
Probabilistic Model Checking: A Comparison of
GPMC versus PRISM

Mostafa Nouri Baygi1, Ali Movaghar Rahimabadi2

1 Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

nourybay@ce.sharif.edu

2 Department of Computer Engineering, Faculty of Computer Engineering,
Sharif University of Technology, Tehran, Iran

movaghar@ce.sharif.edu

Abstract
We introduce a new tool for probabilistic model checking, GPMC, with a graphical user interface, and compare
it with existing well-known tool in this scope PRISM. Some case studies are presented to show the efficiency and
performance of it against PRISM. Two of these case studies are collected from several examples that were used
for testing PRISM and another one is an extended simple example of a DTMC. We explain in each case study the
powers and weaknesses of these tools, and find new methods for solving weaknesses.

Keywords
Probabilistic Model Checking, Probabilistic Models, Markov Chains, PRISM, DTMC, CTMC.

1. Introduction
Model checking is the most successful approach that's
emerged for verifying requirements. A model-checking
tool accepts system requirements or design (called
models) and a property (called specification) that the final
system is expected to satisfy. The tool then outputs yes if
the given model satisfies given specifications and
generates a counterexample otherwise.

In this paper we give an overview of probabilistic
model checking, and two probabilistic model checkers,
PRISM and GPMC. The first one is implemented in
Birmingham University by Parker, Kwiatkowska and
Norman [6], and the latter is a new tool implemented in
Sharif University of Technology by Nouri under
supervision of Prof. Movaghar. Then we compare these
two tools with some simple case studies, and show the
strengths of the new tool and its weaknesses.

2. Probabilistic Model Checking
In this section we introduce two probabilistic models, all
variants of Markov chains. These two models are discrete
time Markov chains (which feature probabilistic choice
only), and continuous time Markov chains (which model
continuous time and probabilistic choices).

2.1. Discrete Time Markov Chains
A DTMC is a Markov chain that uses discrete time for
transitions. In a DTMC the frequency of a probabilistic
edge being taken is determined by the distribution. Note
that there is no notion of real time, though reasoning
about discrete time is possible through state variables
keeping track of time and ‘counting’ transition steps.

2.2. PCTL Logic
The logic PCTL (Probabilistic CTL) [4] replaces the
existential and universal quantification of CTL with the
probabilistic operator P (.)p∼ where [0,1]p  is a
probability bound or threshold, and { , , , }    ∼ .
The syntax of state formulas  of PCTL is:

P:: | | | | ()ptrue a       ∼
Where  is a path formula as:

:: | |kX      U U
A property of a model will always be expressed as a

state formula. Path formulas only occur as the parameter
of the probabilistic path operator P (.)p∼ . Intuitively, a
state s satisfies P (.)p∼ if the probability of taking a path
from s satisfying  is in the interval specified by p∼ .

2.3. Continuous Time Markov Chains
Discrete time Markov chains can model discrete time
only. Continuous time Markov chains have (finitely
many) states that are discrete, a time parameter that
ranges over 0¡ , but do not allow non-determinism.
Every transition is subject to an exponentially distributed
random delay, and a race condition is used to deal with
simultaneously enabled transitions.

2.4. CSL Logic
The logic CSL (Continuous Stochastic Logic) was
introduced in [2] and extended in [3]. It is similar to the
logic PCTL, but is designed to specify properties of
CTMCs. CSL provides a way to describe steady-state and

transient behaviors which are both elements of traditional
CTMC analysis. It also allows specification of more
involved properties using the probabilistic path operator
of PCTL. The syntax is:

P S:: | | | | () | ()p ptrue a        ∼ ∼
U U:: | |tX     

Where a is an atomic proposition, { , , , }    ∼ ,
[0,1]p  and 0t  ¡ .

As for PCTL, P ()p ∼ indicates that the probability of
the path formula being satisfied from a given state
satisfies the bound p∼ . Path formulas are the same for
CSL as for PCTL except that the parameter t of the
bounded until operator 1 2

t U is a non-negative real

rather than a non-negative integer. The S operator
describes the steady-state behavior of the CTMC. The
formula S ()p ∼ asserts that the steady-state probability
of being in a state satisfying  meets the bound p∼ .

3. Tools
In this section we give a short description of PRISM and
GPMC tools. These are two probabilistic model checkers
that are compared in this paper.

3.1. The PRISM Tool
PRISM [6] is a probabilistic symbolic model checker
implemented using the CUDD package [8] to obtain
BDD/MTBDD-based representation of probabilistic
models. PRISM directly supports the DTMC, MDP and
CTMC models and the specification languages PCTL and
CSL. PRISM is available for download from [7].

3.2. The GPMC Tool
GPMC is a fully object oriented program written in Java
for probabilistic model checking. It can model check
DTMC and CTMC models. GPMC has a Graphical User
Interface for inputting model. Users can draw the graph
of model and its parameters, input their specifications and
then verify model against these specification. GPMC
consists of two main parts, each for one type of model.
For graphical part of this tool we use JGraph [1] as a
library for creating graphs of models. GPMC uses a
graphical view of model, and is a new tool in the domain
of probabilistic model checkers.
In this tool we move our attention from memory
limitations and state space explosion and focus on
efficiency of our tool and its running time for model
checking. So in many situations its running time can be
compared with tools such as PRISM that are written in
low level languages.

GPMC, as stated, is fully object oriented. It is
important because using this tool for programmers is a
simple task. Although the graphical user interface is a
good way for inputting models, our goal was not to
implement only such a program. If we restricted our tool
to model graphical inputs, model checking would be

Fig. 1. View of GPMC while model checking a system.

simple, because only small models can be fed in this way,
and the verifications of small models are easy because
state space explosion and efficiency are not important in
these cases. Therefore we use graphical inputs as the first
way of reading models. We define a simple object
oriented API for programmers, which can be used to
define models of arbitrary complication and then model
check them. We use this method for creating some case
studies and comparing their results with results of
PRISM. Fig. 1 shows a view of GPMC when it model
checks a DTMC Model.

The methods we used for storing states and transitions
are some variations of explicit methods and sparse
matrices. These methods were used for best performance
and efficiency and as it will be shown in the next section,
their performances are comparable with PRISM.

4. Case Studies
In this section we present three case studies, gathered for
comparing these two probabilistic model checkers. These
results are obtained in a PC with Intel Celeron 2.4 GHz
CPU with 256 MB of memory.

4.1. Dice Simulation
This case study considers probabilistic model, due to
Knuth [5], which model fair dice using only fair coins.
We use program written for PRISM as comparison to our
tool. The detailed description of this model can be found
in [7]. For this model we verify two state formulas. One
of them can be stated as P U?((7))true s d k  ∼

for 1..6k  and the other formula is
P U?((7 1))ktrue s d   ∼ for different values of

1..100k  .
For more accuracy we put the model checking part in

a loop with 10000 iterations and then divide result time
by this number. For PRISM, also, we change the code to
have more precision. In Table 1 we can see the results of
model checking.

4.2. The Cat Chases the Mouse
In this case study we focus on a model of chasing a
mouse by a cat. In this model, there are some rooms, a

Table 1. Results for verfications of two state formulas with
PRISM and GPMC.

GPMC(ms) PRISM(ms) State Formula

0.1969 3.928 ?((7)true s d k   P U

Total time for all k ’s
0.0047 0.0719
0.0078 0.3031
0.0125 0.2953
0.0141 0.3000
0.0172 0.2984
0.0203 0.3000
0.0234 0.3016
0.0266 0.3015
0.0297 0.3016
0.0328 0.3047

0
?((7 0))true s d

   P U

to

9
?((7 0))true s d

   P U

mouse and a cat. In each step the mouse and the cat may
change their rooms. Fig. 2 shows this model for 3 rooms.
In this figure probability of moving cat to another room is
0.4 and remaining in its room is 0.2 and for mouse these
probabilities are 0.3 and 0.4 respectively.

In Fig. 3 we can see the actual model of Fig. 2. as we
can see the model consists of 9 states and 81 transitions.
So if the number of rooms grows, the size of model
increases very quickly.

We must find in this model the probability of cat
reaching mouse if initially they were in different rooms.
In Fig. 4 we see the results of model checking

?(())ktrue c m
 P U for different 0..500k  and 30

rooms.
As it can be seen in this chart, the running times of

model checking this formula are equal for two model
checkers, till 350k  . And for this bound and greater,

Fig. 2. Three rooms that a mouse and a cat moves between

them.

Fig. 3. Model of moving mouse and cat between rooms.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

bound

time
GPMC
PRISM

Fig. 4. Running time of model checking bounded until for

model “cat and mouse” in PRISM and GPMC.

the running time for GPMC remains constant. This is
because this tool sees no change in the probability as go
further so concludes we reach the steady states
probabilities and stop going further.

4.3. Molecular Reactions
This case study, as the first one, is obtained from case
studies used for PRISM, so we use the program written
for PRISM to compare it with results of GPMC.

In this case study we consider a molecular reaction
taken from Ehud Shapiro's lecture notes on Biomolecular
Processes as Concurrent Computation. More details
about this case study can be read in [7].

Note that, for chemical reaction we consider, the rate
of the reaction is the base rate multiplied by the product
of the number of molecules of each type that take part in
the reaction. The reaction that studied was
Na Cl Na Cl    . The reaction starts with an
equal number of Na and Cl . The rate of forward
reaction is

2100. . 100.NaCl Na
And the rate of backward reaction is

210. . 10.()Na Cl N Na    .
We want to know the probability that in steady state

there is some Na molecule, formally ?(0)S Na  .
We can see a visual view of this model for initial number
of Na , 10N  in Fig. 5.

The running time of model checking of this model for
different number of N is plotted in Fig. 6. As it can be
seen the running time for GPMC grows quickly. Maybe it
is because we use LU decomposition for solving linear
equation systems whereas in PRISM it uses different
ways of iterative methods for solving them.

Fig. 5. Model of molecule reactions for 10N  .

0

1000

2000

3000

4000

5000

6000

N=10 30 50 200 400 600 800 1000
Number of states

time(s)

GPMC

PRISM

Fig. 6. The running time of model checking steady state

formula in PRISM and GPMC.

In doing this case study we find a bug in PRISM. As

stated before, there are different methods for solving
linear equation systems. The default one in this tool
solves the equations of this case study and computes the
probabilities wrongly.

We model check this formula for different value of
N and t . The results of this model checking can be
viewed in Fig. 7. For PRISM the running time increases
as number of states or time bound increases. In GPMC it
is so, but in some places, suddenly it fallen and then
increase very slowly. It is because in GPMC, when
computation reaches its ceiling, it assumes that the
probability is near the unbounded until probability, as
time bound is so great. Therefore it computes unbounded
until probabilities which are much faster than time
bounded one. Regarding this situation, reaching its
ceiling capability, we ran a test on both GPMC and
PRISM and found another bug in PRISM. The formula
for this test is P U~ [()]t

p true Na N  .

In our initial state Na N , therefore the probability for
this formula is 1 without any concern to t . But the results
of model checking this formula in GPMC and PRISM
differ in some cases (Table 1). We see in this table that
for bound 22 and greater the probability that PRISM
computes is wrong, but the time used for computing does
not change significantly.

10 40 200 500 800

GPMC(t=10)

0

5000

10000

15000

20000

25000

30000

time(s)

Number of states

GPMC(t=10)
GPMC(t=1)
GPMC(t=0.1)
GPMC(t=0.01)
PRISM(t=10)
PRISM(t=1)
PRISM(t=0.1)
PRISM(t=0.01)

Fig. 7. The running time of model checking

 [(0)]t
p true Na

 P U for different number of
states and different time bounds.

Table 2. A comparison of the two tools that shows a bug in
PRISM.

PRISM GPMC 1000N 
Time(ms) Prob. Time(ms) Prob.

0.2 [(1000)]p true Na
 P U 250 1 270 1

20 [(1000)]p true Na
 P U 260 1 256 1

22 [(1000)]p true Na
 P U 420 0 257 1

200 [(1000)]p true Na
 P U 840 0 254 1

5. Conclusion And Future Works
In this paper we implement a probabilistic model
checking tool, GPMC, and use it for some case studies.
So far we have concentrated our efforts on efficient
implementation of the techniques used previously in
PRISM, a Probabilistic Symbolic Model Checker.

One of the main motivations for our work in this
paper was the weaknesses of existing implementations of
probabilistic model checkers. In this tool we focus on
improving performance and running time of verification.
Some case studies are presented and their results are
delivered. These results show that the model checking
can be done very faster in comparison to the old tools.

In the list of future works we put improving its
performance, especially in places that it shows bad results
against PRISM, such as steady state of CTMC. By
extending case studies for this tool, we can find bugs and
problems, and discover its benefits over older tools.

We should also implement some interfaces for other
tools, which create some input for this tool, CTMC or
DTMC. By doing this we can extend the number of case
studies for this tool very rapidly.

References
[1] G. Alder, Design and implementation of the JGraph

Swing component, http://www.jgraph.com/paper.html.
[2] A. Aziz, K. Sanwal, V. Singhal, R. K. Brayton, Verifying

continuous time Markov chains, In Proc. 8th International
Conference on Computer Aided Verification (CAV’96),
269–276, 1996.

[3] C. Baier, J. P. Katoen, H. Hermanns, Approximate
symbolic model checking of continuous-time Markov
chains. In Proc. 10th International Conference on
Concurrency Theory (CONCUR’99), 146–161, 1999.

[4] H. Hansson, B. Jonsson, A logic for reasoning about time
and probability. Formal Aspects of Computing, 6(5):512–
535, 1994.

[5] D. E. Knuth, A. C. Yao, The complexity of non-uniform
random number generation. In Algorithms and
Complexity: New Directions and Recent Results,
Academic Press, New York, 1976

[6] M. Kwiatkowska, G. Norman, and D. Parker, PRISM:
Probabilistic symbolic model checker. In Proc.
TOOLS’02, 200–204, 2002.

[7] PRISM web site, http://www.cs.bham.ac.uk/˜dxp/prism.
[8] F. Somenzi, CUDD: Colorado University decision

diagram package. Public software, Colorado Univeristy,
Boulder, http://vlsi.colorado.edu/˜fabio/, 1997.

