
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Predictions of apple bruise volume using artificial neural network

Saeed Zarifneshat a,⇑, Abbas Rohani b, Hamid Reza Ghassemzadeh c, Morteza Sadeghi d, Ebrahim Ahmadi e,
Masoud Zarifneshat f

a Khorasan Razavi Agriculture and Natural Resources Research Center, Mashhad, Iran
b Department of Farm Machinery Engineering, College of Agriculture, Shahrood University of Technology, Shahrood, Iran
c Department of Agricultural Machinery Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
d Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
e Department of Agricultural Machinery Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
f Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

a r t i c l e i n f o

Article history:
Received 1 July 2011
Received in revised form 22 December 2011
Accepted 26 December 2011

Keywords:
Bruise volume
Golden Delicious apple
Fruit properties
ANN
BDLRF algorithm
Basic Back-propagation

a b s t r a c t

Bruise damage is a major cause of fruit quality loss. Bruises occur under dynamic and static loading when
stress induced in the fruit exceeds the failure stress of the fruit tissue. In this article the potential of an
artificial neural network (ANN) technique has evaluated as an alternative method for the prediction of
apple bruise volume. Neural bruise estimation models were constructed to calculate Golden Delicious
apple bruise volume with respect to fruit properties. The neural models were built based upon impact
force and impact energy as the main input parameters including fruit curvature radius, temperature
and acoustical stiffness. Optimal parameters for the network were selected via a trial and error procedure
on the available data. In this paper, the performance of Basic Backpropagation (BB) training algorithm
was also compared with Backpropagation with Declining Learning Rate Factor algorithm (BDLRF). It
was found that BDLRF has a better performance for the prediction of apple bruise volume. It is concluded
that ANN represents a promising tool for predicting apple bruise volume in comparison to regression
model.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Apple consumers increasingly demand better quality fruit.
Mechanical damage such as bruises, abrasions, cuts and punctures
are irreversible and are accumulated damages during the handling
process. The inevitable consequence of mechanical damage is low
grade and low quality fruits, hence less income to both growers
and packers (Timm et al., 1996; Abbott and Lu, 1996). The factors
affecting damage severity are fruit fall height, contact energy, the
number of contact, the kind of contact surface and the size and
ripeness stage of the fruit (Lin and Brusewitz, 1994; Roth et al.,
2005). Identifying the impact situations which create bruises is
necessary to improve harvesting, transporting, grading procedures
and equipments (Lin and Brusewitz, 1994; Ragni and Berardinelli,
2001; Van Linden et al., 2006). Bruising may be intensified by some
other factors such as texture, variety, maturity stage, water con-
tent, fruit shape, temperature, firmness, size and a series of fruit
interior factors such as modulus of elasticity, strength of cell walls
and, internal structure and cell shape (Studman et al., 1997; Van
Linden et al., 2006).

Detailed information about bruise estimation models for Gold-
en Delicious apple is limited. The statistical models contain contact
energy or impact force as the main independent variable (Van
Zeebroeck et al., 2007a). The impact force models are advanta-
geous, because they can be generalized to impacts of materials
with different material properties and curvature radius. The impact
force is the influential factor in explicating the apples bruising
when impacted by various materials. The bruise estimation mod-
els, containing impact energy that was constructed for metal-apple
indenter contact, cannot be applied to apple–apple contact because
in both situations the impact energy is the same (Pang et al., 1992;
Van Zeebroeck et al., 2007c). Nevertheless, a drawback of exploit-
ing impact force regression model is the high probability of impact
force being influenced by fruit properties (e.g., temperature and
maturity). In contrast, the energy of impact is not affected by the
fruit characteristics, which gives impact energy models an advan-
tage over impact force models. As a result, contact energy models
are superior to study the effect of fruit characteristics on bruise
damage (Van Zeebroeck et al., 2007a–c).

Bruise estimation models for apples (especially for Golden Deli-
cious apple) reported in the references are limited to the effect of
two properties of fruit (either maturity or temperature of fruit)
and these models are unstable (Studman et al., 1997). ANNs are
being used in a wide variety of applications, including apple bruise
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prediction (Barreiro et al., 1997), fruit grading (Kavdir and Guyer,
2004; Xiaobo et al., 2007; Al-Ohali, 2010; Effendi et al., 2010)
and modeling of apple drying process (Khoshhal et al., 2010).

The main objective of this study was to develop apple bruise
volume prediction models. The specific objectives were: (1) to
investigate the effectiveness of ANN for predicting apple bruise
volume; (2) study the variation of model performance with differ-
ent ANN model parameters; (3) select optimum ANN parameters
for accurate prediction apple bruise volume.

2. Materials and methods

2.1. Experimental details

The apples used in this study were Golden Delicious variety. The
apples were harvested from ‘‘Shabestar’’ district, Tabriz, Iran. Ap-
ples were hand-picked at a commercial orchard to ensure their
freshness and avoid damage during harvesting and transporting.
Fruits were stored in a cool storage with controlled atmosphere
(85% RH, 3 �C). All measurements were performed within maxi-
mum 2 days. The fruit was kept at desired temperature for 10 h
prior to measurement. Samples at 3 �C were measured during
15 min to reduce apple warming in the measuring room at 20 �C.
Apples were placed on a pendulum equipped with a force sensor

(type AC20, AP Tech, Netherlands; Sensitivity: 1.87 mV N�1) and
an encoder equipment (RON 275, Heidenhain�; Resolution:
0.005�) to measure energy of impact and impact velocity (Van Zee-
broeck et al., 2003). The samples then were hit by a spherical metal
impact or with radius of 25 mm (Fig. 1).

The dependent variable that used in the bruise estimation mod-
els was the bruise damage volume. The bruise volume was re-
corded 48 h after contact and determined based on:

BV ¼ p
6

dD2 ð1Þ

where BV is the bruise volume (mm3), d bruise depth (mm) and D
bruise diameter (mm), respectively.

Bruise estimation models had either the impact energy (kinetic
energy of pendulum rod just before collision) or the impact force as
independent variables along with other variables. Used indepen-
dent variables in the regression models or inputs of neural network
consist of: impact energy (E) (J), impact force (F) (N), fruit temper-
atures (T), curvature radius of apple (R) at the contact location
(mm), fruit acoustical stiffness (S) (s�2 kg2/3).

The applied impact energy levels were chosen above the critical
impact level of Golden Delicious apple. The lower limit of applied
impact level was based on the measured impact force during han-
dling and transporting but the higher impact level was in apple

Fig. 1. General view of the pendulum device for measuring impact force and impact velocity of the apple fruit.

Fig. 2. (a) General view of the radius meter and (b) schematic representation of geometry to calculate the radius of the apple fruit.
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mechanical harvesting and sorting. For each impact the exact im-
pact energy and impact force were recorded. The lowest impact le-
vel was close to the detection limit of bruise damage and other
levels (2 and 3) exposed obviously visible damages and were easily
perceivable.

The curvature radius was measured at the fruit contact area by
means of a non-commercial radius meter because a proper mea-
suring device was not available. It was, therefore, constructed on
an analog height meter base (Fig. 2a).

The curvature radius was determined using the following equa-
tion (Mohsenin, 1986):

Radius ¼ ðACÞ2

8ðBDÞ þ
ðBDÞ

2
ð2Þ

where A, C and D are contact points of analog height meter probes
on apple surface and point B is middle of AC line segment (Fig. 2b).

Since an apple cannot be considered to be completely spherical,
the harmonic average (2R1R2/(R1 + R2)) was chosen based on cir-
cumferential (R1) and meridian curvature radius (R2). Based on
Hertz theory the use of harmonic mean is more acceptable than
the computational mean, due to its accuracy on estimation of smal-
ler curvature radius, which participate more to the maximum con-
tact pressure.

The acoustical stiffness of apple was calculated based on acous-
tical impulse-response method (Schotte et al., 1999; Van Zee-
broeck et al., 2007b). The apple was positioned with the stalk
end on a rubber pad. A microphone was fixed on a support at a
few millimeters off the apple and was directed upward. The fruit
was stimulated by tapping it on the equator at the opposing side
of the microphone by a rigid plastic bar. Acoustical measurements
were taken with a microphone that records the signal of sound
arising from the response vibration. Amplifiers supplied electrical
power to the transducer, magnified the signal and give proper out-
put drive signal and permit choosing the proper band-pass filters.
The signals of this microphone were collected and processed using
a PULSE� program (type 3564, B and K�). Before impact experi-
ments, the mass of apples were measured. The setup was adjusted
so that the collision of the apple triggered the measurement. To ob-
tain the signal’s frequency spectrum a Fast Fourier Transform (FFT)
was performed and consequently, the apples’ first resonance fre-
quency was determined. The acoustical stiffness was calculated as:

S ffi f 2m2=3 ð3Þ

where S is the acoustic stiffness (s�2 kg2/3), f the first resonance fre-
quency (s�1), and m the mass of the apple (kg), respectively.

A total of 120 apples were used for conducting the experiments.
These apples were divided into six groups and consequently, 20
apples were tested for each temperature-impact level
combination.

2.2. Data preprocessing

Based on these available data, the energy (E), contact force (F),
curvature radius (R), temperature (T) and acoustical stiffness (S)
were selected as variable inputs. The bruise volume (mm3) of the
Golden Delicious apple was selected as variable output. Prior to
any ANN training process with the trend free data, the data must
be normalized over the range of [0,1]. This is necessary for the neu-
rons’ transfer functions, because a sigmoid function is calculated
and consequently these can only be performed over a limited range
of values. If the data used with an ANN are not scaled to an appro-
priate range, the network will not converge on training or it will
not produce meaningful results. The method of normalization in-
volves mapping the data nonlinear over a specified range, whereby
each value of a variable x is transformed as follows:

xn ¼
logðxÞ � logðxminÞ

logðxmaxÞ � logðxminÞ
� ðrmax � rminÞ þ rmin ð4Þ

where x is the original data, xn the normalized input or output val-
ues, xmax and xmin, are the maximum and minimum values of the
concerned variable, respectively. rmax and rmin correspond to the de-
sired values of the transformed variable range. A range of 0.1–0.9 is
appropriate for the transformation of the variable onto the sensitive
range of the sigmoid transfer function.

The data were shuffled and split into two subsets: a training set
and a test set. The splitting of samples plays an important role in
the evaluation of an ANN performance. The training set is used
to estimate model parameters and the test set is used to check
the generalization ability of the model. The training set should be
a representative of the whole population of input samples. In this
study, the training set and the test set includes 96 patterns (80%
of total patterns) and 24 patterns (20% of total patterns), respec-
tively. There is no acceptable generalized rule to determine the size
of training data for a suitable training; however, the training sam-
ple should cover all spectrums of the data available (NeuroDimen-
sions Inc., 2002). The training set can be modified if the
performance of the model does not meet the expectations (Zhang
and Fuh, 1998). However, by adding new data to the training sam-
ples, the network then can be retrained.

2.3. The multilayer perceptron neural network

Fig. 3 shows a MLP with one hidden layer.
The network is in charge of vector mapping, i.e. by inserting the

input vector, Xq the network will answer through the vector Zq in
its output (for q = 1, . . .,Q).

In this study, two variants of MLP training algorithm, i.e. Basic
Back-propagation (BB) and Back-Propagation with Declining
Learning-rate Factor (BDLRF) where employed (Vakil-Baghmisheh
and Pavešic, 2001). A computer code was also developed in MAT-
LAB software to implement these ANN models.

2.3.1. BB algorithm
In this algorithm the total sum-squared error (TSSE) is consid-

ered as the cost function and can be calculated as

TSSE ¼
X

q

Eq ð5Þ

Eq ¼
X

k

dq
k � zq

k

� �2
for ðq ¼ 1; . . . ;QÞ ð6Þ

where dq
k and zq

k are the kth components of desired and actual out-
put vectors of the qth input, respectively.

The connection weights between nodes of different layers are
updated using the following equations:

ujkðnþ 1Þ ¼ ujkðnÞ � g� @E
@ujk
þ a ujkðnÞ � ujkðn� 1Þ

� �
ð7Þ

wijðnþ 1Þ ¼ wijðnÞ � g� @E
@wij

þ a wijðnÞ �wijðn� 1Þ
� �

ð8Þ

where g is the learning rate adjusted between 0 and 1, a is the
momentum factor at interval [0,1], wij is the connection weight be-
tween nodes i and j (for i = 1, . . ., l1, j = 1, . . ., l2), and ujk is the connec-
tion weight between nodes j and k (for j = 1, . . . l2,k = 1, . . . l3); wij and
ujk are set to small random values [�0.25,0.25]; l2 and l3 are the
number of neurons in the hidden and output layers. The decision
to stop training is based on some test results of the network, which
is carried out every N epoch after TSSE becomes smaller than a
threshold value. The details could be seen in Vakil-Baghmisheh
and Pavešic (2003).
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2.3.2. BDLRF algorithm
This training algorithm is started with a relatively constant

large step size of learning rate g and momentum term a. Before
destabilizing the network or when the convergence is slowed
down, these are values are decreased monotonically (Vakil-Bagh-
misheh and Pavešic, 2001).

2.4. Regression model

The dependent variable was the bruise volume (BD) of apple.
The independent variables were impact energy (E), impact force
(F), curvature radius at contact location (R), acoustical stiffness
(S) and temperature of apple (T). A backward multiple regression
method was applied to choose the pertinent independent variables
influencing the dependent variable. Furthermore, in order to verify
the validity of multiple regression models, a chi-square test was
carried out using the predicted and experimental data. SAS soft-
ware was used for data analysis.

2.5. Performance evaluation criteria

Four criteria were used to evaluate the performance of model.
They were mean absolute percentage error (MAPE), root mean-
squared error (RMSE), TSSE and the coefficient of determination
of the linear regression line between the predicted values from
the MLP model and the actual output (R2).They are defined as
follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

Pm
i¼1 dji � pji

� �2

nm

s
ð9Þ

R2 ¼
Pn

j¼1ðdj � �dÞðpj � �pÞ
� �2

Pn
j¼1 dj � �d
� �2 �

Pn
j¼1ðpj � �pÞ2

ð10Þ

TSSE ¼
Xn

j¼1

ðdj � pjÞ
2 ð11Þ

MAPE ¼ 1
nm

Xn

j¼1

Xm

i¼1

dji � pji

dji

����
����� 100 ð12Þ

where dji is the ith component of the desired (actual) output for the
jth pattern; pji is the ith component of the predicted (fitted) output
produced by the network for the jth pattern; �d and �p are the average
of the desired output and predicted output, respectively; n and m
are the number of patterns and the number of variable outputs,

respectively. A model with the smallest RMSE, TSSE, MAPE and
the largest R2 is considered to be the best.

3. Results and discussion

Neural networks were developed in order to establish the rela-
tionships between (i) bruise volume (mm3) of the Golden Delicious
apple and impact energy (E), curvature radius (R), temperature (T)
and acoustical stiffness (S) (Fig 4); (ii) bruise volume (mm3) of the
Golden Delicious apple and contact force (F), curvature radius (R),
temperature (T) and acoustical stiffness (S) (Fig 5). All networks
were 3-layered feed forward type, trained using both BB and BDLRF
training algorithms.

3.1. MLP topology (number of neurons in the hidden layer)

Based on universal approximation theorem, a neural network
with a single hidden layer and sufficiently a large number of neu-
rons can well approximate any arbitrary continuous function (Hay-
kin, 1994). Therefore, the ANNs designed in this study are
equipped with a single hidden layer. Determination of the number
of neurons in the hidden layer is rather an art than science, because
it may vary depending on the specific problem under study. In this
study, the optimal number of neurons in the hidden layer was se-
lected using a trial-and-error method and keeping the learning
rate, momentum term and epoch size constant (g = 0.4, a = 0.8
and epoch = 100,000). The process was repeated several times,
one for each set of data. Table 1 shows the effect of number of neu-
rons in the hidden layer on the performance of BB–MLP model. It is
observed that the performance of BB–MLP is improved as the num-
ber of hidden neurons increased. However, too many neurons in
the hidden layer may cause over-fitting problems, which results
in good network learning and data memorization, but lack of abil-
ity to generalize. On the other hand, if the number of neurons in
the hidden layer is not enough, the network may not be able to
learn. Considering Table 1, a BB–MLP model with 25 neurons in
the hidden layer seems to be appropriate for modeling f(E,R,T,S)
and with 30 neurons for modeling f(F,R,T,S).

3.2. Learning rate and momentum term

For the selected topology, several learning processes were per-
formed with different coefficients, ranged from 0 to 0.99 and 0.1 to
0.99 for learning rate and momentum term, respectively. Figs. 6
and 7 show the total sum square error values versus the learning
rate and momentum term.

It is observed that the error value is increased and the conver-
gence speed of the learning process is decreased when the momen-

Fig. 3. Configuration of the MLP with one hidden layer (Vakil-Baghmisheh, 2002).
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tum term is zero or close to 1. The results also revealed that the
convergence could be faster with a relatively larger learning rate
(close to 1). However, with a very high learning rate, the neural
network will not converge to its true optimum and the learning
process will be instable. Table 2 shows a relative minimum and
maximum learning rate and momentum term and minimum epoch
associated with BB–MLP.

Table 3 shows the parameters of optimum BDLRF–MLP. It was
found that performance of networks in the second approach is bet-
ter than in the first approach.

3.3. Statistical analysis

3.3.1. Training phase
During training phase the network used the training set. Train-

ing was continued until a steady state was reached. The BB and
BDLRF algorithms were utilized for model training. Some statistical
properties of the sample data used for training process and the pre-

diction values associated with different training algorithms are
shown in Table 4. Considering the average values of standard devi-
ation and variance, it can be deduced that the values and the dis-
tribution of real and predicted data are analogous. Accordingly,
the neural networks have been learned the training set very well,
hence the training phase has been completed.

3.3.2. Test phase
Table 4 shows some statistical properties of the data used in

test phase and the corresponding prediction values associated with
different training algorithms. It can be seen that the differences of
statistical values between the measured and predicted data in test
phase is more than in training phase for both of training algorithms
(Tables 2 and 3).This fact can be justified since these data are com-
pletely new for the MLP. On the other hand, the kurtosis, sum and
the average values are similar, hence it can be deduced that both
series are similar. The predicted values were very close to the de-
sired values and were evenly distributed throughout the entire

Fig. 4. Multilayer neural network used in the prediction of bruise volume (f(R,T,S,E)).

Fig. 5. Multilayer neural network used in the prediction of bruise volume (f(R,T,S,F)).

Table 1
Performance variation of a three-layer BB–MLP with different number of neurons in the hidden layer in the training phase.

Model Criterion Number of neurons in the hidden layer

5 10 15 25 30 35 40 45 50

f(R,T,S,E) MAPE (%) 8.89 6.81 6.73 6.50 6.30 5.85 4.89 3.51 2.69
RMSE 60.65 44.51 44.10 43.15 41.48 39.65 38.76 36.48 32.38
TSSE 0.2333 0.1377 0.1356 0.1286 0.1200 0.1129 0.1035 0.0957 0.0841

f(R,T,S,F) MAPE (%) 9.49 8.00 6.49 6.36 6.33 5.27 5.56 4.78 4.58
RMSE 69.38 57.65 46.79 45.67 45.59 43.32 42.65 41.36 39.87
TSSE 0.20901 0.1578 0.1182 0.1084 0.1008 0.0987 0.0989 0.0956 0.0932
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Fig. 6. TSSE profile as a function of learning rate and momentum term for modeling f(R,T,S,E).

Fig. 7. TSSE profile as a function of learning rate and momentum term for modeling f(R,T,S,F).

Table 2
Optimum parameters of neural network (BB–MLP).

Model Parameters of neural network

Range of learning rate Learning rate Range of momentum term Momentum term Epoch Topology

f(R,T,S,E) 0.1–0.3 0.25 0.7–0.9 0.8 300,000 5-25-1
f(R,T,S,F) 0.3–0.5 0.4 0.85–0.95 0.9 300,000 5-30-1

Table 3
Optimum parameters of neural network (BDLRF–MLP).

Model Parameters of neural network

The start point of BDLRF First phase(BB) Second phase(BDLRF) Epoch Topology

g a g a

f(R,T,S,E) 1000 0.8 0.9 0.04 0.05 300,000 5-25-1
f(R,T,S,F) 250,000 0.45 0.9 0.02 0.04 300,000 5-30-1
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Table 4
Statistical variables of desired and predicted values in training phase (MLP).

Model Training algorithm Statistical values

Average Variance Standard deviation Minimum Maximum Kurtosis Skewness Sum

f(R,T,S,E) Desired values BB and BDLRF 584.61 198098.16 445.08 55.30 1459.00 1.80 0.46 56122.73
Predicted values BB 587.32 197835.95 444.79 47.97 1434.75 1.79 0.45 56383.06

BDLRF 587.01 197603.83 444.53 54.70 1433.33 1.78 0.45 56352.72
f(R,T,S,F) Desired values BB and BDLRF 577.11 194749.85 441.30 55.30 1459.00 1.84 0.48 54825.73

Predicted values BB 574.06 188491.94 434.16 54.81 1454.96 1.82 0.46 54535.29
BDLRF 576.97 191609.35 437.73 55.29 1457.34 1.81 0.46 54811.79

Table 5
Statistical variables of desired and predicted values (test phase).

Model Training algorithm Statistical values

Average Variance Standard deviation Minimum Maximum Kurtosis Skewness Sum

f(R,T,S,E) Desired values BB and BDLRF 591.79 163167.22 403.94 71.00 1392.00 1.83 0.23 14203.00
Predicted values BB 587.18 166777.32 408.38 74.94 1388.78 1.80 0.27 14092.26

BDLRF 583.92 166019.05 407.45 74.95 1412.54 1.87 0.28 14014.09
f(R,T,S,F) Desired values BB and BDLRF 620.00 176261.33 419.83 71.00 1392.00 1.76 0.19 15500.00

Predicted values BB 622.89 183523.35 428.40 71.76 1355.23 1.68 0.20 15572.28
BDLRF 617.69 177544.10 421.36 70.63 1338.75 1.70 0.19 15442.24

Table 6
Statistical comparisons of desired and predicted data and the corresponding p values.

Phase Training algorithm Analysis types

Comparisons of means Comparisons of variances Comparisons of distribution

f(R,T,S,E) Train phase BB 0.966 0.995 0.999
BDLRF 0.970 0.990 1.000

Test phase BB 0.969 0.959 1.000
BDLRF 0.947 0.967 1.000

f(R,T,S,F) Train phase BB 0.962 0.875 0.999
BDLRF 0.998 0.937 1.000

Test phase BB 0.981 0.922 1.000
BDLRF 0.985 0.986 1.000

Training phase: pv = 0.980dv +8.178, R² = 0.993

Test phase: pv = 1.018dv -8.511, R² = 0.996
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Fig. 8. Predicted values of BB–MLP network versus measured values of bruise volume for f(R,T,S,F).
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Training phase: pv = 0.989dv +6.39, R² = 0.993
Test phase: pv = 1.001dv -3.245, R² = 0.996
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Fig. 9. Predicted values of BDLRF–MLP network versus measured values of bruise volume for f(R,T,S,F).

Training phase: pv = 0.998dv + 3.860, R² = 0.997

Test phase: pv = 1.009dv -10.307, R² = 0.997
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Fig. 10. Predicted values of BB–MLP network versus measured values of bruise volume for f(R,T,S,E).

Training phase: pv = 0.998dv + 3.467, R² = 0.999

Test phase: pv = 1.007dv -10.250, R² = 0.998
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Fig. 11. Predicted values of BDLRF–MLP network versus measured values of bruise volume for f(R,T,S,E).
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Table 7
Performances of two training algorithm in prediction of apple bruise volume.

Model Phase Performance criterion

Training algorithm MAPE (%) RMSE (mm3) TSSE (mm3)2

f(R,T,S,E) Train BB 5.94 22.77 49757.79
BDLRF 3.75 15.35 22608.13

Test BB 3.55 21.73 11337.70
BDLRF 4.23 20.32 9905.07

f(R,T,S,F) Train BB 3.11 36.34 125430.17
BDLRF 2.80 35.51 119789.88

Test BB 2.36 27.49 18891.77
BDLRF 2.06 26.95 18152.63

Fig. 12. Convergence diagrams of the MLP network obtained by the BB and the BDLRF algorithms for f(R,T,S,F).

Fig. 13. Convergence diagrams of the MLP network obtained by the BB and the BDLRF algorithms for f(R,T,S,E).
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Table 8
Model of regression for bruise volume prediction.

Model Regression equation R2

f(R,T,S,F) V = �3.25R + 0.97T � 4.5S + 22.9F � 0.23F � R � 0.097F � T 0.93
f(R,T,S,E) V = �6.97R � 1.48T + 1.94S + 7186.95E + 5.97E � R � 16.09E � T 0.97

Note: Minimum probability threshold p 6 0.05.

Table 9
Statistical comparisons of desired and predicted data and the corresponding p values.

Model type Analysis types

Comparisons of means Comparisons of variances Comparisons of distribution

f(R,T,S,E) MLP 0.995 0.997 1.000
Regression 0.997 0.908 0.999

f(R,T,S,F) MLP 0.992 0.948 1.000
Regression 0.751 0.445 0.674

Reg model: pv = 0.978dv + 12.724, R² = 0.978

MLP model: pv = 0.999dv +0.532 R² = 0.998

0

200

400

600

800

1000

1200

1400

1600

Pr
ed

ic
te

d 
B

ru
is

e 
V

ol
um

e 
 (

m
m

3 )

Measured Bruise Volume (mm 3)

Regression model

MLP model

0 200 400 600 800 1000 1200 1400 1600

Fig. 14. Predicted values of BDLRF–MLP network and regression model versus measured values of bruise volume for f(R,T,S,E).

Regression  model: pv = 0.917dv + 30.871, R² = 0.969

MLP model: pv = 0.991dv +4.671, R² = 0.994
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Fig. 15. Predicted values of BDLRF–MLP network and regression model versus measured values of bruise volume for f(R,T,S,F).
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range. Although the results of training phase were generally better
than the test phase, the latter reveals the capability of neural net-
work to predict the bruise volume with new data.

From statistical point of view, both desired and predicted test
data have been analyzed to determine whether there are statisti-
cally significant differences between them. The null hypothesis
assumes that statistical parameters of both series are equal. p va-
lue was used to check each hypothesis. Its threshold value was
0.05. If p value is greater than the threshold, the null hypothesis
is then fulfilled. To check the differences between the data series,
different tests were performed and p value was calculated for
each case. The results are shown in Table 5. The Student’s t-test
was used to compare the means of both series. It was also as-
sumed that the variance of both samples could be considered
equal. The obtained p values were greater than the threshold,
hence the null hypothesis cannot be rejected in all cases
(p > 0.94). The variance was analyzed using the F-test. Here, a
normal distribution of samples was assumed. Again, the p values
confirm the null hypothesis in all cases (p > 0.87). Finally, the Kol-
mogorov–Smirnov test also confirmed the null hypothesis. From
statistical point of view, both desired and predicted test data have
a similar distribution for both of training algorithms (p > 0.99,
Table 6).

Figs. 8–11 show the measured bruise volume versus the pre-
dicted ones. It is clear that the regression coefficients of determina-
tion between measured and predicted data (R2 > 0.9) are high for
the train data sets and test data sets. Since excellent estimation
performances were obtained using the trained network, it demon-
strates that the trained network was reliable, accurate and hence
could be employed for bruise volume prediction. These figures re-
veal that the bruise volume predictions from BB training algorithm
were not as good as fit to measured bruise volume in comparison
to BDLRF bruise volume prediction. Comparisons of measured ver-
sus predicted bruise volume for BB training algorithm resulted in a
least squares linear regression lines with slopes equal to BDLRF,
while the BDLRF training algorithm resulted in a lines with y-inter-
cepts lower than BB.

3.4. Comparison of training algorithms

For prediction of bruise volume, several networks with different
settings and training algorithms were trained. The performances of
the two training algorithm are shown in Table 7. For this specific
case study, the comparison of results reveals that both algorithms
are capable of generating accurate estimates within the preset
range. It can be seen that MAPE, RMSE and TSSE values resulted
by BDLRF are much less than or approximately equal those ob-
tained by BB algorithm for training phase and test phase.

Figs. 12 and 13 demonstrates TSSE versus the epoch number
(number of learning runs) for the BB and BDLRF algorithm applied.
From these figures it can be concluded that the BDLRF training
algorithm has achieved much better result, because it results in
lower error.

It was quite clear that the BDLRF training algorithm achieved a
much better performance than the BB training algorithm. Bearing

all the results obtained by this study in mind, the advantages of
the BDLRF training algorithm over BB are: faster convergence, low-
er training time and also it eases the process of parameter adjust-
ing by decreasing the sensitivity to the parameters’ values. The
results also conforms the findings of Vakil-Baghmisheh and Pavešic
(2001) and Rohani et al. (2011).

3.5. Comparison of regression model and MLP model

Any relationship, linear or nonlinear, can be learned and
approximated by an ANN such as a three-layer MLP with suffi-
ciently large number of neurons in the hidden layer. Another
remarkable advantage of ANN is its capability of modeling the data
of multiple inputs and multiple outputs. In contrast, the conven-
tional regression techniques can only be used to learn the relation-
ship between a single output and one or more inputs but cannot be
used to model the data of multiple inputs and multiple outputs.

The results of a multiple linear regression analysis between
bruise damage volume and series of independent variables (impact
energy, contact force, temperature, acoustical stiffness and curva-
ture radius) are presented in Table 8. All main factors in these mod-
els had significant effect at 5% probability level.

The analysis of statistical associated with MLP network employ-
ing the BDLRF training algorithm and regression model for predic-
tion of bruise volume shown in Table 9. The p values confirm the
null hypothesis in all cases (p > 0.40). Therefore, from statistical
point of view, both measured and predicted bruise volume have
a similar means, variances and distribution for both methods.

The plots of predicted bruise volume against measured bruise
volume are depicted in Figs. 14 and 15. The results reveal a very
good agreement between the predicted and the measured values
of bruise volume (R2 > 0.9). Also, these figures reveal that the
bruise volume predictions from regression model were not as good
as fit to measured bruise volume in comparison to MLP model
bruise volume prediction. Comparisons of measured versus pre-
dicted bruise volume for MLP model resulted in a least squares lin-
ear regression lines with slopes almost equal to regression model,
while the MLP model resulted in a lines with y-intercepts very low-
er than regression model.

Comparing the results generated using MLP network with those
generated by the regression model (Table 10), it can be concluded
that MLP model has a higher capability of producing accurate pre-
dictions in comparison to regression model, because the MLP mod-
el had a higher decrease of MAPE, RMSE and TSSE in comparison to
regression model.

4. Conclusions

This article focused on the application of MLPNN to predict ap-
ple bruise volume. To show the applicability and superiority of the
proposed approach, the measured data of apple bruise volume
were used. To improve the output, the data were first prepro-
cessed. MLP network was used and applied with the impact en-
ergy, contact force, curvature radius, temperature and acoustical
stiffness as variable inputs. The network was trained using both
BB and BDLRF learning algorithms. Statistical comparisons of mea-
sured and predicted test data were applied to the selected ANN.
From statistical analysis, it was found that at 95% confidence level
(with p-values greater than 0.9) both measured and predicted test
data are similar. The results also revealed that, using BDLRF algo-
rithm yields a better performance than BB algorithm. After testing
all possible networks with the test data sets, it has been demon-
strated that MLP network with 5-30-1 and 5-25-1 instruction
and BDLRF algorithm had the best output for force model and en-
ergy model, respectively. It is also found that neural network is

Table 10
Performances of two methods in prediction of bruise volume.

Model type Performance criterion

MAPE (%) RMSE (mm3) TSSE (mm3)2

f(R,T,S,E) MLP 3.84 16.46 22608.13
Regression 97.31 63.93 490414.75

f(R,T,S,F) MLP 2.65 33.90 137942.51
Regression 97.31 81.31 788672.81
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particularly suitable for learning nonlinear functional relationships
which are not known or cannot be specified.

Because the ANN does not assume any fixed form of depen-
dence between the output and input values, unlike the regression
methods, it seems to be more successful in the application under
consideration. It could be said that the neural network provides a
practical solution to the problem of estimating apple bruise vol-
ume in a fast, yet accurate and objective way. It is hoped that the
analysis conducted in this article can provide reference for the
choice of ANN in such area. Additional research on ANNs is
required to make use of these networks more appealing and
user-friendly to prediction of fruit bruise volume applications.
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