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Abstract— In this study, inverse methodology is applied to
estimate the controllable parameters in hyperthermia such as the
external heat source and the heat transfer coefficient at the skin
surface. The direct problem is solved by the fully implicit finite
volume method to obtain the temperature data. This data is used
as additional information to estimate the external heat source
and the heat transfer coefficient at the skin surface
simultaneously. Both of these parameters are considered as
functions of time, and since no information exists about their
functional form, the problem is classified as the function
estimation method. Conjugate gradient method is applied and the
comparison of estimated data with measurements confirms the
accuracy of this method.

Keywords- Hyperthermia; Inverse Problem; Heat Source; Heat
Flux; Conjugate Gradient Method

I. INTRODUCTION

One way for treating tumor region is increasing its
temperature to a specific quantity, while the temperature in
neighboring healthy parts remains in the safe range [1]. This
method is named hyperthermia and it can be used with some
other types of cancer therapy methods, such as chemotherapy
and radiotherapy. The temperature distribution in the tissue
should be controlled to achieve a safe and effective treatment.
Instead of using experimental devices, the inverse methodology
can be employed to obtain boundary conditions or material’s
thermal properties for the desired temperature distribution. In
this method the temperature of medium is regarded as
additional information and therefore, unknown quantities are
obtained.

Several investigations are carried out optimizing
controllable parameters to achieve the desired temperature
distribution along the living tissue. Dhar et al. [2] obtained time
dependent heating power in a multilayered tissue to attain
desirable temperature distribution across the tumor. Ren et al.
[3], used boundary element method to obtain the heat source in
biological bodies. Kuznetsov [4] fixed the total volumetric heat
generation due to spatial heat source in the Pennes equation
over the treatment procedure in order to formulate an optimal
problem to maximize the tumor temperature. He showed that

the maximization of temperature and of the thermal dose is not
necessarily equivalent.

Another issue that concerns inverse bio-heat transfer
problem is obtaining thermal properties of the living tissue. Liu
et al, [5] studied the inverse non-Fourier bio-heat transfer
problem by dual phase lag model. In this model, phase lag
times are estimated with the experimental data. Yang et al. [6]
considered the non-Fourier effect of finite heat propagation and
estimated the unknown time-dependent surface heat flux of a
living skin tissue by conjugate gradient method. Aghayan et al.
[7] estimated the overall heat transfer coefficient of the cooling
system of RF capacitive hyperthermia treatment by using
conjugate gradient method. The effects of measurement errors
and sensor positions are also investigated.

Pennes equation [8] is a simple bio-heat transfer equation
which is used widely for modeling the heat transfer in the
living tissue. In this equation, the heat exchange between blood
and tissue is considered as a heat sink. Deng et al. [9] solved
this problem analytically by the Green function method. The
condition of using this equation is investigated by several
researchers. Horng et al. [10] indicated that the Pennes
equation is appropriate to model the heat exchange from
vessels with diameters less than 0.5mm. Kou et al. [11] applied
one equation porous model (OEPM) and solved it with the
Green function method. This model is organized based on
combination of the energy conservation equations of tissue and
blood into one single energy equation and the porous medium
concept. Yuan [12] proposed two equation porous models
(TEPM) and compared results with one equation porous model.
The comparison indicated that OEPM is appropriate for
simulating the temperature and the thermal dose distribution
accurately until the diameter of the blood vessels distributed in
the tissue is less than 30 µm.

Applying inverse method to simultaneously obtain thermal
properties of tissue is reported rarely in the literature. Huang et
al. [13] used the conjugate gradient method to determine the
optical diffusion and the absorption coefficients of tissue
simultaneously. Huang et al. [14] considered the effect of
measurement errors and applied Levenberg-Marquardt method



to estimate the effective thermal conductivity and the
volumetric heat capacity of a living tissue simultaneously.

Administering the surface temperature by skin cooling is
the most appropriate way for controlling the temperature in the
tissue. However, this method is only efficient for controlling
the temperature of limited parts which are positioned near the
skin. Another way of controlling the tissue temperature is
adjusting the external heat source properly. Since the external
heat source and the heat transfer coefficient at the skin surface
are two major controllable parameters in hyperthermia, the
perfect solution is to estimate them simultaneously for the
desired temperature distribution. In this paper conjugate
gradient method with adjoint problem is applied as the inverse
method, and these two parameters are estimated.

II. MATHEMATICAL MODELING

A schematic of tissue model is shown in Fig. 1. The
temperature of superficial tissue is increased by the external
heat source. It is assumed that no significant blood vessel (any
vessel with a diameter larger than 30µm [12]) is passed from
the tissue.  Thermo physical properties of tissue are constant,
and the modeled tissue is composed of only one layer with
mean properties. Perfusion is assumed to be uniform through
time and space. The formulation of direct, sensitivity, and
adjoint problems are needed to solve problem by conjugate
gradient method. These equations are obtained as follows.

Fig. 1. Schematic of a one-dimensional tissue model

A. The Direct Problem
One dimensional Pennes equation is applied. The

mathematical formulation of governing equation, boundary
conditions, and initial condition of the direct problem can be
expressed as:
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where ( )Q t is the heat source, the subscripts t, b , and  refer
to the tissue, blood, and the cooling fluid, respectively.

T ,  , c , and k are temperature, density, specific heat, and
thermal conductivity, respectively. The metabolic heat
generation is demonstrated by mQ and the final time of
measurement is denoted by ft .

B. The Inverse Problem
In the inverse problem, all the parameters in the direct

problem are considered to be known, except the heat source
and the heat transfer coefficient. Temperature distribution
which is obtained from the direct problem is considered as
additional information. The difference between the
temperature data from the direct problem and the temperature
data which is obtained by solving the inverse problem should
be minimized. In this case, the following functional should
minimize:
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where ( )mZ t and ( )mT t are refer to measured temperature
and computed temperature at the sensor locations, respectively.

2.2.1 The Sensitivity Problem
The sensitivity problem can be obtained by perturbing the

heat source ( )Q t by ( )Q t and the temperature ( , )T x t by

1T . The subscripts (1) refer to perturbing the temperature
when the heat source is changed. These perturbed quantities
should be replaced in the direct problem. Then, by subtracting
the original direct problem from this resulting relation, the
sensitivity problem is obtained. By neglecting second order
terms, the sensitivity equation, the boundary conditions and the
initial condition are obtained as follows:
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Similar to this process, the sensitivity problem for the heat
transfer coefficient can be obtained. The sensitivity equation,
the boundary conditions and the initial condition for the
sensitivity problem for the ( )h t are as follows:
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2 ( , 0)T l t  (12)

2 ( , 0) 0T x  (13)

where the subscript (2) refer to the condition in which the
temperature variation is caused by the changes in the heat
transfer coefficient.

2.2.2 The adjoint Problem
The adjoint problem is obtained by multiplying the direct

problem by the Lagrange multipliers  ,x t and integrating
over the corresponding time and space domain. This expression
should be added to right-hand side of Eq. (5). So, the following
expression is obtained for the functional:
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The variation of the above relation is obtained by
perturbing ( , )T x t by 1( , )T x t . Then the original expression
(Eq. 14) subtracted from the resulting relation, and second
order terms are neglected, thus the following relation is
obtained:

 

1
0 0

2

2
0 0

2 ( ) ( ) ( , ) ( )

,

t

m m m
t x

t L

t b b b t t
t x

l

J T t Z t T x t x x dxdt

T Tx t k c T Q c dxdt
tx



   

 

 

       

   
     

  

 

 

f

f
(15)

The second term in the right hand side of Eq. (15) is
integrated by parts. After some mathematical operation and
utilizing the initial and boundary conditions of the sensitivity
problem the adjoint problem is obtained as follows:
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The following integral term is remains:
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2.2.3 The Gradient Equation
By assuming that the unknown function ( )Q t belongs to

the square integrable functions in the domain 0 ft t  , we
can write:
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where  1' tJ Q   is the gradient of functional  ( )J Q t . By
comparing Eq.(20) and (21) the relation for the gradient of
functional  J Q t   is obtained as follows:
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Similarly, the effect of the variation of the functional (14)
by change in the heat transfer coefficient can be obtained by
perturbing ( , )T x t by 2 ( , )T x t and ( )h t by ( )h t . After
similar mathematical operation, the adjoint problem is found
identical to the one for ( )Q t . The gradient equation for this
case is obtained from the following relation:
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2.2.4 Conjugate Gradient Method for Minimization
The iterative procedure of the conjugate gradient method

for evaluating  Q t and  h t at the ( 1)thk step is as
follows:
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in these equations k is the search step size and kP is the
direction of descent. The directions of descent are obtained
from the following relations:
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in the above equation, k is the conjugate coefficient at
thk step. The conjugate coefficients is obtained as follows:
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Finally, the search step sizes are obtained as following
relations:
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in these equation  1
k

mT P and  2
k

mT P are obtained by

solving the sensitivity problems. In the first sensitivity problem
( )Q t is substituted by 1

kP , and in the second one ( )h t is

substituted by 2
kP .

2.2.5 Stopping Criterion
The stopping criterion for this method for the case that

contains no measurement error is specified as follows:
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where  is a small specified number, that can be used as the
stopping criterion. Measurement errors in the temperature data
is also considered in the solution. By assuming

( ) ( )m mZ t T t   as the standard deviation of the
measurement error, the stopping criteria  can be obtained
from the discrepancy principle:
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III. RESULTS AND DISCUSSION
Achieving desired temperature distribution at the tumor

region cannot be simply obtained, since it is being affected by
several parameters. Inaccessibility of boundary conditions in
the tissue except the skin condition and disability of current
equipments to generate the demanded heat source are the most
important problems to achieve safe and efficient therapy. Both

the external heat source and the heat transfer coefficient of
cooling fluid are considered as objectives of this study.

One dimensional Pennes equation with cooling condition
at skin is regarded as the governing equation. The reasonable
length is l 0.03m as demonstrated in other studies [9]. The
final time is chosen as 60s.  The thermo-physical properties of
the tissue are demonstrated in table 1.

TABLE I. THERMO PHYSICAL PROPERTIES OF TISSUE

Properties Value

,t bc c 4200 J/kg.K

,t b  31000 kg/m

tk 0.5 W/m.K

mQ 33380 W/m

b 0.0005 ml/s/ml

bT 37 C

Finite volume approach with the fully implicit method is
used to solve direct, sensitivity, and adjoint problems. In order
to solve discretized equations, TDMA method is implemented.
The code is verified and the grid size and time step are found
as 43*10 m and 1s, respectively. The direct problem is
validated by Deng's analytical solution [9]. First, the direct
problem is solved with known heat source and heat transfer
coefficient and as a result the temperature distribution is
obtained. Hence, the pseudo measurement is ready to be
imported into the inverse procedure. In this problem sensors
are located on the grid location.

The applicability of conjugate gradient method is assessed
by two numerical test cases.

A. Numerical test case 1
In the first case, the triangular profiles are considered for

the time-dependent heat source and the heat transfer
coefficient.

Fig. 2. compares exact values of the heat source with
estimated results and Fig. 3. compares the exact values of the
heat transfer coefficient with estimated ones which are
obtained by the inverse method.

Zero value is considered as an initial guess, for both the
heat source and the heat transfer coefficient. The average
relative errors for the time-dependent heat source and the heat
transfer coefficient are computed in order to study the validity
of the inverse method. These relative errors are defined as
following relations:
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where ( ) Q j


and ( )h j


are represented as estimated values of
the time-dependent heat source and the heat transfer coefficient
respectively and  j represents the index of time step.

In this test case, for exact measurements, i.e. 0.0  , the
average errors for ( )Q t and ( )h t are computed as

1 1.78%ERR  and 2 2.037%ERR  ,respectively.

Fig. 2. Estimated heat source for different measurement errors (case 1)

Fig. 3. Estimated heat transfer coefficient for different measurement errors
(case 1)

The effect of the measurement errors on the inverse
solution is also studied by calculating the average relative
errors. In the case of 0.01  , the average errors for ( )Q t and

( )h t are computed as 1 7.56%ERR  and 2 4.08%ERR  ,
respectively. Finally, for 0.02  , the average errors for

( )Q t and ( )h t are found as 1 14.04%ERR  and
2 8.09%ERR  , respectively. The relative average errors for

both functions have a reasonable increase following the trend
of measurement errors. (use equation module for the all
relations)

3.1 Numerical test case 2
The accuracy of simultaneous estimation of the heat source

and the heat transfer coefficient with conjugate gradient
method is also examined by the step profile. is considered for
the time-dependent heat source and the heat transfer
coefficient.

The maximum value for ( )Q t in the numerical test case 2
is considered equal to the one in the numerical test case 1, and
the same rule is carried out for ( )h t .Fig. 4. and Fig. 5. compare
the solution of the inverse and the direct problems for the
second test case.

Similar to the first case, the inverse problem is solved by
zero initial guess value for both the heat source and the heat
transfer coefficient. For this test case, the average errors for

( )Q t and ( )h t are computed as 1 4.08%ERR  and
2 2.21%ERR  , respectively for exact measurements.

By considering the measurement errors, the average relative
errors are obtained. In the case of 0.01  , the average errors
for ( )Q t and ( )h t are found as

1 4.14%ERR  and 1 2.54%ERR  , respectively.

Fig. 4. Estimated heat source for different measurement errors (case 2)



Fig. 5. Estimated heat transfer coefficient for different measurement errors
(case 2)

For 0.02  , the average errors for Q(t) and h(t) are
calculated as 1 6.11%ERR  and 2 3.69%ERR  , respectively.
Similar to the previous test case, the relative average errors
have a reasonable increase following the trend of measurement.

Inaccurate estimation value is easily detectable at the end of
time domain in this test case. Paying attention to the adjoint
problem and the gradient equation, it can be seen that the
gradient equation is null in this point and therefore, the initial
guess stays fixed, so it cannot be modified by the procedure. In
the first test case, for both the heat source and the heat transfer
coefficient, such problem does not exist, because their exact
value and initial guess in this point is the same. This problem
can be solved easily by considering a larger domain instead of
current one.

To observe the effect of initial guess value on the estimated
values, 210h W m K and 100Q W are applied as initial
value for both numerical test cases. The relative errors for all
cases including estimation of exact measurements are not
altered significantly.

1. CONCLUSIONS

The conjugate gradient method with adjoint problem was
applied to determine the time dependent heat source and the

heat transfer coefficient simultaneously in a living tissue. One
dimensional Pennes equation was utilized for modeling the
heat transfer in the tissue. Two numerical test cases were
studied. Pseudo-temperature data was used as additional
information to solve the inverse problem and the influence of
measurement errors was observed. For the test cases
considered in this study, this method can simultaneously
estimate a heat source and a heat transfer coefficient precisely.
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