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Abstract  

A classical problem of hydrodynamic and thermal boundary layers over a permeable plate 
in a uniform laminar flow is considered in this paper. It is well known that the similarity and 
integral solutions for the flow and energy equations are possible for the boundary condition of 
constant surface temperature and constant heat flux but only a few similarity solutions has been 
attempted for convective surface boundary condition. It is implied in this paper that an integral 
solution is available if the mass transpiration and the convective heat transfer coefficient 
associated with the hot lower sided fluid vary like 𝑥−1 2⁄ . Where x is the distance from the 
leading edge of the solid surface. The governing partial differential equations are first 
described and then transformed into integral form, before being solved numerically. At the end, 
the effect of some parameters on the flow and thermal fields are examined and discussed. 
 
Key words: Boundary layer, Convective boundary condition, Integral solution, Permeable 
surface, Heat transfer. 
 
1. Introduction 

Needless to say, the most important aspect and application of viscous fluid theory is the 
boundary layer theory. In this theory we are usually confronted with two curve boundary value 
problems, i.e. one set of conditions is given at the surface and the other at infinity. It is also 
accepted that a boundary layer is the layer of fluid in the immediate vicinity of a bounding 
surface where the effects of viscosity are significant [1].  

Many natural and industrial problems can be simplified and solved using the boundary layer 
concepts. Moreover, use of these concepts allows scientists and engineers to identify the most 
dominant parameters governing the process. The first serious industrial application of boundary 
layer theory occurred in the late 1920s when designers began to use the theory’s results to 
predict skin friction drag on airships and airplanes. Prior to that time, they had been limited to 
using empirical data obtained primarily from wind tunnels. But because of inaccurate results 
that had being obtained from those wind tunnels, the designers were reluctant to hinge their 
designs on them. After that time and when the accuracy and value of skin friction formulas, 
obtained from boundary layer theory, became more appreciated, the results of the theory 
became a standard tool for the airplane designers [2].  

One of the classical problems in boundary layer theory is flow over a flat plate. This problem 
was considered by many studies and recently, Aziz [3] and Magyari [4] studied the similar 

mailto:me.pourramezan@stu.um.ac.ir
mailto:mbayani@um.ac.ir


15th Conference On Fluid Dynamics, fd2013, December, 18-20   
The University of Hormozgan, Bandar Abbas, Iran 

 

2 
 

problem, but with convective boundary condition. Also, Ishak [5] extended the work of Aziz 
[3] by introducing the effects of suction and injection on the surface. The similarity solution is 
the method used in all these studies.  

One approach to solving the boundary layer equations involves using an approximate 
integral method. The approach was originally proposed by von Kàrmen and applied by 
Pohlhausen [6]. It is without the mathematical complications inherent in the exact method; yet 
it can be used to obtain reasonably accurate results for key boundary layer parameters. 

The objective of the present study is to repeat Ishak’s [5] work, but by using the integral 
method instead of the similarity solution. Besides, it was tried to validate this paper’s solution 
by comparing with works of Ishak [5], Aziz [4] and Shokouhmand [7]. 

 
2. Governing Equations 

Consider a steady two-dimensional laminar boundary layer flow over a static permeable 
plate immersed in a viscous fluid of temperature 𝑇∞. It is assumed that the free stream moves 
on the top of the solid surface with a constant velocity 𝑈∞. The boundary equations are: 

(1) 
𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 = 0 

(2) 𝑢 𝜕𝑢𝜕𝑥 + 𝑣
𝜕𝑢
𝜕𝑦 =

−1
𝜌
𝑑𝑝∞
𝑑𝑥 + 𝜈

𝜕2𝑢
𝜕𝑦2 

(3) 𝑢 𝜕𝑇𝜕𝑥 + 𝑣
𝜕𝑇
𝜕𝑦 = 𝛼

𝜕2𝑇
𝜕𝑦2 

Where u and 𝑣 are the velocity components in the 𝑥 and 𝑦 directions, respectively, 𝑇 is the fluid 
temperature, 𝜈 is the kinematic viscosity, and 𝛼 is the thermal diffusivity. 
     The boundary conditions for the flow field are: 

 𝑢 = 0         &      𝑣 = 𝑉𝑤(𝑥)     𝑎𝑡      𝑦 = 0 

(4) 𝑢 → 𝑢∞     &      
𝜕𝑢
𝜕𝑦 = 0          𝑎𝑠      𝑦 → ∞ 

Where 𝑉𝑤(𝑥) is mass transfer velocity at the plate with 𝑉𝑤(𝑥) > 0 for injection (blowing), 
𝑉𝑤(𝑥) < 0 for suction and 𝑉𝑤(𝑥) = 0 corresponds to an impermeable plate. Also, for a flat plate 
we know that  −1𝜌

𝑑𝑝∞
𝑑𝑥 = 0 . 

It is assumed that the bottom surface of the plate is heated by convection from a hot fluid of 
temperature 𝑇𝑓 which provides a heat transfer coefficient ℎ𝑓. Under this assumption, the 
boundary conditions for the thermal field may be written as: 

 -𝑘 𝜕𝑇𝜕𝑦 = ℎ𝑓(𝑇𝑓 − 𝑇𝑤) ,               𝑦 → 0                

(5) 𝑇 = 𝑇∞ ,         
𝜕𝑇
𝜕𝑦 = 0,                𝑦 → ∞   

With 𝑘 and 𝑇𝑤 being the thermal conductivity and the uniform temperature over the top of the 
surface, respectively. 

By using Eq. (1), we can rewrite (2) and (3) as [8]: 

(6) 
𝜕
𝜕𝑥 (𝑢

2) + 𝜕
𝜕𝑦 (𝑢𝑣) = 𝜈

𝜕2𝑢
𝜕𝑦2 
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(7) 
𝜕
𝜕𝑥 (𝑢𝑇) +

𝜕
𝜕𝑦 (𝑣𝑇) = 𝛼

𝜕2𝑇
𝜕𝑦2 

By implementation of integral with respect to 𝑦 for (6) and after some simplifications we obtain: 

(8) 
𝑑
𝑑𝑥∫ (𝑢2)𝑑𝑦

𝑌

0
+ 𝑢∞𝑣(𝑦) = −𝜈

𝜕𝑢
𝜕𝑦𝑦=0

 

Also by substituting (4) into integral form of (1) we have: 

 (9) 𝑣(𝑦) = − 𝑑
𝑑𝑥∫ 𝑢 𝑑𝑦 + 𝑣(0)  

𝑦

0
 

Substituting (9) in (8) and using (4), after some calculations, we obtain: 

(10) 
𝑑
𝑑𝑥∫ 𝑢(𝑢∞ − 𝑢)𝑑𝑦 

𝑌

0
= 𝑑𝑢∞𝑑𝑥 ∫ 𝑢 𝑑𝑦 + 𝑢∞𝑣𝑤(𝑥) +

𝑦

0
𝜈 𝜕𝑢𝜕𝑦𝑦=0

 

We know that for flow over a flat plate 
𝑑𝑢∞
𝑑𝑥   is equal to zero, so the integral momentum 

equation can be written as: 

(11) 
𝑑
𝑑𝑥∫ 𝑢(𝑢∞ − 𝑢)𝑑𝑦 

𝑌

0
= 𝑢∞𝑣𝑤(𝑥) + 𝜈

𝜕𝑢
𝜕𝑦𝑦=0

 

In order that the similarity solutions of Eqs. (1)-(5) exists, Ishak [5] considered: 

(12) 𝑣𝑤(𝑥) = −
1
2 (
𝜈𝑢∞
𝑥 )

1
2  𝑓𝑤  

From scale up [8] we have δ ~ 𝑥
1
2 and from (12) we have  𝑣𝑤(𝑥)~𝑥−1 2⁄  , so we can take: 

(13) 𝑣𝑤(𝑥) =
𝐵
𝛿  

Where 𝐵 is a constant and δ is hydrodynamic boundary layer thickness. Substituting (13) into 
(11) we have: 

(14) 

𝑑
𝑑𝑥∫ 𝑢(𝑢∞ − 𝑢)𝑑𝑦 

𝑌

0
= 𝑢∞

𝐵
𝛿   +  𝜈

𝜕𝑢
𝜕𝑦𝑦=0

 

In order to solve above equation, we introduce the following transformations [8]: 

 
𝑓(𝜂) = 𝑢

𝑢∞
         ,         𝜂 = 𝑦𝛿          ,         𝑑𝑦 = 𝛿𝑑𝜂 

(15) 𝐼𝐹            𝜂 > 1                𝑇𝐻𝐸𝑁                𝑓(𝜂) = 1 

Substituting (15) into (2) and using (4), we obtain from (14): 

(16) 
𝑑
𝑑𝑥 (

𝛿2
2 ) =

1
𝑢∞
  
𝜈 𝜕𝑓𝜕𝜂𝜂=0

+𝐵

∫ 𝑓(1 − 𝑓)𝑑𝜂 1
0
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Considering a polynomial function of third degree for 𝑓 and after some calculations, by 
implementing (15) into (4) we have: 

(17) 
𝑓(𝜂) = −2 𝐵 + 𝜈𝐵 + 4𝜈 𝜂

3 + 3𝐵
𝐵 + 4𝜈 𝜂

2 +
6𝜈

𝐵 + 4𝜈 𝜂 

Substituting (17) into (16) we obtain: 

(18) 
𝛿
𝑥 = (2

𝐶2 
𝐶1
+ 𝑐3)

1
2
  𝑅𝑒𝑥−

1
2 

Where in (18)  𝐶1 , 𝐶2  and 𝐶3  are: 

(19) 𝐶1 = ∫ 𝑓(1 − 𝑓)𝑑𝜂 
1

0
= 9𝐵

2 + 1341𝐵𝜈 + 156𝜈2
70(𝐵 + 4𝜈)2 ,   𝐶2 =

𝜕𝑓
𝜕𝜂𝜂=0

= 6𝜈
𝐵 + 4𝜈 ,   𝐶3 =  2

𝐵
𝜈𝐶1

 

In Eq. (18), for 𝐶3 > 0 we have injection, for 𝐶3 < 0 suction and for 𝐶3 = 0 impermeable 
surface. For 𝐶3 = 0 we obtain from (19) 𝐵 = 0 and so we have: 

(20) 𝐶1 =
39
280                , 𝐶2 =

3
2 

Substituting (20) into (18) we obtain: 

(21) 
𝛿
𝑥 = (2

3
2
39
280

+ 0)

1
2

  𝑅𝑒𝑥−
1
2 = (21.54)

1
2  𝑅𝑒𝑥−

1
2           ,        𝛿𝑥 = 4.64  𝑅𝑒𝑥

−12 

That the above result is relatively a good approximation for Blasius [9] similarity solution [8]. 
In order to solve thermal field, we can substitute (9) into (7) and then by using (4) and (5) 

we obtain: 

(22) 

𝑑
𝑑𝑥∫ 𝑢(𝑇∞ − 𝑇)𝑑𝑦

𝑌

0
= 𝛼 𝜕𝑇𝜕𝑦𝑦=0

+ 𝑣𝑤(𝑥)(𝑇∞ − 𝑇0) +
𝑑𝑇∞
𝑑𝑥 ∫ 𝑢 𝑑𝑦

𝑌

0
 

We know that the ambient temperature 𝑇∞ is constant and not dependent on 𝑥, so  𝑑𝑇∞𝑑𝑥 = 0. 
In order to solve Eq. (22), we introduce the following transformations too [8]: 

(23) 
θ(𝜉) =

𝑇𝑓 − 𝑇
𝑇𝑓 − 𝑇∞

   , 𝜉 = 𝑦
𝛿𝑇
     ,          𝜉 = 𝜂∆     , ∆= 𝛿𝑇𝛿  

Substituting (23) into (21), we obtain:  

(24) 𝛿𝑇 = 4.64 ∆ (
𝜈
𝑢∞
)
1
2  𝑥

1
2 

Substituting (23) into (22), using (15), (23) and (13), we have: 

(25)   𝑑𝑑𝑥 (
𝛿𝑇2
2 ) =

𝛼
𝑢∞
𝜕θ
𝜕𝜉𝜉=0

+ 𝐵∆𝑢∞ (
𝑇0 − 𝑇∞
𝑇𝑓 − 𝑇∞)

∫ 𝑓(∆𝜉)1
0 (1 − θ(𝜉))𝑑𝜉

 

Considering a polynomial function of third degree for θ and after some calculations, by using 
(23) and (5) we have: 
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(26) θ(𝜉) = 𝑎1𝜉3 + 𝑏1𝜉2 + 𝑐1𝜉 + 𝑑1 

Where in (26), 𝑎1, 𝑏1, 𝑐1 and 𝑑1 are: 

 
𝑎1 = −

2𝛿𝑇ℎ𝑓𝐵∆ + 2𝛼𝛿𝑇ℎ𝑓
𝛿𝑇ℎ𝑓𝐵∆ + 4𝛼𝛿𝑇ℎ𝑓 + 6𝛼𝑘

       ,      𝑏1 =
3𝛿𝑇ℎ𝑓𝐵∆

𝛿𝑇ℎ𝑓𝐵∆ + 4𝛼𝛿𝑇ℎ𝑓 + 6𝛼𝑘
 

(27) 𝑐1 =
6𝛼𝛿𝑇ℎ𝑓

𝛿𝑇ℎ𝑓𝐵∆ + 4𝛼𝛿𝑇ℎ𝑓 + 6𝛼𝑘
           ,       𝑑1 =

6𝛼𝑘
𝛿𝑇ℎ𝑓𝐵∆ + 4𝛼𝛿𝑇ℎ𝑓 + 6𝛼𝑘

 

For 𝐵 = 0 (impermeable plate) we have no injection and suction. We also can obtain from (27): 

 
𝑎1 = −

𝛿𝑇ℎ𝑓
2𝛿𝑇ℎ𝑓 + 3𝑘

                   ,                𝑏1 = 0  

(28) 𝑐1 =
3𝛿𝑇ℎ𝑓

2𝛿𝑇ℎ𝑓 + 3𝑘
                       ,                𝑑1 =

3𝑘
2𝛿𝑇ℎ𝑓 + 3𝑘

 

Considering above simplifications, we have two case for thermal field: 

1-  ∆< 𝟏 

(29) 
𝛿𝑇
𝑥 = (

280
14∆ − ∆3)

1
2
𝑃𝑟−

1
2 𝑅𝑒𝑥

−12              and         ∆= 3.6 ( 1
14∆ − ∆3)

1
2
𝑃𝑟−

1
2 

2- ∆> 𝟏 

(30) 

𝛿𝑇
𝑥 = (

280
−35∆−1 + 14∆−2 − ∆−4 + 35)

1
2
𝑃𝑟−

1
2 𝑅𝑒𝑥

−12                and  

∆= 3.6 ( 1
−35∆−1 + 14∆−2 − ∆−4 + 35)

1
2
𝑃𝑟−

1
2 

As we saw in (29) and (30), 𝛿𝑇~𝑥
1
2. In order that Eq. (26) not be dependent on 𝑥, we easily 

find in (27) and (28) that ℎ𝑓 must be proportional to 𝑥−
1
2. This is the vital condition for the 

similarity solution that the solution must be independent of 𝑥 [8]. So we can assume that [3]: 

(31) ℎ𝑓 = 𝑐 𝑥−
1
2 

In order to simplify equations and have comparability with Ishak’s [5], Aziz’s [3] and 
Shokouhmand’s [4] results, Eq. (28) was rewritten and a constant 𝑎, was introduced: 

(32) 𝑎 = 𝑐𝑘 (
𝜈
𝑢∞
)
1
2
 

(33) 𝑎1 = −
4.64∆𝑎

9.28∆𝑎 + 3      ,     𝑐1 =
13.92∆𝑎
9.28∆𝑎 + 3    ,    𝑑1 =

3
9.28∆𝑎 + 3 
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3. Results and Discussion 
The focus in this section will be on the solving of the flow and the thermal fields. In order 

to approach the goal, the FORTRAN software was used.  
In order to compare our results with those of Ishak [5], we took the assumption that was 

introduced by him: 

(34) 𝑣𝑤(𝑥) =
1
2 (
𝜈𝑢∞
𝑥 )

1
2  𝑓𝑤  

Using iterative method to find 𝐵, we tried to obtain 𝛿 from Eq. (18) and 𝑓(𝜂) from Eq. (17) for 
various values of  𝑓𝑤. 

 

  
 

Figure 1: Velocity profiles for various values of  𝑓𝑤 
 

Figure 2:  Hydrodynamic boundary layer thickness 
for various values of 𝑓𝑤 

 
Fig. 1 shows the velocity profiles for different values of suction/injection parameter 𝑓𝑤. As 

it was seen in Eqs. (17) and (18), parameters 𝑎 and 𝑝𝑟 give no influence to the flow field. It 
was observed that the velocity gradient was increased by suction and decreased by injection. It 
means that the skin friction, correspondingly, increased as 𝑓𝑤 increased and decreased as 𝑓𝑤 
decreased. Thus the surface shear stress is higher for suction (𝑓𝑤 < 0) compared to injection 
(𝑓𝑤 > 0). 

Fig. 2 shows the hydrodynamic boundary layer thickness δ, for different values of 𝑓𝑤. It was 
observed that δ  increased as 𝑓𝑤 increased and decreased as 𝑓𝑤 decreased. This observation can 
easily justify our results in Fig. 1. 

We also tried to compare our results with aziz’s [3], Ishak’s [5] and Shokouhmand;s [7] for 
impermeable surface of the plate. In order to that, we took new variable 𝛾, and new 
dimensionless temperature function that were introduced by Aziz [3]: 

(35) 
𝜗(𝜉) = 𝑇 − 𝑇∞

𝑇𝑓 − 𝑇∞
= 1−

𝑇𝑓 − 𝑇
𝑇𝑓 − 𝑇∞

= 1 − θ(𝜉)           
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(36) 𝛾 = 𝑦 (𝑢∞𝜈𝑥)
1
2    

𝐸𝑞.  (24)
→       𝛾 = 4.64 𝑦𝛿𝑇

∆ ( 𝜈𝑢∞
)
1
2 (𝑢∞𝜈 )

1
2    →   𝜉 =  𝛾

4.64 ∆ 

With this new variable we can obtain from Eqs. (26), (32), (34) and (35): 

(37)  𝜗′(0) = 3𝑎
9.28 ∆ 𝑎 + 3 

Needless to say, we obtained Eqs. (34)-(37) just to compare our results with those of Aziz 
[3], Ishak [5] and Shokouhmand [7]. Now we can calculate 𝜗(0) and 𝜗′(0) from Eqs. (34) and 
(37), respectively, with iterative method to obtain ∆. 

  

Figure 3:  A comparison between presented results for 𝜗′(0),     a) 𝑝𝑟 = 0.1,       b) 𝑝𝑟 = 10 

 
Table 1: Values of 𝜗′(0) for 𝑝𝑟 = 0.5 and various values of 𝑎. (The similarity solution was reported by [7]) 

a Similarity Integral method  a Similarity Integral method 

0.05 0.04192336 0.0417384  0.8 0.19596121 0.191985 
0.1 0.07218628 0.0716398  1 0.20605591 0.201665 
0.2 0.11295543 0.111623  5 0.24672765 0.240458 
0.4 0.1574047 0.154829  10 0.98431 0.986633 
0.6 0.1811687 0.177765  20 0.99209 0.993271 

 
Fig. 3 shows a comparison between the results that presented by Aziz [3], Ishak [5] and the 

present study (integral method). It is obvious that the numerical results for 𝑝𝑟 = 0.1 are 
relatively not enough accurate, owing to the small boundary layer thickness set in all the 
computations. It is well known that the prandtl number pr is a ratio of viscous to conduction 
effects, so the lower prandtl number, the thicker thermal boundary layer [8]. 

Table 1 shows Values of 𝜗′(0) for various values of 𝑎. The similarity solution results in this 
table were reported by H.Shokouhmand [7]. The difference between our solution and results 
reported by [7] in the worst situation was about 0.2%, so it is evident that our solution results 
are relatively accurate. 
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Figure 4:  Temperature profiles for various values 
of 𝑝𝑟 when 𝑓𝑤 = 0 and 𝑎 = 1 

Figure 5:  Temperature profiles for various values 
of 𝑎 when 𝑓𝑤 = 1  and 𝑝𝑟 = 0.72 

 
Fig. 4 shows the temperature profiles for different values of 𝑝𝑟 when the other parameters 

are fixed. It is evident from this figure that the temperature gradient at the surface increases as 
𝑝𝑟 increases, which implies an increase in the heat transfer rate at the surface. This is because 
a higher Prandtl number fluid has a relatively lower thermal conductivity, which reduces 
conduction, and thereby the thermal boundary layer thickness, and as a consequence the heat 
transfer rate at the surface increases [8]. 

Fig. 5 shows the temperature distribution for a fixed Prandtl number of 0.72 and for various 
values of the parameter 𝑎. It is seen in Fig. 5 that the surface temperature 𝜃(0) increases as 𝑎 
increases. The parameter 𝑎 at any location x is directly proportional to the heat transfer 
coefficient associated with the hot fluid ℎ𝑓. The thermal resistance on the hot fluid side is 
inversely proportional to ℎ𝑓. Thus as 𝑎 increases, the hot fluid side convection resistance 
decreases and consequently, the surface temperature 𝜃(0) increases [3]. As it is evident in Eqs. 
(31) and (32), ℎ𝑓 → ∞ as 𝑎 → ∞, so the solution approaches the classical solution for the 
constant surface temperature that was considered by Pahlhausen [6].  

 
3. Conclusions 

The problem of steady laminar boundary layer flow and heat transfer over a stationary 
permeable flat plate with convective boundary condition was considered. Integral method 
solution was used to solve this problem. The solution was compared to the similarity solution 
results that were reported by some other studies. It was seen that the difference between results 
was negligible. It was observed that integral method solution exists if the convective heat 
transfer from the lower surface and the mass transpiration rate at the surface are proportional to 
𝑥−1 2⁄ , where 𝑥 is the distance from the leading edge of the solid surface. It was also found that 
suction decreases both hydrodynamic and thermal boundary layers. Thus, suction increases 
surface shear stress and as a consequence increases the heat transfer rate at the surface and 
increases velocity and temperature gradient while injection acts vice versa. 
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