG stream. In addition, fast object and camera motion in the 
scene can produce noisy MVs in the picture. By defining a 
reliability measure, we try to discriminate noisy and outlier MVs 
from real MVs. 

3.1 Outlier Removal 
While real MVs are similar to their neighboring MVs, outliers are 
different from their neighbors. Therefore, local similarity 
measures are used to discriminate outliers from real MVs 
[1,16,18]. In this study, we modify soft-threshold similarity 
measures proposed in [1] and apply them in MPEG domain. 
These filters are shown in Figure 2. 

3.1.1 First Similarity Filter 
Magnitude and phase similarity of the center MV with its 8 
neighbor MVs are measured by the first similarity filter. First 
magnitude similarity measure is defined as: 
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Where SMi
1(m,n) denotes magnitude similarity of i’th neighbor 

MV to central MV(m,n) in a 3*3 neighborhood; and is computed 
as: 
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The MVi is the i’th neighbor MV, and T1
mag is magnitude 

similarity threshold of the first filter. In our experiments, as 
suggested in [1] we used T1

mag = 0.4 for CIF resolution videos, 
and T1

mag = 0.25 for higher resolution videos. 

First phase similarity measure is defined as: 
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Where SAi
1(m,n) denotes phase similarity of i’th neighbor MV to 

central MV(m,n) in a 3*3 neighborhood; and is computed as: 

   
(a) (b) (c) 

 

      


 


otherwise

Tm,n
nmSA

ph
i

i
0

MVMV1
, 11   (6)

The MVi is the i’th neighbor MV, and T1
ph is phase similarity 

threshold of the first filter. In our experiments, as suggested in [1] 
we used T1

ph = 19°/180° for CIF resolution videos and T1
ph = 

10°/180° for higher resolution videos. 

3.1.2 Second Similarity Filter 
The second filter measures magnitude and phase similarity of the 
center MV with average of its diagonally opposite neighbor MVs. 
The measures are similar to (3) and (5), but for average of 
diagonally opposite neighboring MVs [1]. In our experiments, we 
used T2

mag = 0.2 for CIF resolution videos, and T2
mag = 0.125 for 

higher resolution videos. In addition, we used T2
ph = 9.5°/180° for 

CIF resolution videos, and T2
ph = 5°/180° for higher resolution 

videos. 

3.1.3 Third Similarity Filter 
The third filter measures magnitude and phase similarity of the 
center MV with average of its triangularly opposite neighbor 
MVs. This filter pays more attention to cornerwise neighbors by 
using them two times in computations. Third magnitude and 
phase similarity measures are defined like (3) and (5), but for 
average of triangularly opposite neighbor MVs [1]. In our 
experiments, we used T3

mag = 0.1 and T3
ph = 4.75°/180° for CIF 

resolution videos. In addition, we used T3
mag = 0.0625 and T3

ph = 
2.5°/180° for higher resolution videos. 

3.2 Noise Removal 
In each P-Picture, intra-coded MBs indicate regions in the picture 
with no similar area in reference picture. Therefore, we expect to 
see noisy MVs around intra-coded MBs. By this assumption, 
confidence measure for each MV is defined as follows: 

   
 





 

 


MBintracoded0

MBintracodednon,
8

1
1

, ,, nmneighborsji

jiIntraMB
nmCnf (7)

Which computes ratio of non intra-coded MBs around the 
MV(m,n) in a 3*3 neighborhood. The IntraMB(i,j) is one for 
intra-coded MBs and zero for non intra-coded MBs. 

Figure 2. Three MV similarity filters for outlier rejection [1]. 

Figure 1. Block diagram for the robust panorama construction approach. 



3.3 Reliability Measure 
In our framework, noisy and outlier MVs are two kinds of 
unreliable MVs. To distinguish them from real MVs we combine 
local MV similarity measure with MV confidence measure as: 
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Where MVReliability(m,n) is reliability of MV(m,n) and is a 
continuous value between zero and one. 

We use an adaptive thresholding strategy to distinguish reliable 
MVs from unreliable MVs. The adaptive threshold is defined as: 

)3.0,2.1max( MVRelMVRel MTh   (9)

Where MMVRel is mean MV reliability in current picture and is 
defined as: 
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The M and N are number of rows and columns of the MB grid in 
current picture. All MVs with reliability higher than ThMVRel are 
considered as reliable MV. 

4. CAMERA MOTION MODEL 
As discussed in [17], to model 3D motion in a scene a 2D 
parametric motion model can be utilized. The affine motion 
model with six parameters has extremely used in the literature 
[2,3,8,10,13,20]. However, in most real world applications such 
as sport video analysis, camera movements can be categorized 
into panning, tilting, and zooming. So, we simplify affine motion 
model to a three-parameter motion model as follows: 
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Where s, p, t are scaling, panning and tilting factors respectively. 
By this model, each pixel (x,y) in the current picture is mapped to 
corresponding pixel (x’,y’) in the previous reference picture. 

Putting start and end point of each motion vector of the picture in 
(11) results in a linear equation system. By solving this equation 
system, initial camera parameters are estimated. Using these 
initial parameter values, the iterative GME process in the next 
step could start from a promising point. 

5. ITERATIVE GLOBAL MOTION 
ESTIMATION 
Since most motion vectors in each picture are caused by camera 
motion; an iterative reweighting method could be used to remove 
remaining errors in GME [5,15]. Therefore, the Iteratively 
Reweighted Least Squares (IRLS) [2,4,6,15] method is used in 
this section to refine MV reliability values and reestimate 
parameters of camera motion. In this process, the estimated 
reliability value of each MV is considered as MV weight during 
parameters estimation. In IRLS, the following error function is 
minimized in order to find optimal camera parameter values: 
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To minimize error J, partial derivatives of J are derived with 
respect to s, p, and t. After a simple displacement, following 
formulas will appear for iterative camera parameters estimation: 
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After parameters estimation, MV reliability values are 
recalculated based on last parameter values by following 
equation: 

             22 ,,,,exp, nmytnmysnmxpnmxsknmMV yReliabilit   (16)

The k is an arbitrary positive constant which determines 
contribution of MV error in MV reliability during the GME 
process. Iterative estimation of camera parameters and MV 
reliabilities will continue for a determined number of iterations. In 
our experiments, we used k = 4 and max iterations of 30. 

6. Experimental Results 
In this section, we evaluate performance of our proposed method 
called robust IRLS (R-IRLS) on several benchmark and soccer 
videos by panorama image construction and global motion 
compensation. We implemented the iterative GME method 
proposed by Liu in [14] on reliable MVs of section 3 and use it as 
an opponent in our experiments.   

6.1 Test Videos 
Several benchmark videos are used for evaluation. These test 
videos are in CIF (352 × 288) resolution and available at 
http://media.xiph.org. They are encoded with FFMPEG encoder 
as MPEG-1 videos. Important encoding parameters are 
summarized in Table 1. In addition, three soccer sequences in 
(720 × 480) resolution are used to show the robustness of the 
proposed method for soccer domain. Important encoding 
parameters for soccer videos are summarized in Table 2. 

6.2 Panorama Image Construction 
Construction of panorama image can be utilized to evaluate 
estimated global motion qualitatively [7]. To construct a 
panorama image, consecutive images must coincide on each other 
according to estimated camera motion. Therefore, a misestimation 
error propagates along the sequence in panorama image 
construction process and results in a panorama image with 
apparent errors [7]. When major motion in the scene is camera 
motion against object motion, we can suppose that there is no 
moving object in the scene. In such a situation, accurate and 
robust estimation of camera motion will produce a bright and 
clear panorama image. 

In prior section, camera motion parameters are estimated for each 
image in the sequence. To coincide successive images, their 
transformation matrices must refer the same initial frame. 



Therefore, accumulated transformation matrix of each image in 
the sequence is computed as [7]: 
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Where N is number of images in the sequence, and HP
i→j denotes 

accumulated transformation matrix which transforms i’th picture 
to the j’th picture in the sequence. The symbol I denotes a 3*3 
identity matrix, and Hi→i-1 is transformation matrix of i’th picture 
constructed as: 
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Where s(i), p(i) and t(i) are three computed camera parameters s, 
p, and t of i’th picture in the sequence. 

After computation of accumulated transformation matrix, pixels 
in each picture of the sequence are transformed to the first picture 
by following equations: 




































1

*
~
~

~

1 y

x

H

k

y

x
P
i

 
(19)

k

y
y

k

x
x ~

~
~
~


 

(20)

 

Table 1. FFMPEG encoder settings for benchmark videos. 

Parameter Value 

GOP Size 16 (fix) 

B-Picture count 0 

Frame rate 25 

Bit-rate 5120 kbps 

Frame Size 352 × 288 

Maximum Motion Vector Range 50 pixel 

 
Table 2. FFMPEG encoder settings for soccer videos. 

Parameter Value 

GOP Size 16 (fix) 

B-Picture count 0 

Frame rate 25 

Bit-rate 10240 kbps 

Frame Size 720 × 480 

Maximum Motion Vector Range 100 pixel 

Which transforms each pixel (x,y) in i’th image of the sequence to 
pixel(x’,y’) in the first picture. 

After transformation of each image in the sequence to the first 
picture, all transformed pictures must combine to constitute 
panorama image. Transformed images could synthesize by simply 
overlaying each picture on prior pictures or using average or 
median filtering in the time axes. Average filter in the time axes is 
faster than median filter. Therefore, we used average filter for 
pictures combination in CIF resolution sequences. In this 
situation, errors in camera parameters estimation cause blurring or 
distortions in the resulting panorama image. For soccer sequences, 
images are combined by overlaying method. 

Figure 3 shows panorama images of bus CIF sequence generated 
by using our method R-IRLS, Liu [14] method, and linear 
equations method of section 4. According to Figure 3, iterative 
GME refinement in R-IRLS and Liu [14] leaded to finer 
panorama images. Also, panorama images of three soccer 
sequences generated by R-IRLS are shown in figure 4. The 
proposed method constructed clear and fine panorama images for 
both general and soccer sequences.  

6.3 Global Motion Compensation 
In video sequences with dominant camera motion, motion 
compensation error of each picture is correlated with camera 
motion estimation accuracy [3]. We use PSNR measure in dB to 
compare our proposed method and other approaches [1,10,12,14]. 
Motion compensation error is computed by matching current 
picture with previous reference picture using camera motion 
compensation. Then, square difference between two matched 
pictures is considered as global compensation error. The PSNR 
measure in dB is defined as: 
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Where MAXI denotes maximum possible value in the picture; that 
is 255. The MSE denotes Mean Square Error and is computes as: 
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Where I and K are current and reference picture in RGB color 
format respectively, c denotes color component index, H and W 
are height and width of picture respectively. 

Table 3 represents performance of our method against CAS_GD 
[1] and Liu [14]. Computation of PSNR is done on original raw 
pictures of each sequence to avoid effects of quality loss caused 
by MPEG compression. As shown in Table 3, the proposed 
method has high accuracy comparing to other state-of-the-art 
methods. 

6.4 GME Speed 
The GME, reliability measurement, and synthesization modules 
are implemented in MATLAB. The total processing time for 
motion extraction from MPEG bit-stream, reliability computation, 
and GME per frame is 12 milliseconds for CIF resolution videos 
and 16.7 milliseconds for soccer videos. These experiments are 
done on a standard laptop PC with Intel Pentium CPU at 2.53 
GHZ, with 3 GB of RAM. Comparing to [1], our method is more 
efficient due to matrix operations in MATLAB and direct 
extraction of MVs in Java. 



 

 

 

Figure 3. Panorama images for bus sequence by averaging filter in the time axes; (a) linear equations solving method;  
(b) R-IRLS; (c) Liu method. 

(a) 

(b) 

(c) 



 

 

 

Figure 4. Panorama images for three soccer videos by overlaying method; (a) panorama image of Soccer1 sequence; (b) 
panorama image of Soccer2 sequence; (c) panorama image of Soccer3 sequence. 

(a) 

(b) 

(c) 



Table 3. Performance Comparison by Average PSNR in dB. 

Sequences R-IRLS CAS_GD [1] Liu [14] 

Bus 23.26 --- 23.24 

City 28.57 29.48 28.65 

CoastGuard 28.28 26.78 28.27 

FlowerGarden 23.38 22.19 23.83 

Mobile 25.36 23.47 25.38 

Stefan 26.02 24.60 26.00 

Tempete 27.74 27.83 27.51 

Waterfall 36.10 34.86 35.43 

Soccer1 29.70 --- 29.71 

Soccer2 28.84 --- 28.84 

Soccer3 29.27 --- 29.24 

 

7. CONCLUSION 
In this paper, we presented a robust and efficient method for 
panorama image construction in compressed videos. Estimating 
motion vector reliabilities and improving estimated global motion 
by an iterative process led to robustness of our method against 
MV noise in MPEG bit-stream. On the other hand, direct 
extraction of motion vectors from compressed sequence by partial 
decoding of MPEG video caused high efficiency in the overall 
process. Experiments show that the proposed method is accurate 
and efficient comparing to state-of-the-art research works. 
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