
α-Visibility∗

Mohammad Ghodsi1, Anil Maheshwari†2, Mostafa Nouri-Baygi1, Jörg-Rüdiger Sack‡2, and

Hamid Zarrabi-Zadeh1

1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
2School of Computer Science, Carleton University, Ottawa, ON, Canada.

September 8, 2013

Abstract

We study a new class of visibility problems based on the notion of α-visibility. Given an
angle α and a collection of line segments S in the plane, a segment t is said to be α-visible from
a point p, if there exists an empty triangle with one vertex at p and the side opposite to p on t
such that the angle at p is α. In this model of visibility, we study the classical variants of point
visibility, weak and complete segment visibility, and the construction of the visibility graph. We
also investigate the natural query versions of these problems, when α is either fixed or specified
at query time.

1 Introduction

The study of visibility is at least 100 years old, when in 1913 Brunn [6] proved a theorem about
the kernel of a set. By now, visibility has become one of the most studied notions in computational
geometry. The reasons are two-fold: 1) such problems arise naturally in areas where computa-
tional geometry tools and algorithms find applications including: computer graphics, robotics,
motion planning, geographic information systems, computer games, computer-aided architecture,
and pattern recognition; and where 2) their solutions are required, or serve as building blocks in
the development of solutions to other problems, such as shortest paths or motion planning prob-
lems. Many natural problem instances arise and have been extensively studied in two and higher
dimensions. The reader is referred to the survey article by Asano et al. [4] and the book by Ghosh
[13] for more details. We review some of that body of work, as relevant to this paper.

Previous Work. Given a polygonal scene S, the visibility polygon of a point p, denoted by
VP(p), is the set of all points inside the scene that are visible from p. When the scene is a simple
polygon or a polygonal domain, several algorithms exist to compute the visibility polygon of a point
with/without preprocessing. Previous results for point-visibility inside a scene are summarized in
Table 1.

∗Preliminary version of this paper was presented at the 13th Scandinavian Symposium on Algorithm Theory,
Lecture Notes in Computer Science 7357: 1–12, 2012.

†Research supported by NSERC.
‡Research supported by NSERC, SUN Microsystems and HPCVL.

1



Scene Prep. Time Space Query Time Ref.

polygon — O(n) O(n) [4],[11],[21]

polygon O(n3 log n) O(n3) O(log n + mp) [5]

polygon O(n3) O(n3) O(log n + mp) [15]

polygon O(n2 log n) O(n2) O(log2 n + mp) [1]

polygonal domain — O(n) O(n log n) [2],[28]

polygonal domain — O(n) O(n + h log h) [17]

polygonal domain O(n2) O(n2) O(n) [3]

polygonal domain O(n2 log n) O(n2) O(mp log(n/mp)) [29]

polygonal domain O(n3 log n) O(n3) O(min {h, mp} log n + mp) [30]

polygonal domain O(s log(
√

s/n)) O(s) O(n2 log(
√

s/n)/
√

s + mp) [25]

polygonal domain O(n2 log n) O(n2) O(min {h, mp} log2 n + h + mp) [19]

polygonal domain O(T + |E| + n log n) O(min(|E|, hn) + n) O(mp log n + h) [19]

convex polygons O(n log n + |E|) O(|E|) O(mp log n) [27]

Table 1: Summary of previous work on point-visibility. Here, n is the total complexity of the scene,
h is the number of holes, s is a parameter satisfying n2 6 s 6 n4, T is the time for triangulating
the scene, mp is the complexity of VP(p) for a query point p, and |E| is the number of edges in the
visibility graph of the scene.

Given a segment s, the weak visibility polygon VP(s) of s is the set of points in the scene that are
visible from at least one point on s. Guibas et al. [16] showed how to compute the weak visibility
polygon of a segment inside a simple polygon in O(n) time. Suri and O’Rourke [28] established
that the weak visibility polygon of a segment inside a polygon with holes has size Θ(n4) in the
worst case, but can be represented by a set of O(n2) triangles. They also gave an algorithm for
computing the weak visibility polygon of a segment inside a polygon with holes which runs in O(n4)
time.

The visibility graph of a polygon is the undirected graph of the visibility relation on the vertices
of the polygon. The visibility graph construction is motivated, e.g., by Lozano-Perez’s algorithm for
finding a shortest path between two points which avoids all polygonal obstacles. Optimal algorithms
for computing visibility graphs exist. Hershberger [18] showed how to construct the visibility graph
in a simple polygon in O(|E|) time. Whereas, Ghosh and Mount [12] established its construction
in O(n log n + |E|) time for a polygon with holes. Here, |E| is the number of edges in the resulting
visibility graph.

The weak visibility graph of a set of segments is defined as the graph, with a node for each
segment and an edge between any pair of weak visible segments, that have at least two mutual
visible points. Ghosh and Mount [12] and Keil et al. [20] computed the weak visibility graph in
O(n log n + |E|) time. Nouri-Baygi et al. [26] demonstrated how to detect the visibility between
two query segments in O(n1+ε) time, using O(n2) space and O(n2+ε) preprocessing time, for any
fixed positive ε. Gudmundsson and Morin [14] obtained a result for testing weak visibility between
a query point and a segment. They give a data structure of size O(k) that can test if a query point
is visible from a segment s, known in advance, in O(nεms/

√
k) time. In the above bounds, ms is

the number of edges of the extended visibility graph of the scene incident on s, k is a parameter
satisfying ms 6 k 6 m2

s, and ε is any fixed positive number.
The extended visibility graph of a scene S, denoted by EVG(S), is obtained by adding some

edges and vertices to the visibility graph as follows: For each vertex v and each edge uv in the
visibility graph, extend the segment uv in the direction −→uv until it intersects an element of S at

2



some point w, and add w as a vertex and vw as an edge to EVG(S).

New model. In this paper, we study a new class of visibility problems based on the notion of
α-visibility defined as follows. Let S be a set of n line segments in the plane, which are non-
intersecting except possibly at their end-points. (Since each polygonal scene is composed of a set
of segments, S can model polygonal scenes as well.) Let α be a positive real number.

t

p

α

t

s

α

t

s

≥ α

≥ α

≥ α

(a) (b) (c)

Figure 1: (a) Segment t is α-visible from p. (b) Segment t is weakly α-visible from segment s. (c)
Segment t is completely α-visible from segment s.

• Point-visibility. A segment t ∈ S is said to be α-visible from a point p, if p can see t with
an angle at least α; that is, if there exists an empty triangle with one vertex at p and side
opposite to p on t such that the angle at p equals α (see Fig. 1a).

• Segment-visibility. A segment t is said to be weakly α-visible from a segment s, if there is
a point on s from which t is α-visible (see Fig. 1b). A segment t is said to be completely

α-visible from s, if for all points on s, t is α-visible (see Fig. 1c).

• Visibility graph. We define the weak (respectively complete) α-visibility graph of S as a
directed graph Gα whose vertices are the segments of S, and for any two segments s, t ∈ S,
there is a directed edge from s to t if t is weakly (respectively, completely) α-visible from s.

The notion of α-visibility appears to be natural. For example, the smallest angle we can observe
directly is determined by the ratio of the wavelength of light to the diameter of the eye’s pupil,
which is lower bounded by a constant (10−4 radians). So, we can see a hair held at about arm’s
length, but would not be able to see it at double that distance. As such, objects that are too
small, or too far, are not visible to human eyes. All optical/digital imaging devices have similar
limitations, quantified by their resolutions. Our α-visibility model is not meant to model the eye or
these devices accurately, but is inspired by these limitations and may provide a realistic alternative
to the classical visibility models studied in the Computational Geometry literature. The value α
could be also employed to approximate the inaccuracy of a device used to provide visibility-related
measurements. E.g., laser rangefinders do not return any data when they are too far off in angle
from the surface normal. For robot motion planning, De Berg et al. [9] and Cheong and van
Oostrum [8] considered a model of uncertainty in which the direction of movement for the robot is
confined to a cone with angle α centered around the specified direction.

In general, there is a wealth of literature on approximation algorithms for several geometric
shortest path problems, and there is a very close connection between visibility and shortest path
problems, but still there are essentially no results on the notion of approximate visibility. This paper
lays a foundation in that respect, and will likely inspire further study of the notion of approximate
visibility.

3



Our results. In this paper, we present some of the first results for several variants of the
point/segment visibility problems in the α-visibility model. The main idea that we use is to round
the set of all possible visibility directions into O(1/α) directions, and then use a combination of
geometric tools, such as trapezoidal diagrams, shortest path maps, ray shooting, range searching,
etc., to solve the visibility problem in each rounded direction. A summary of the results obtained
in this paper is provided below. In the following, S denotes the set of input segments in the plane.

• We present efficient data structures that enable answering queries of the form “Is segment
t ∈ S α-visible from a query point p in the plane?”. When α is fixed, we preprocess S in
O(n log n) time into a data structure of size O(n) that answers aforementioned point-visibility
queries in O(log n) time1. We also provide data structures for answering point-visibility
queries when α is specified at query time.

• We show that the size of the (weak and complete) α-visibility graph of S is linear in n, and
that, the weak/complete visibility graph can be computed in O(n log n) time. As a byproduct,
we can answer queries of the form “Is t ∈ S weakly/completely α-visible from s ∈ S?” in
O(1) time, after O(n log n) preprocessing time.

• We show how to preprocess S in O(n log n) time into a data structures of size O(n) such that
queries of the form “Is segment t ∈ S weakly α-visible from a query segment s in the plane?”
can be answered in O(log n) time.

Note that one of the key differences between standard visibility (i.e., when α = 0) and α-
visibility lies in the size of the weak/complete visibility graph of the line segments in the plane.
While the former has quadratic size, the latter is linear in size, which makes it appealing both
theoretically and from an applied perspective when dealing with large data sets. Furthermore,
unlike standard visibility, α-visibility is not symmetric, so the weak/complete α-visibility graph of
a set of line segments is directed.

1.1 Paper Organization

The rest of the paper is organized as follows. In Section 2, we give brief explanations about required
data structures and algorithms. In Section 3, α-visibility from a point is considered and two query
problems are investigated. The weak and complete α-visibility from a segment are studied in
Section 4 and 5, respectively. In Section 6, we show that our results about weak and complete
α-visibility from a segment do not extend to 3D.

2 Preliminaries

In the section, we briefly introduce some of the geometric tools that will be used throughout the
paper.

1The running times and space bounds of the data structures presented in this paper involve a factor 1/α, which
is omitted when α is assumed to be a fixed constant.

4



Multi-Level Range Searching. A range searching problem in the plane has the following form:
Given a set of n points, build a data structure that, for any query triangle R, reports (or counts
the number of) points lying in R quickly. In this paper, we will use a nested range searching data
structure to solve more complex problems. We employ the most recent result on multi-level range
searching due to Chan [7]:

Theorem 1 (Chan [7]). Given n points in R
d, we can form O(n) canonical subsets of total size

O(n log n) in O(n log n) time, such that the subset of all points inside any query simplex can be

reported as a union of disjoint canonical subsets Ci with
∑

i |Ci|1−1/d 6 O(n1−1/d log n) in time

O(n1−1/d log n) w.h.p.

Here, w.h.p. means with probability at least 1− 1/nc0 for an arbitrarily large constant c0. The
above theorem can be applied repeatedly to solve other complex problems, while the complexities
of preprocessing/query time and space increase by only a logarithmic factor per level.

Ray Shooting among Segments. A typical ray shooting problem in the plane has the following
form: Given a set of n segments in the plane, build a data structure that, for any query ray r,
reports the first segment intersected by r quickly. Chan [7] used his multi-level range searching
data structure to obtain the following result:

Theorem 2 (Chan [7]). Given a set of n line segments in the plane, there is a data structure

requiring O(n log3 n) preprocessing time and O(n log2 n) space, such that one can find the first

point of intersection between a query ray and the set in O(
√

n log2 n) expected time.

Simplified Trapezoidal Diagram. Given a set S of segments in the plane and a direction d,
we define a subdivision of the plane such that, each region in the subdivision is the maximal region
with the property that all points in that region see the same segment in direction d. We can
construct this subdivision by drawing a line in the reverse direction of d, from each end-point of all
segments of S, until it meets another segment. We call this subdivision, the simplified trapezoidal

diagram of S in direction d, and denote it by Td(S) (see Fig. 2b).

Theorem 3. Given a set S of n segments in the plane and a direction d, we can construct the

simplified trapezoidal diagram Td(S) by a plane-sweep in direction prependecular to d in O(n log n)
time and O(n) space.

Shortest Path Maps. For a point s in a simple polygon P , the shortest path map, SPM(s), is
a partition of P into cells such that for all points t in a cell, the sequence of vertices of P along the
shortest path from s to t is fixed. It is well-known that the complexity of SPM(s) is O(n) and it
can be built in O(n) time [16], where n is the number of vertices in P . If we preprocess SPM(s) for
point location, for a query point p we can find in O(log n) time, the last vertex of P in the shortest
path from s to p, which can be thought of as the root associated to the cell containing p.

Ray Shooting in Splinegons. Splinegons (or informally curved polygons) are defined as gen-
eralizations of polygons [10]. A splinegon S is formed from a polygon P by replacing one or more
edges of P with curved edges such that the region bounded by each curved edge and the segment
joining its end-points is convex.

5



p

α

r

t

s1 = t

s2

s3

d

s4

s5

s6

c

p

Figure 2: (a) Segment t is α-visible from p, and r intersects t. (b) A trapezoidation of a set of
segments in direction d.

Theorem 4 (Melissaratos and Souvaine [23]). Given a simple splinegon S with n edges, there is

a data structure requiring O(n) preprocessing time and O(n) space, such that, for any query point

p and a ray ~r emanating from p, the first intersection of ~r with the splinegon can be reported in

O(log n) time.

3 Point Visibility

3.1 Visibility testing for fixed α

Let α > 0 be a fixed constant. In this section, we show how to build a data structure that efficiently
determines, for a query point p in the plane and a query segment t ∈ S, whether or not t is α-visible
from p.

Theorem 5. We can preprocess S into a data structure of size O(n) in O(n log n) time, such that

α-visibility testing can be carried out in O(log n) time.

Proof. Assume that we have a set of d2π
α e rays emanating from p, as in Fig. 2a, so that the angle

between any two consecutive rays is α (except possibly between a pair, where it is 6 α). Let D
denote the set of directions of these rays. If t is visible from p with an angle at least α, t must
intersect one of the rays drawn from p as in Fig. 2a. Let r be a ray that intersects t and let d be
the direction of r. Consider the trapezoidal diagram of S in direction d, as in Fig. 2b. Observe
that p lies inside the trapezoid that sees t in direction d. Therefore, if t is α-visible from p, p must
be inside a trapezoid that sees t, in the trapezoidal diagram drawn for S, based on directions in D.

It remains only to be checked whether p sees t with an angle of at least α. Consider the simplified
trapezoidal diagram Td(S) in direction d. Note that p is inside a region c, whose visible segment
in direction d is t (see Fig. 2b)2. For a point p in c, the shortest paths from p to the end-points
of t, inside c, consist of two convex chains. The maximum visible part of t from p, including the
intersection point of r with t, is determined by extending the first edge of each of the shortest
paths. Therefore, to compute the maximum visible part of t from p, it is sufficient to find the first
turning points on the shortest paths from p to the end-points of t, in c.

The complexity of the trapezoidal map in direction d is O(n) and can be computed in O(n log n)
time. We can use the trapezoidal map to locate the trapezoid containing p and find the visible

2Note that the region c is essentially a simple polygon.

6



segment in direction d. The shortest path map of the end-points of each segment t, in the corre-
sponding cell c, has complexity proportional to the size of c. Since, the sum of the complexities of
cells in the simplified trapezoidal map is O(n), all shortest path maps can be computed in O(n log n)
time using O(n) space. We repeat this construction for all directions of D. To answer a query,
for each direction d, we locate the trapezoid in which p lies, in the trapezoidal map of S. This
can be done in O(log n) time. The trapezoid gives us a segment that is visible in direction d. If
the segment is not t we proceed to the next direction. Otherwise, based on the shortest path map
associated to the cell of the simplified trapezoidal map, we can find the maximum portion of t that
is visible from p, and check if that portion forms an angle of at least α with t. If so, we report
“yes”, otherwise we check the next direction. We can locate the first turning point in the shortest
path from p to each end-point of t in O(log n) time, by finding in which region of the shortest path
map of that point, p lies. Since the number of directions is O(1/α) (a constant), the total query
time is O(log n).

Corollary 1. We can preprocess S into a data structure of size O(n) in O(n log n) time, and

report all α-visible segments from a query point p in O(log n) time. Furthermore, the number of

such α-visible segments from any point p is a constant.

Proof. For each direction d, we find the trapezoid in Td(S) that contains p. In that trapezoid, we
know the segment s ∈ S that is visible in direction d. Using the shortest path maps related to the
region containing p in Td(S), we check if s is visible with an angle at least α. If so, s is a segment
in the answer. Because there are O(1/α) directions, the number of reported segments is O(1/α),
which is a constant. Detecting α-visible segment in direction d takes O(log n) time, therefore the
total time is O(log n).

3.2 Visibility testing for non-fixed α

Here, our objective is to build a data structure, such that given a query point p, and a query
segment t ∈ S and an angle α > 0, we can determine if t is α-visible from p.

Theorem 6. We can preprocess S, in O(n log3 n) time, into a data structure of size O(n log2 n),
such that we are able to detect α-visibility of query segment t ∈ S from a query point p in

O(
√

n log2 n) expected time.

Proof. Assume that we have a set of d2π
α e rays emanating from p, so that the angle between any

two consecutive rays is at most α (Fig. 2a). If t is α-visible from p, then it is visible from p along
at least one of these rays. Let r be such a ray. To check if the visible part around the intersection
point of r with t constitutes an angle > α, we need to find the maximum visible part of t from
p around that intersection point. If the visible part forms an angle > α, we answer the visibility
query affirmatively. Therefore, we need to solve the following two sub-problems: i) What is visible
from p along r? ii) If we rotate r around p, when does the visibility from p along r change?

Problem (i) is ray shooting among segments, which has already been discussed in Theorem 2.
To solve problem (ii), we use range searching data structure in Theorem 1 in the following way:
Preprocess the end-points of segments in S, for two level half-plane range searching. The second
level of the data structure will have a set of canonical subsets and for each canonical subset, we
compute the convex hull of its points. The space usage of the data structure is O(n log n) and it
requires O(n log3 n) time to compute all the convex hulls.

7



p

t

r

Figure 3: Finding the first point intersected by r while rotating counterclockwise.

Without loss of generality, assume that we want to find the first visibility change from p when
r rotates counterclockwise. At query time, for the range searching data structure, we use the
half-plane produced by the supporting line of t containing p for the first level, and the half-plane
produced by the supporting line of r, which is traversed when r rotates counterclockwise 180◦ for
the second (see Fig. 3). The result has O(

√
n log n) canonical sets, and for each canonical set we

have pre-computed the convex hull of its points. Hence, for each canonical set, using the convex
hull, we can find the first point visited from that set, while we rotate r counterclockwise around p.
The final result is the point that is visited first among all such points. Therefore, it can be found
in O(

√
n log2 n) expected time. The total complexity is now derived from the complexities of the

two sub-problems.

Remark: Using techniques introduced by [22], one can achieve a space/query-time tradeoff for
the problem. Using O(m) space, for any n log2 n 6 m 6 n2, one obtains a query time of
O((n/

√
m) polylog m).

4 Segment Visibility

In this section, we turn our attention to problems related to segment visibility. We first study the
weak α-visibility graph, Gα, for S defined as follows. Each segment of S is associated to a unique
vertex in Gα. Furthermore, for any two segments s, t ∈ S, if t is weakly α-visible from s, then there
is a directed edge in Gα from the vertex corresponding to s to the vertex corresponding to t.

Lemma 1. The weak α-visibility graph Gα of S has linear size.

Proof. Fix a set of O(1/α) directions, D, such that the angle between any two adjacent directions
is at most α. Assume that t ∈ S is weakly α-visible from s ∈ S. Then, there is a point p ∈ s
that sees t with an angle at least α. Observe that there exists a direction d ∈ D that is inside the
angle of view from p. Let r be the segment connecting p to t in direction d. Clearly, r does not
intersect any other segment of S. Now slide r in the direction perpendicular to d, while maintaining
contact between s and t, until r meets an end-point of a segment in S. Two cases may arise: i) r
reaches an end-point of s or t, or ii) r reaches an end-point of a segment other than s and t. In
the first case, an end-point of s sees t in direction d, or an end-point of t sees s in the opposite
direction of d. In the second case, there exists a segment in S such that one of its end points sees t
in direction d. Therefore, each of the segment-to-segment weak α-visibility case can be mapped to
a point-to-segment α-visibility case. The segments connected by a segment r do not change before
reaching an end-point. We can associate r as well as the pair of segments by knowing each point-
to-segment α-visibility, the mapped point-to-segment α-visibility is therefore unique. The number

8



s1 = t

s2

s3

d

s4

s5

s = s6

c shortest path map edges

e

p1

p2

Figure 4: Segment s is partitioned into sub-segments.

of end-points of segments in S is O(n) and number of directions is a constant. Therefore, the total
number of point-to-segment α-visibility pairs, and consequently, the total number of segment pairs
(s, t), such that t is weakly α-visible from s, is O(n).

Theorem 7. We can preprocess S into a data structure of size O(n) in O(n log n) time, so that

weak α-visibility testing for two query segments s, t ∈ S can be carried out in O(1) time.

Proof. We start by computing Gα. Recall the set-up in the proof of Lemma 1. Assume that t ∈ S
is weakly α-visible from a point p on segment s ∈ S. Let d be the direction in D, that is inside
the angle of view of p and r be the segment connecting p to t in direction d. Now slide r without
changing its direction until it meets an end-point of a segment. The region in which r freely slides
without intersecting any other segment and without changing its direction, specifies a strip w. This
strip has the following property: Every point on s, on one side of w, sees a point on t, on the
opposite side of w, in direction d. Observe that w is a trapezoid in the trapezoidal map of S, in
direction d. We denote the nodes associated with s and t in the weak α-visibility graph as s∗ and
t∗, respectively. Therefore, the first condition that must be met for an edge from s∗ to t∗ is that s
and t are two facing (i.e., opposite) edges of a trapezoid in one of the trapezoidal maps constructed
for the different directions in D.

This condition is necessary, but not sufficient. To check whether t is actually weakly α-visible
from s, we need to find a point on s that can see t with an angle at least α. If we find the point
with the greatest view angle, and compare that angle with α, we can determine the α-visibility of
t from s. We first partition s into sub-segments in which the boundary of the view angle passes
through a unique pair of points. Then, for each sub-segment, we find the point with the greatest
view angle which is one of these points.

Let c denote the region associated with t in Td. Let SPM(t0) and SPM(t1) denote the shortest
path maps of the end-points of t in c. For each point p on s, the first turning points on the shortest
paths to the end-points of t in c, form the view angle of p. We can partition s into sub-segments,
such that for each sub-segment, the shortest paths to the end-points of t have the same set of
turning points (i.e., combinatorially these shortest paths are identical). This is achieved by finding
the intersection points of s with SPM(t0) and SPM(t1). The intersection points partition s into
sub-segments. Let e be such a sub-segment on s (see Fig. 4). We want to locate the point on e
that has the greatest view angle to t. Let p1 and p2 denote the first turning points in the shortest
paths from any point on e to the end-points of t. The largest angle of view from each point on

9



s1 = t

s2

s3

> α

d

Figure 5: The α-visibility region in direction d for t ∈ S is shaded.

e towards t is determined by p1 and p2. Now, the problem reduces to finding a point on e with
the maximum view through p1 and p2. This point will be on the intersection of the smallest circle
through p1 and p2 that intersects e. Therefore, if the circle through p1 and p2 which is tangent to
the supporting line of e, is incident on the segment e itself, then that supporting point on e has the
largest view. Otherwise, it is the end-point of e that is closest to the supporting point. If the view
angle is no less than α, then add the edge from s∗ to t∗ in Gα. The above procedure is repeated
for each sub-segment of s.

The total number of edges of all shortest path maps is O(n). Each edge of each shortest path
map in a cell c, intersects exactly one segment of S, except if it intersects a boundary segment of
c parallel to d, in which case the edge does not intersect any segment of S. Therefore the number
of intersection points between the edges and segments of S, and the number of sub-segments are
O(n). For each sub-segment, the first turning points in the shortest paths to the end-points of
the visible segment are unique, which can be found in O(log n) time. Once we have the turning
points, we can locate the point with the greatest angle of view in O(1) time. Therefore, Gα can be
computed in O(n log n) time.

For each direction d ∈ D, let Gd = (V,Ed) be the subgraph of Gα with only edges (s∗, t∗) ∈ E
such that s and t are two facing edges in Td. Obviously Gd is planar, so we can store it using O(n)
space and check whether a pair of vertices are connected by an edge in constant time [24]. In order
to check if t is weakly α-visible from s, we need to determine the existence of edge (s∗, t∗) in Gd

for each d ∈ D. This requires O(1/α) time, which is a constant.

4.1 One arbitrary query segment

Next, our objective is to build a data structure, such that given two query segments s 6∈ S and
t ∈ S, we can determine if t is weakly α-visible from s. As part of the preprocessing, for each
segment t ∈ S, we compute the set of all points in the plane from which t is α-visible. If t is weakly
α-visible from s, then s must have a point in this set. First, we define the α-visibility region in

direction d for t, as the region containing the points from which t is α-visible and d is inside the
angle of view. Fig. 5 shows the α-visibility region in the vertical downward direction for t ∈ S.

Lemma 2. For any direction d and segment t ∈ S, the boundary of the α-visibility region, say rt,

in direction d for t consists of two monotone curves with respect to the direction perpendicular to

d.

Proof. First notice that, because all points in rt see t in direction d, rt is a subset of the region
associated to t in Td. Now assume rt does not consist of two monotone curves in the direction
perpendicular to d (see Fig. 6). Then, there is a line with direction d intersecting the boundary of

10



s1 = t

d

p1 p2

p

q

Figure 6: Points p and q are on a line in direction d. While p is in the α-visibility region in direction
d for segment t, q is outside the region.

s1 = t

s2d

p1 p2

pq

s3

t0 t1

e

r

Figure 7: Points p and q are two points on e. While p is in the α-visibility region in direction d for
segment t, q is outside the region.

rt at three or more points. On this line, we can choose two points p and q, p ∈ rt and q 6∈ rt, while
the vector −→pq points towards t. The angle of view at p, β, is at least α, and −→pq is inside that angle.
Let p1 and p2 be the two extreme points on t that are visible from p through β. It is easy to see
that the angle ∠p1qp2 > α and it does not intersect any segment in S other than t. Therefore, q
can also see t with an angle at least α. This contradicts our assumption that q 6∈ r. This proves
that rt consists of two monotone curves in the direction perpendicular to d.

Using the proof of the above lemma, the following corollary is derived.

Corollary 2. The α-visibility region for any t ∈ S and for any direction d, does not contain a

hole.

Lemma 3. The total complexity of the α-visibility regions, in direction d, for all segments in S, is

linear.

Proof. Let c denote the cell in Td associated to t, and let rt denote the α-visibility region in direction
d for t. Obviously, rt ⊆ c. Construct the shortest path maps of the end-points of t inside c. Our
first claim is that the boundary of rt intersects any edge of the shortest path map at most once. By
contradiction, as shown in Fig. 7, assume that for an end-point of t, say t0, there is an edge e in the
shortest path map of t0, such that the boundary of rt intersects e at least twice. We can choose two
points p and q on e, such that p ∈ rt and q 6∈ rt and −→pq points towards t. Let p1 and p2 be the two
extreme points on t visible from p through its angle of view. Let p1 be closer to t0 than p2. Because
p and q are on an edge of the shortest path map of t0, both are visible from p1. Moreover, p1 is
defined by the intersection of t and the supporting line of e. We know that ∠p1pp2 > α. Consider
∠p1qp2. Observe that this will be greater than ∠p1pp2 and is empty. Therefore, q can see t with

11



s1 = t

s2

s3

d

f

p1 p2

s4

s5

i1 i2

rt

Figure 8: Points i1 and i2 are two consecutive points which are the intersections of the α-visibility
region, in direction d for the segment t, with f .

an angle no less than α, and because q ∈ c, it is also in rt, which contradicts the assumption that
q 6∈ rt. Therefore, the boundary of rt intersects each edge of the shortest path map at most once.

Consider the example depicted in Fig. 8. Let i1 and i2 be two consecutive intersection points
of the boundary of rt with the two shortest path maps of the end-points of t. Then, i1 and i2 are
two points on the boundary of a cell, f , in the overlay of the two shortest path maps. Our second
claim is that between i1 and i2, the boundary of rt has complexity O(|f |). The reason is that for
all points in f , the combinatorial shortest path towards each end-point of t is unique. Therefore,
for all points on the boundary of rt, between i1 and i2, the largest view to t is determined by
two fixed points, say p1 and p2. The set of all points which can see t through p1 and p2, with
an angle > α, are inside, or on the boundary of, the circle through p1, p2 having inscribed angle
α lying on p1p2 clipped with the segment p1p2. Hence, the boundary of rt between i1 and i2 is
the intersection of that circle and f . This intersection has complexity at most 2 ∗ |f |, because any
edge in f can be intersected by the circle at most twice. Thus, the boundary of rt between two
consecutive intersections with shortest path maps has complexity proportional to the size of f .

The complexity of rt is equal to the number of intersections of its boundary with the shortest
path maps and segments of S. Thus, the size of rt is O(|c|). Since, the total complexity of the
cells in Td is linear, the total complexity of the α-visibility regions in direction d, for all segments,
is O(n).

Lemma 4. The α-visibility region in direction d, for all segments in S, can be computed in

O(n log n) time using O(n) space.

Proof. We first compute Td for S. For each segment t ∈ S, with t0 and t1 as end-points, we
construct the two shortest path maps from t0 and t1 in the cell c associated to t in Td. Let SPM(t0)
and SPM(t1) denote the shortest path maps of t0 and t1, respectively, and O denote the subdivision
produced by the overlay of the two shortest path maps in c.

Let rt denote the α-visibility region in direction d for t. The lower boundary of rt is t. Since
the upper boundary of rt is monotone in the direction perpendicular to d, any line parallel to d
intersects it at exactly one point. We compute the upper boundary of rt incrementally, by sweeping
a line l parallel to d from t0 to t1. The event points are the intersection points of rt with the edges
of O. By definition, the end-points of t are in rt.

Let q denote the current point in the process, i.e. the intersection point of l with the upper
boundary of rt. Let p1 and p2 denote the first turning points of the shortest paths from q to t0 and
t1, respectively. Initially, q is at t0 and p1 and p2 are at t0 and t1, respectively.

Assume that we have constructed the upper boundary of rt from t0 to q. Assume further that
rt is entering the cell f in O, and q is on the boundary of f . The largest view angle of all points

12



t

d

f

p1

p2

l

q

C

rt

t0 t1

c
t

d

f

p1
p2

l

q C

rt

t0 t1

c

(a) (b)

Figure 9: (a) Processing the event point q, while q is inside c. (b) Processing the event point q,
while q is on the boundary of c.

in f to t are through p1 and p2. Let C denote the circle with inscribed angle α through p1 and
p2. The set of points that can see t with angle at least α with view angle through p1 and p2 lies
inside or on the boundary of C and above chord p1p2. We consider two cases: q is inside c or on
the boundary of c. If q is not on the boundary of c (see Fig. 9a), because it is on the boundary of
rt, it sees t with view angle exactly equal to α. Therefore, q is on the boundary of C. In this case,
the boundary of C enters f and is the boundary of rt, and we set the first intersection point of C
with the boundary of f as the next event point. In the other case, if q is on the boundary of c (see
Fig. 9b), q is inside C and the boundary of c is the boundary of rt, and we set the first intersection
point of the boundary of c with f and C as the next event point. In either case, we add the edge
connecting q to the next event point (an arc in the first case or a line segment in the latter case)
to the list of edges of rt.

Td can be computed in O(n log n) time. SPM(t0) and SPM(t1) can be computed in O(|c|)
time. We need not compute O, because we only need the cells in O that are intersected by the
boundary of rt, which can be computed while we construct rt. Computing the first intersection
point of C with f takes O(|f |) time. This yields a total time of O(|c|) for all circles, because each
edge of SPM(t0) and SPM(t1) is intersected by the boundary of rt at most once. Computing the
intersection points of each circle with c can also be done in O(|c|) total time, as well. Therefore,
given Td, the α-visibility region in direction d for a segment can be computed in O(|c|) time and
for all segments can be computed in O(n) time using O(n) space.

Theorem 8. We can preprocess S into a data structure of size O(n) in O(n log n) time, such that

weak α-visibility between two query segments s /∈ S, t ∈ S, can be tested in O(log n) time.

Proof. As before, we first fix a set D of O(1/α) directions with the property that the angle between
any two adjacent directions is at most α. If t is weakly α-visible from s, we know that there is a
direction d in D, and a point q on s from which t is α-visible. Furthermore, q can see t in direction
d inside its angle of view. It is easy to see that q is in the α-visibility region in direction d for t. So,
the problem reduces to that of checking the intersection of s with each of the α-visibility regions
computed for t, with respect to all directions in D.

We compute the α-visibility regions in all directions d ∈ D for all segments t ∈ S and preprocess
each region for ray shooting queries. An α-visibility region is a bounded region without any hole,
and its boundary consists of straight line segments and circular arcs. Therefore, it is a splinegon
and we can use Theorem 4 for ray shooting queries. Given two query segments s 6∈ S and t ∈ S,
we first find rt (the α-visibility region in direction d for t). We need to know if s has any point in

13



rt. Let s0 and s1 be the end-points of s. We first check whether s0 ∈ rt. Because the ray shooting
algorithm by Melissaratos and Souvaine [23] has point location as a basis, we use it and determine
if s0 ∈ rt. If this is the case, t is α-visible from s0 and weakly α-visible from s. If s0 6∈ rt, we
perform ray shooting on rt (the splinegon) to find the first intersection point of the ray originating
from s0 in the direction towards s1. If the intersection point is on s itself, we know that s intersects
rt and therefore t is weakly α-visible from s, otherwise it is not.

Computing the α-visibility regions for S takes O(n log n) time and O(n) space. Preprocessing
the α-visibility regions for ray shooting queries takes the same time and space. Point location and
ray shooting queries can be performed in O(log n) time. This proves the bound claimed in the
theorem.

5 Complete α-Visibility

In this section, we show how to build a data structure such that given two query segments s, t ∈ S,
one can efficiently determine if t is completely α-visible from s. A segment t is completely α-visible

from another segment s if and only if t is α-visible from all points on s. Note that the complete
α-visibility graph is a subgraph of the weak α-visibility graph, and hence its size is also linear. To
compute the complete α-visibility graph, we can design a scheme similar to that of Theorem 7.
Recall that in Theorem 7, we partitioned each segment s into sub-segments in which the boundary
of the view angles passes through a unique pair of points. In order to make sure t is completely
α-visible from s, for each sub-segment, we identify the part from which t is completely α-visible. If
the union of all parts (for all directions) is equal to s, we add an edge from s to t in the complete
α-visibility graph.

In the following theorem, we describe another approach using α-visibility regions to compute
the complete α-visibility graph.

Theorem 9. In O(n log n) time, we can preprocess S into a data structure of size O(n), such that

we can answer complete α-visibility queries in O(1) time.

Proof. We first fix a set, D, containing the O(1/α) directions. For each d ∈ D, we compute the
α-visibility regions of all segments of S via Lemma 4. The boundary of the α-visibility region, rt,
of a segment t ∈ S consists of a set of arcs and segments. The segments on the boundary of rt are
segments of S or parts thereof, blocking the view of the points behind them. Segment t is α-visible
from these portions of segments in S . Therefore, if t is completely α-visible from a segment s, the
union of the parts of s that appeared in the α-visibility regions of t in all directions, is the entire
segment s.

Let d ∈ D be a direction. For each segment t ∈ S, we traverse all segments e ∈ rt, and add
e to the ordered set Is,d of intervals of the corresponding segment s. The ordered set Is,d stores
intervals of s from which t is α-visible and their view angles contain d. After scanning the α-
visibility regions of all segments in all directions, we have O(1/α) ordered sets of intervals for each
segment s ∈ S, such that each point in these sets sees t with angle of view > α. If t is completely
α-visible from s, then the union of all these intervals is s. The union of these intervals can be
computed in O(k log(1/α)) time, where k is the total number of sub-segments of s that are used
in the α-visibility regions. In the worst case, k could be O(n). If the union of these sub-segments
is s, we add an edge to the complete α-visibility graph of S from the vertex corresponding to s
to the vertex corresponding to t. The total preprocessing time is O(n/α log(1/α)). To answer the

14



Figure 10: An arrangement of segments in 3D, whose weak α-visibility graph has Ω(n2) edges.

query, we now employ Theorem 7 to decompose the graph into O(1/α) planar graphs. This yields
a query time of O(1/α), which is a constant.

5.1 One arbitrary query segment

Now, we wish to build a data structure, so that for any two query segments s 6∈ S and t ∈ S, we
can determine if t is completely α-visible from s. To answer such queries, we use the α-visibility
regions. If t is completely α-visible from s, then the union of the intersections of s with the
α-visibility regions of t in all directions is equal to the segment s.

Theorem 10. We can preprocess S into a data structure of size O(n) in O(n log n) time, such

that given two query segments s /∈ S, t ∈ S, their complete α-visibility can be tested in O(n) time.

Proof. In the preprocessing phase, we fix a set of O(1/α) directions D and for each direction d ∈ D,
based on Lemma 4, we compute the α-visibility regions of all segments t ∈ S. At query time, given
a query segment s, for each direction d ∈ D, we store intervals of s from which t is α-visible in Is,d.
Then, we compute the union of these intervals. If this union is equal to s, t is completely α-visible
from s, otherwise t is not completely α-visible from s.

The preprocessing phase can be carried out in O(n log n) time using O(n) space. In the prepro-
cessing we have O(1/α) ordered interval sets, whose union can be found in O(k log(1/α)), where k
is the total number of intervals. In the worst case, again k could be O(n).

6 α-Visibility in 3D

We construct an example to show that there exists a set of n-line segments S in 3-d Euclidean
space, so that the weak α-visibility graph of S has Ω(n2) edges. Consider two parallel planes,
each consisting of a set of n/2 parallel line segments (see Fig. 10). We can choose the distance
between the two parallel planes and α such that all segments on one plane are weakly α-visible to
the segments on the other plane. Therefore, Lemma 1 does not extend to three dimensions.

7 Conclusion

In this paper, we introduced a new model for approximating visibility between a point and a
segment, called α-visibility. In this model, we showed how to approximate weak and complete
visibility between segments and point-to-segment α-visibility. We proved that both the weak and

15



the complete α-visibility graph in a polygonal scene has linear complexity and can be computed
in O(n log n) time. This makes it appealing both from a theoretical as well as from an applied
perspective, particularly when dealing with large data sets. We then extended our results and
solved several query versions of weak and complete α-visibility problems. In particular, the data
structures described in Section 4 might be usable for solving other types of visibility problems.
Finally, we established that the results for 2D, do not extend to 3D.

The problem of determining wether t is weakly/completely α-visible from s, when both s, t do
not belong to S in O(log n) query time with O(n log n) preprocessing time is open. We currently
study generalizing segment α-visibility to α-visibility of objects. It may be interesting to explore
quantitative measures of α-visibility where, say segments, are not just α-visible, or not, but the
proportion of the α-visible part vs. the invisible one inside the triangle is determined. This may
create a bridge to Computer Graphics.

References

[1] B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang. Visibility queries and maintenance in
simple polygons. Discrete & Computational Geometry, 27(4):461–483, 2002.

[2] T. Asano. An efficient algorithm for finding the visibility polygon for a polygonal region with
holes. Transactions of IECE of Japan, E68(9):557–559, 1985.

[3] T. Asano, T. Asano, L. J. Guibas, J. Hershberger, and H. Imai. Visibility of disjoint polygons.
Algorithmica, 1(1):49–63, 1986.

[4] T. Asano, S.K. Ghosh, and T.C. Shermer. Visibility in the plane. In Handbook of Computa-

tional Geometry, pages 829–876. Elsevier Science Publishers B.V. North-Holland, Amsterdam,
1999.

[5] P. Bose, A. Lubiw, and J. I. Munro. Efficient visibility queries in simple polygons. Computa-

tional Geometry: Theory & Applications, 23(3):313–335, 2002.

[6] H Brunn. Über Kerneigebiete. Mathematische Annalen, 73:436–440, 1913.

[7] T. Chan. Optimal partition trees. Discrete & Computational Geometry, 47(4):661–690, 2012.

[8] Otfried Cheong and René van Oostrum. Reaching a polygon with directional uncertainty.
International Journal of Computational Geometry and Applications, 11(2):197–214, 2001.

[9] Mark de Berg, Leonidas J. Guibas, Dan Halperin, Mark H. Overmars, Otfried Schwarzkopf,
Micha Sharir, and Monique Teillaud. Reaching a goal with directional uncertainty. Theoretical

Computer Science, 140(2):301–317, 1995.

[10] David P. Dobkin and Diane L. Souvaine. Computational geometry in a curved world. Algo-

rithmica, 5(3):421–457, 1990.

[11] H. A. ElGindy and D. Avis. A linear algorithm for computing the visibility polygon from a
point. Journal of Algorithms, 2(2):186–197, 1981.

[12] S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibility graphs.
SIAM Journal on Computing, 20(5):888–910, 1991.

16



[13] S.K. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.

[14] J. Gudmundsson and P. Morin. Planar visibility: testing and counting. In Proceedings of the

26th annual Symposium on Computational Geometry, pages 77–86, 2010.

[15] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem. SIAM Journal

on Computing, 26(4):1120–1138, 1997.

[16] Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Tarjan. Linear-
time algorithms for visibility and shortest path problems inside triangulated simple polygons.
Algorithmica, 2:209–233, 1987.

[17] P. J. Heffernan and J. S. B. Mitchell. An optimal algorithm for computing visibility in the
plane. SIAM Journal on Computing, 24(1):184–201, 1995.

[18] J. Hershberger. Finding the visibility graph of a simple polygon in time proportional to its
size. In Proceedings of the third annual Symposium on Computational Geometry, pages 11–20,
1987.

[19] R. Inkulu and S. Kapoor. Visibility queries in a polygonal region. Computational Geometry:

Theory & Applications, 42(9):852–864, 2009.

[20] M. Keil, D. M. Mount, and S. K. Wismath. Visibility stabs and depth-first spiralling on
line segments in output sensitive time. International Journal of Computational Geometry &

Applications, 10(5):535–552, 2000.

[21] D. T. Lee. Visibility of a simple polygon. Computer Vision, Graphics, and Image Processing,
22(2):207–221, 1983.

[22] J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete & Computational

Geometry, 10:157–182, 1993.

[23] E. A. Melissaratos and D. L. Souvaine. Shortest paths help solve geometric optimization
problems in planar regions. SIAM Journal on Computing, 21(4):601–638, 1992.

[24] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and
static trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[25] Mostafa Nouri-Baygi and Mohammad Ghodsi. Space/query-time tradeoff for computing the
visibility polygon. Computational Geometry: Theory & Applications, 46(3):371–381, 2013.

[26] Mostafa Nouri-Baygi, Alireza Zarei, and Mohammad Ghodsi. Weak visibility of two objects in
planar polygonal scenes. In Proceedings of the 2007 International Conference on Computational

Science and its Applications, pages 68–81, 2007.

[27] M. Pocchiola and G. Vegter. The visibility complex. International Journal of Computational

Geometry & Applications, 6(3):279–308, 1996.

[28] S. Suri and J. O’Rourke. Worst-case optimal algorithms for constructing visibility polygons
with holes. In Proceedings of the second annual Symposium on Computational Geometry, pages
14–23, 1986.

17



[29] G. Vegter. The visibility diagram: a data structure for visibility problems and motion planning.
In Proceedings of the second Scandinavian Workshop on Algorithm Theory, pages 97–110, 1990.

[30] A. Zarei and M. Ghodsi. Query point visibility computation in polygons with holes. Compu-

tational Geometry: Theory & Applications, 39(2):78–90, 2008.

18


