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Abstract 
 

The grain yield (Y) of crops is determined by several Y components that reflect 
positive or negative effects. Conventionally, ordinary Y components are screened for 
the highest direct effect on Y. Increasing one component tends to be somewhat 
counterbalanced by a concomitant reduction in other component (s) due to 
competition for assimilates. Therefore, it has been suggested that components be 
manipulated in conjunction with other traits to break the competition-resulting 
barrier. The objective of this study is to optimize the effective components in 
conjunction with certain participant traits for increased barley Y using an artificial 
neural network (ANN) and a genetic algorithm (GA) as an alternative procedure. 
Two field experiments were carried out separately at the Agriculture Research 
Station located in Gonbade Kavous (37o16' N, 55o12' E and 37 asl), Iran. Ten 
genotypes were grown in each experiment, and the Y and certain traits/components 
were measured. Among the components/traits, those with a significant direct effect 
and/or correlation with Y were selected as effective for the ANN and GA analysis. 
The results indicate that the remobilization of stored pre-anthesis assimilates to grain 
(R1), crop height (R2), 1,000-grains weight (R3), grain number per ear (R4), 
vegetative growth duration (R5), grain-filling duration (R6), grain-filling rate (R7), 
and tiller number (R8) were effective. The R2 for the training and test phases was 
0.99 and 0.94, respectively, which reveals the capability of the ANN to predicting Y. 
The optimum values obtained by GA were 14.2%, 104.34 cm, 36.9 g, 41.9, 100 d, 48 
d, 1.22 mg seed-1 day-1, and 3.38 plant-1 for R1 through R8, respectively. The 
optimization increased the potential Y to 5791 kg ha-1, which was higher than that 
observed for the genotypes (3527 to 5163 kg ha-1). 
 
Keywords: Barley; Grain yield; Yield components; Genetic algorithm; Artificial neural 
network. 
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Introduction 
 

Grain yield (Y), as a function of various yield components, is a complex 
characteristic that affects the economic value of crops. Y can be determined 
by several components that reflect positive or negative effects. Conventionally, 
ordinary Y components, such as 1,000-grains weight, grain number per ear, 
spikelet number per spike, spike number per plant, number of primary 
branches per plant, number of siliquae per plant, and harvest index, are 
screened for higher genotypic coefficient variability, broad sense heritability, 
genetic advance, highly significant positive correlation, and maximum direct 
contribution to improve the Y of crops (e.g., Akanda and Mundt, 1996; Akbar 
et al., 2007; Ahmed et al., 2003; Ball et al., 1993; Costa and Krostand, 1994; 
Dogney et al., 1998; Maria et al., 1984; Mehetre et al., 1997; Stafford and 
Seiler, 1986). The selected component is used for the subsequent steps of 
plant breeding programs. 

On the one hand, increasing the value of a component in crops tends to be 
somewhat counterbalanced by concomitant reductions in other component (s); 
this is due to the competition for photo-assimilates, which is known to be a 
barrier to increasing crop Y (Slafer et al., 1996). On the other hand, the 
excluded components, i.e., those with significant positive correlations but 
statistically negligible direct effects, usually tend to have considerable indirect 
effect (s) via other component (s) on Y, which are usually neglected.  

Slafer et al. (1996) suggested that the components should be manipulated 
in conjunction with other traits, including the duration of the grain-filling 
phase and the remobilization of stored pre-anthesis assimilates to the grain 
to break the competition barrier. They believed that increasing the grain-
filling phase could increase the assimilate availability and, consequently, 
increase the Y via decreased competition between some components. 
However, it should be noted that a longer duration of grain-filling increases 
the risk of facing warm temperatures at the end of the growing period, thus 
neutralizing the benefits of a longer reproductive phase if the optimum value 
is not employed. This optimum value may not be the same for different 
regions that have not yet seen any published quantitative reports. 

The above-mentioned state might also be true for other significant 
participant traits. For instance, taller plants generally have a higher capacity 
to support the grains by the remobilization of stored pre-anthesis 
assimilates. Additionally, in some cases, the taller genotypes tend to 
produce more tillers than dwarfs (Bush and Evans, 1988). However, tallness 
tends to increase the risk of lodging, leading to decreased Y. Moreover, late-
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formed tillers, which usually prevail in taller genotypes, do not contribute to 
Y. This situation, which was mentioned for a few traits, necessitates the 
determination of the optimum value of all significant participant 
components and traits together. We found no published report regarding 
such optimization. An attempt is therefore made in this paper to optimize 
the value of those traits/components that have significant direct (multiple 
regression coefficient) and/or indirect effects (correlation) on Y to increase 
the potential Y of barley by adapting an artificial neural network (ANN) and 
a genetic algorithm (GA). 

An ANN mimics somewhat the learning process of a human brain.  An 
ANN basically provides a non-deterministic mapping between sets of random 
input-output vectors. In fact, any linear or nonlinear relationship of multiple 
inputs and multiple outputs can be learned and approximated simultaneously 
by an ANN. The absence of any preliminary assumed relationship beforehand 
between input-output quantities in-built dynamism and robustness toward 
data errors is one of the advantages of these networks over statistical methods 
(Rohani et al., 2011). In addition, inherently noisy data do not seem to create 
a problem, as ANNs are tolerant to noise variations. ANNs are used in a wide 
variety of applications, including crop development modeling (Fortin et al., 
2010; Huang et al., 2010; Zhang et al., 2009) and crop yield prediction (Green 
et al., 2007; Kaul et al., 2005; Park et al., 2005).  

GA has been applied successfully to a wide variety of optimization 
problems (Goldberg, 1989). The merits of GA include simplicity, ease of 
operation, and flexibility. GA is now widely recognized as an effective search 
paradigm in many areas. Although GAs have been widely used in engineering 
applications, such as solving either single or multi-objective optimization 
problems (e.g., Rauch and Harremoes, 1999), we could not find any published 
report for optimization in regard to crops. In this study, ten genotypes of 
barley were grown to measure Y, yield components and certain other traits. 
The participant traits/yield components were used as inputs for an ANN and 
then GA. The results may be useful for breeding programs. 
 
Materials and Methods 
 
Experimentation 
 

Two field experiments were carried out separately at the Agriculture 
Research Station located in Gonbade Kavous (37o16' N, 55o12' E and  
37 asl), Iran, on December 15, 2008 and January 10, 2009. In each 
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experiment, 10 barley (Hordeum vulgare L.) genotypes (Table 1) were 
planted using a randomized complete block design in three replications. 
Each plot comprised six rows, which were 5 m long and had a 0.2 m inter-
row spacing. The soil was loam silty with 1.46% organic carbon. All soil 
samples were taken prior to sowing, and the necessary nutrients were added 
to the soil before planting according to soil test data. Nitrogen was applied 
in 3 equal splits: at sowing, tillering and anthesis. 
 
Table 1. The pedigree of barley genotypes used in the experiment. 
 

Pedigree Entry 
Check - (Sahra) 1 
Gloria'S'/Copal'S'//As46/Aths/3/Rhn-03 2 
Productive//As46/Aths 3 
ARABIANBARLEY/3/ 4 
C63//Kavri//Badia 5 
Alanda/Hamra//Alanda-01 6 
Arar/Lignee527//Arar/PI386540 7 
CIRUELO 8 
CHAMICO/PETUNIA1//CIRU 9 
KAROON/KAVIR//Rhodes'S'//Tb/Chzo/3/Gloria'S' 10 

 
Data on Y were collected from 3.4 m-2 in each plot. Ten plants were 

randomly used to measure Y components and certain traits (R; regressors). 
The regressors were the remobilization of stored pre-anthesis assimilates to 
grain (R1), crop height (R2), 1,000-grains weight (R3), grain number per ear 
(R4), vegetative growth duration (R5; days from planting to heading), grain-
filling duration (R6), grain-filling rate (R7), tiller number (R8), harvest index 
(R9), spike length (R10), and main stem diameter (R11). The following 
equations were used to calculate R1 (Arduini et al., 2006; Cox et al., 1986; 
Papakosta and Gagianas, 1991): 
 

ARDM=DMSHT (Ant) - DMSHT (Mat)                                                    (1) 
 

RP=ARDM / DMSHT (Ant)×100                                                               (2) 
 

Where ARDM is the amount of remobilized dry matter (g/plant) to grain, 
DMSHT (Ant) is the aboveground dry matter of plant parts at the anthesis 
stage (g/plant), DMSHT (Mat) is the aboveground dry matter of plant parts 
at the physiological maturity stage (g/plant), except grain weight and RP is 
the remobilization percentage. R7 was simply calculated as the division of Y 
by R6. The range of Y and the regressors was calculated based on average 
values over two experiments. 
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Artificial Neural Network and Genetic Algorithm analysis 
 

The participant regressors were used in the ANN analysis. First, multiple 
regression coefficients and a correlation of all regressors with Y were 
calculated using SAS software. Then, regressors with significant direct effects 
and/or correlation coefficients were considered to be participant to Y. The 
dataset was shuffled and split into a training set (80% of total patterns) and a 
test set (20% of total patterns). These subsets were used to estimate the ANN 
model parameters and to check the generalization ability of the model, 
respectively. The following equation was used to normalize the dataset 
(Rohani et al., 2011): 
 

minminmax
minmax

min )( rrr
XX

XXXn +−×
−

−
=                                                        (3) 

 

Where X is the original data, Xn the normalized input or output values, 
Xmax and Xmin are the maximum and minimum values of the concerned 
variable, respectively, and rmax and rmin correspond to the desired values of 
the transformed variable range. A range of 0.1-0.9 is appropriate for the 
transformation of the variable onto the sensitive range of the sigmoid 
transfer function. 

A Multilayer Perceptron (MLP) was used, which has maximum practical 
importance among various ANN models. Figure 1 shows an MLP with one 
hidden layer. Every node computes a weighted sum of its inputs and passes 
the sum through a soft nonlinearity. The soft nonlinearity, or the activity 
function of neurons, should be non-decreasing and differentiable. In this 
regard, the most popular function is the unipolar sigmoid: 
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Figure 1. Configuration of the MLP with one hidden layer (Vakil-Baghmisheh, 2002). 
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The network is in charge of vector mapping, i.e., by inserting the input 
vector Xq and then answering through vector Zq in its output (for q=1,…,Q). 
Among the many variants of the MLP training method, a new one called the 
Back-Propagation with Declining Learning-Rate Factor (BDLRF) was 
employed. In this algorithm, the total sum-squared error (TSSE) is 
considered to be the cost function and can be calculated as: 
 

∑=
q

qETSSE                                                                                                 (5) 
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Where q
kd  and q

kz  are the kth components of the desired and actual output 
vectors of the qth input, respectively. Network learning happens in both 
forward and backward passes. In a forward pass, an input vector is inserted 
into the network, and the network outputs are computed by proceeding 
forward through the network, layer by layer: 
 

⎪
⎩

⎪
⎨

⎧

=

+
=

=

−

∑

2
netj

i
ijij

l1j

e1

1y

wxnet

j

,...,,                                                                              (7) 

 

⎪
⎩

⎪
⎨

⎧

=

+
=

=

−

∑

3
netj

j
jkjk

l1k

e1
1z

uynet

k

,...,,                                                                             (8) 

 

Where ijw  is the connection weight between nodes i and j, and jku  is the 
connection weight between nodes j and k; ijw  and jku  are set to small 
random values [-0.25, 0.25]; and l2 and l3 are the number of neurons in the 
hidden and output layers. In a backward pass, the error gradients versus 
weight values, i.e., 

ijw
E

∂
∂  (for i=1,...,l1, j=1,…,l2) and 

jku
E

∂
∂  (for j=1,..l2, 

k=1,…l3), are computed layer by layer, starting from the output layer and 
proceeding backward. The connection weights between nodes of different 
layers are updated using the following equations: 
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Where η  is the learning rate and α  is the momentum factor. The 
momentum factor is used to speed up the convergence. In this algorithm, the 
training is initiated with a relatively constant large step size of η  and α , 
i.e., 0.9. For every T epoch, i.e., 5, these values are decreased monotonically 
by means of arithmetic progression until they reach x% (equal to 5) of their 
initial values. The following equations are used to decrease η  and α  
(Rohani et al., 2011):  
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Where m is the total number of arithmetic progression terms, n1 is the 
start point of BDLRF, nη  is the learning rate in the nth term of the arithmetic 
progression, and oη  is the initial learning rate. The criteria for optimizing 
the learning rate and momentum are based on the learning error and the 
iteration number, which is calculated throughout the trial-error method. The 
process continues before destabilizing the network or when the convergence 
is about to slow down (Vakil-Baghmisheh and Pavešic, 2003). 

Four criteria were used to evaluate the performance of the model: mean 
absolute percentage error (MAPE), root mean-squared error (RMSE), TSSE 
and the coefficient of determination of the linear regression line between the 
predicted values from the MLP model and the actual output (R2). These 
criteria are defined as follows: 
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Where dji is the ith component of the desired (actual) output for the jth 
pattern, pji is the ith component of the predicted (fitted) output produced by the 
network for the jth pattern, p  and d  are the average of the desired output and 
predicted output, respectively, and n and m are the number of patterns and 
variable outputs, respectively. The model with the smallest RMSE, TSSE, and 
MAPE and the largest R2 was considered to be the best. A computer code was 
developed in MATLAB software to implement the analysis. 

The optimization process is performed in cycles called generations. 
During each generation, a set of new chromosomes is created using the 
crossover and mutation operator. Because the population size is finite, only 
the best chromosomes are allowed to survive to the next cycle of 
reproduction. The cycle repeats until the population converges; that is, the 
diversity of the feature values among the population is very low, and further 
exploration seems pointless. In this study, we used a continuous GA because 
the values of the variables were continuous. Generally, this algorithm is 
initiated with the definition of the cost function, cost, variables and selection 
of GA parameters. Here, the MLP model was considered to be a cost 
function for the prediction of Y, the cost was the values of observed Y, and 
the participant regressors were variables (Nvar). The GA was initiated by 
defining a chromosome as follows:  
 

Chromosome = [R1, R2, …, Rn]                                                                 (17) 
 

Then, an initial population was defined by random values of Npop 
chromosomes.  
 

),( varNNrandpop pop=                                                                         (18) 
 

Each chromosome had a cost (grain yield), which was found by 
evaluating the cost function: 
 

),...,,()( varN21MLP pppfchromosomefcost −=−=                                 (19) 
 

Where fMLP is the MLP neural network for the predicted grain yield  
as a cost function. The minus sign in this equation was for the 
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maximization goal; as cost is something to be minimized, the 
optimization becomes minimization. Of the Npop chromosomes in a given 
generation, only the top Nkeep were kept for mating, and the rest were 
discarded to make room for the new offspring (selection of mates). Two 
parents were chosen, and the offspring were combinations of these 
parents (mating). A single offspring variable value, p new, comes from a 
combination of the two corresponding offspring variable values. By 
randomly selecting a variable in the first pair of parents to be the 
crossover point, it can be seen that: 
 

)),(( var M1randNceil ×=α                                                                       (20) 
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Where the m and d subscripts distinguish the mom and the dad parent. 
Then, the selected variables were combined to form new variables that will 
appear in the children: 
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Where β is also a random value between 0 and 1. The final step was to 
complete the crossover with the rest of the chromosome as before: 
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If care is not taken, the GA can converge too quickly into one region of 
the cost surface. If nothing is done to solve this tendency to converge 
quickly, the process could end up in a local rather than global minimum. To 
avoid this problem of overly fast convergence, the routine was forced to 
explore other areas of the cost surface by randomly introducing changes or 
mutations in some of the variables. The details can be seen in Haupt and 
Randy (2004). A computer code was also developed in MATLAB software 
to implement these ANN and GA models. 
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Results 
 

The results indicate that R1 to R8 had a significant positive effect and/or 
statistically considerable correlation with Y. Therefore, the input layer in the 
ANN analysis had 9 neurons representing the regressors and bias term  
(b= -1), while the output layer corresponded to Y (Figure 2). The 
performance of the MLP tended to be improved by an increase in the 
number of hidden neurons. However, too many neurons in the hidden layer 
caused overfitting problems, which resulted in good network learning and 
data memorization, but an inability to generalize. However, the network 
could not learn, as only a small number of neurons in the hidden layer were 
used. For this data set, the MLP model with 15 neurons in the hidden layer 
appeared to be appropriate for the prediction and optimization of Y. This 
optimal number of hidden neurons was attained when the value of the 
learning rate (η), the momentum factor (α) and the epoch in the iteration 
process reached 0.9, 0.8 and 50000, respectively. 
 

 
 
Figure 2. Multilayer neural network used for optimization of traits and grain yield 
components to increase barley grain yield. 
 

The performance of the ANN is shown in Tables 2 and 3. The low values 
of MAPE, RMSE, and TSSE proved the capability of the BDLRF algorithm 
for generating accurate estimates within the preset range by using the MLP 
neural network. Considering the mean value, standard deviation, variance, 
and other statistical variables, it can be deduced that the values and the 
distribution of the observed and predicted data are analogous. Accordingly, 
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the MLP neural network has learned the training set well; hence, the training 
phase is completed. The skewness, kurtosis, sum, minimum, maximum and 
the average values are similar; hence, it could be said that both series are 
similar for the observed and predicted Y. 
 
Table 2. Performances of MLP in prediction of grain yield. 
 

Performance criterion Phase MAPE (%) RMSE TSSE 
Training 0.15 0.23 0.79 
Test 0.19 0.28 2.7 

 
Table 3. Some statistical properties of observed and predicted values of barley grain yield 
in training and test phases. 
 
Value type Mean Variance Standard deviation Kurtosis Skewness sum 

Training phase 
Observed 4131.2 301292 548 2.3 -0.12 206563 
Predicted 4131.3 301291 548 2.3 -0.12 206562 

Test phase 
Observed 3686.5 112666 335.6 2.6 -0.8 36865 
Predicted 3696.6 113660 355.6 2.6 -0.8 36866 

 
The predicted and observed values were evenly distributed throughout 

the entire range (Figure 3). Although the results of the training phase were 
generally better than the test phase, the latter reveals the capability of the 
MLP neural network to predict the Y with new data. The high R2 
demonstrated that the trained network was reliable and accurate and, hence, 
could be employed for Y prediction. 
 

  
 
Figure 3. Predicted values of grain yield by MLP neural network versus observed values in 
training (left) and test (right) phases. 
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In an attempt to obtain the optimal combination of the 8 parameters for 
maximum grain yield, the ANN grain yield model was integrated with a GA 
model. To achieve this, the output of the developed ANN was utilized in 
calculating the values of the fitness function for the GA. The results 
indicated a population size of 100, a mutation rate of 0.5, and a generation 
number of 1000 for the selection method of tournament pairing. As Figure 4 
illustrates, the convergence for the GA model reached a grain yield of 
5791.2 kg ha-1, which is the maximized grain yield. The optimum values of 
the regressors for this amount of grain yield are shown in Table 4. 
 

 
 
Figure 4. Convergence for the grain yield function. 
 
Table 4. Optimal values of yield parameters for maximum grain yield as determined by GA 
optimization process. 
 

Parameter Optimum value 
Assimilate remobilization 14.2% 
Crop height 104.34 cm 
1000 grains weight 36.9 g 
Grain number per ear 41.9 
Vegetative growth duration 100 d 
Grain filling duration 48 d 
Grain filling rate 1.22 mg seed-1 day-1 
Tiller number 3.38 plant-1 

 
Discussion 
 

The neural network designed in this study appeared to be the best when it 
was equipped with a single hidden layer. This result is in agreement with the 
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universal approximation theorem, which states that a neural network with a 
single hidden layer and a sufficiently large number of neurons can well 
approximate any arbitrary continuous function (Haykin, 1994). 

There are compensatory processes between the components of Y due to 
their close interrelationship. Therefore, increasing one component would be 
counterbalanced by a reduction in other component (s). This study aimed to 
optimize the important traits and Y components together using an ANN and 
GA to minimize competition for photo-assimilates for increased Y. As 
Slafer et al. (1996) suggested, the remobilization of stored pre-anthesis 
assimilates to the growing grains appears to be an important trait in 
statistically increasing Y. A study by Bidinger et al. (1977) on one cultivar 
of barley and wheat revealed that approximately 12% of the Y of well-
watered barley comes from these remobilized assimilates. These compounds 
could buffer Y against unfavorable situations, including a rise in 
temperature, which occurs frequently during the grain-filling stage of barley 
in many growing regions. In this situation, where the vapor pressure deficit 
tends to be high, the plants would suffer form water shortage even in well-
watered conditions (Gholipoor and Sinclair, 2011). For these genotypes, the 
mean remobilization percentage was 13%, with a range of 4.32%. The 
results indicate that it is possible to maximize the percentage to as high as 
14.2% when it is considered in conjunction with other components, 
including plant height and vegetative growth duration. 

Taller plants potentially have a higher capacity to store assimilates in 
vegetative organs for the future re-translocation to grains. However, tallness 
increases the risk of lodging and, hence, affects flowering negatively and 
reduces the photosynthetic capabilities of the plant. Tallness interferes with 
the transport of nutrients and moisture from the soil and, thus, with food 
storage in the developing kernels. The decrease in barley Y resulting from 
lodging has been measured at 20% (Briggs, 1990) and 30% (Pinthus, 1973). 
For wheat, this reduction has been found to be as low as 40% (Eassen et al., 
1993) and as high as 66% (Berry et al., 2003), depending on the crop 
development stage at the date of lodging and on the intensity of the 
phenomenon. In our investigation, the lodging varied between 0 to 7% for 
tested genotypes that appeared to have an average height of 100.6 cm with a 
range of 17 cm. The optimum height obtained was 104.34 cm. 

Mean grain weight is an important component of grain quality in barley, 
as grain size is related to potential malt extract and screening losses (Lee  
et al., 1989). Path analysis results have revealed that the participation of the 
number of grains per ear to Y is more than the grain weight (Moreno et al., 
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2003). Grain weight and the number of gains per ear appeared to be 
inversely related (r=-0.33**). Re-analysis of the mean data of Cantero-
Martı´nez et al. (2003) for barley also indicates such relationship  
(r=-0.45**; n=54). This effect is due to the decreased availability of 
assimilates for grain growth (Slafer et al., 1996). 

One approach that is important to increasing assimilate availability is 
dealing with growth characteristics, such as changes in the crop's ability to 
intercept more radiation (Bingham et al., 2007). It has been reported that 
increasing the length of the vegetative and reproductive phases could affect 
assimilate availability (Bingham et al., 2007; Slafer et al., 1996; Miralles  
et al., 2000). Halloran and Pennell (1982) have reported that the lengths of 
phenophases in a number of wheat genotypes are independent of each other. 
However, in most regions of Iran, prolonging the duration of phenophases 
too much may lead to the crop experiencing warm temperatures at the grain-
filling stage and, hence, decreased Y. The optimum values for vegetative 
growth duration, grain-filling duration, 1000 grains weight and grain 
number per ear are 100 d, 48 d, 36.9 g, and 41.9, respectively. These 
optimum values came from genotypes that tended to have average values of 
98 d (with a range of 8), 44 d (12), 36.8 g (13), and 35.1 (12), respectively. 

The rate of grain filling could be an indicator of both the photosynthetic 
rate at the grain-filling stage and the remobilization of stored pre-anthesis 
assimilates to the grain. As has been found previously (Leon and Geisler, 
1994), the genotypes differed in the grain-filling rate. The average over the 
sowing dates ranged from 0.99 to 1.36 mg seed-1 day-1. A significant negative 
correlation (r= -0.75**) was found between the grain-filling rate and duration 
(reproductive length), which is in agreement with the report of Long et al. 
(1998) on barley and Wheeler et al. (1996) on wheat. The optimum, or 
maximum, grain-filling rate tended to be 1.22 mg seed-1 day-1 when it was 
estimated in conjunction with other factors, including grain-filling duration. 

The reports indicate that tillers account for 40.4% of the variability in the 
Y of barley (Kole, 2006). High levels of tillering are accompanied by high 
levels of intercepted radiation and have been associated with modern cultivars 
(Abeledo et al., 2004). Later-formed tillers tend to die, which could be 
wasteful for plants. In conjunction with other above-mentioned traits/ 
components, especially plant height, the optimum tiller number was 3.38. The 
average value of this trait over the two experiments ranged from 1.4 to 3.5. 
This optimization tended to enhance the potential Y to 5791.2 kg ha-1 which 
is higher than those observed for the genotypes (3527 to 5163 kg ha-1). 
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Conclusion 
 

This study demonstrated that an ANN and GA are useful tools for 
simulating and optimizing grain yield. The optimization of Y components in 
conjunction with participant traits could increase the Y of barley to levels 
higher than the observed values. Here, the output was limited to Y. As 
shown in Figure 1, the ANN is able to optimize regressors for more outputs, 
such as the Y for barley malt or for the oil content and quality of soybeans, 
which should be employed in future investigations. The optimum value of 
traits tends to change with changing locations. In windy regions, for 
example, the optimum plant height might be shorter than the value obtained 
in this study. This example highlights the necessity of having separate 
optimizations of traits for each region. 
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