

A new method to measure the distance between interval-valued fuzzy numbers

Mohammad Reza Rabiee^{1,*}, Naser Reza Arghami^{1,*} and Bahram Sadeghpour^{1,2,*}

¹Department of Statistics, Ferdowsi University of Mashhad, Mashhad, 91775 Iran, ²Department of Statistics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, 47419 Iran,

Corresponding author. Email: rabie1354@yahoo.com

* Email: arghami nr@yahoo.com

* Email: <u>sadeghpour@umz.ac.ir</u>

Abstract

This paper gives a new kind of distance between interval-valued fuzzy sets defined on real line R, denoted by $D_{f,p}^*$. The

applicability of the proposed method is investigated by a numerical data set and this distance is compared with two other distances by an example.

Keywords: Interval-valued fuzzy number, distance, Hausdorff metric.

1 Introduction

Since fuzzy set theory was introduced by Zadeh [18], many new approaches and theories treating imprecision and uncertainty have been proposed. Specially, the intuitionistic fuzzy set theory pioneered by Atanassov [1], and the interval-valued fuzzy set theory suggested by Grozafczany [6] and Turksen [11] are two well-known generalizations of the fuzzy set theory. In fact, it is pointed out that there is a strong connection between Atanassov's intuitionistic fuzzy sets and the interval-valued fuzzy sets [3, 4, 12]. Over the last decades, the theory of interval-valued fuzzy set has been developed in different directions. For the proposes of this article, we briefly review some works on this topic.

Gorzalczany [7] investigated approximate reasoning based on interval-valued fuzzy sets. Wang and Li [13] presented the applications of interval-valued fuzzy numbers and interval-distribution numbers in pseudo-probability metric spaces. Wang and Li [13, 14] introduced the concept of interval-valued fuzzy number and studied some of its properties and presented a method for calculating correlation and information energy of interval-valued fuzzy numbers. In [8], Hong and Lee presented some algebraic properties and a distance measure for interval-valued fuzzy numbers. Przemyslaw [10] studied some distances between interval-valued fuzzy sets based on the Hausdorff metric. Wang et al. [15] investigated the combination and normalization of the interval-valued belief structures. Deschrijver [5] investigated some arithmetic operators in interval-valued fuzzy numbers and presented a method for handling information filtering problems based on interval-valued fuzzy numbers and presented a similarity measure between interval-valued fuzzy numbers. In [9], Chen presented a method for handling the similarity measure problems of interval-valued fuzzy numbers.

The structure of this paper is as follows. Section 2 shows the preliminaries, it includes notations and basic concepts which will be used in the following section. Section 3 shows the new kind of distance and discusses some Proposition and Theorem. By using a numerical example, we compare this distance with two other distances in Section 4. A brief conclusion is given in the last section.

2 Preliminaries

In this section, we review some elementary definitions and a well-known result of the interval-valued fuzzy sets and interval-valued fuzzy numbers, biased on Wang and Li [13], Hong and Lee [8], and Zhixn and Hongmei [19]. Let I = [0,1] and $[I] = \{[a,b] | a \le b, a, b \in I\}$. For any $a \in I$, define $\overline{a} = [a,a]$.

Definition 2.1 If $a_t \in I, t \in T$, then we define $\bigvee_{t \in T} a_t = \sup\{a_t : t \in T\}$ and $\bigwedge_{t \in T} a_t = \inf\{a_t : t \in T\}$. We also define for $[a_t, b_t] \in [I], t \in T$,

$$i) \lor_{t \in T} [a_t, b_t] = \left[\lor_{t \in T} a_t, \lor_{t \in T} b_t \right] \land_{t \in T} [a_t, b_t] = \left[\land_{t \in T} a_t, \land_{t \in T} b_t \right]$$
(1)
$$ii) [a_t, b_t] = [a_0, b_0] \text{ iff } a_t = a_0, b_t = b_0,$$
(2)

$$[a_1, b_1] = [a_2, b_2] \text{ iff } a_1 = a_2, b_1 = b_2,$$
(2)

$$[a_1, b_1] \le [a_2, b_2] \text{ iff } a_1 \le a_2, b_1 \le b_2, \tag{3}$$

$$[a_1, b_1] < [a_2, b_2] \text{ iff } [a_1, b_1] \le [a_2, b_2], \text{ but } [a_1, b_1] \ne [a_2, b_2].$$
(4)

Definition 2.2 Let X be an ordinary nonempty set. Then:

- The mapping $A: X \to [I]$ is called an interval-valued fuzzy set (IVFS) on X. The set of all IVFS on X is denoted by IF(X).
- For $A \in IF(X)$, let $A(x) = [A^{-}(x), A^{+}(x)]$, for all $x \in X$. Then two fuzzy sets $A^{-}: X \to I$ and $A^{+}: X \to I$ are called lower fuzzy set and upper fuzzy set of A, respectively.
- The value of $\prod_{A} (x) = A^+(x) A^-(x)$ is called the degree of non-determinancy of the element $x \in X$ to the IVFS A.

Definition 2.3 Let $A \in IF(X)$ and $[\lambda_1, \lambda_2] \in [I]$. We call $A_{[\lambda_1, \lambda_2]} = \{x \in X : A^-(x) \ge \lambda_1, A^+(x) \ge \lambda_2\}$ and

 $A_{(\lambda_1,\lambda_2)} = \{x \in X : A^{-}(x) > \lambda_1, A^{+}(x) > \lambda_2\} \text{ the } [\lambda_1,\lambda_2] \text{ -level set of A and the } (\lambda_1,\lambda_2) \text{ -level set of A, respectively.}$

Definition 2.4 Let $A \in IF(R)$, where R is the real line. Assume the following conditions are satisfied:

- A is normal, i.e., there exists $x_0 \in R$, such that $A(x_0) = \overline{1}$,
- For arbitrary $[\lambda_1, \lambda_2] \in [I]^+ = [I] \{\overline{0}\}, A_{[\lambda_1, \lambda_2]}$ is a closed bounded interval.

Then we call A an interval-valued fuzzy number (IVFN). We denote the set of all IVFNs by $IF^*(R)$.

Definition 2.5 Let $A, B \in IF(R)$ and $\bullet \in \{+, -, \cdot, \div\}$. We define the extended operations by $(A \bullet B)(z) = \bigvee_{z = x \bullet y} (A(x) \land B(y))$. For each $[\lambda_1, \lambda_2] \in [I]^+$, we write $A_{[\lambda_1, \lambda_2]} \bullet B_{[\lambda_1, \lambda_2]} = \{x \bullet y : x \in A_{[\lambda_1, \lambda_2]}, y \in B_{[\lambda_1, \lambda_2]}\}$.

Definition 2.6 A triangular IVFN is represented as $A = [A^-, A^+] = [(a_1^-, a, a_2^-), (a_1^+, a, a_2^+)]$, where A^- and A^+ denote the lower and upper triangular fuzzy numbers of A, $A^- \subset A^+$. Also, A is denoted by $A = [A^-, A^+] = [(a_1^+, a_1^-), a, (a_2^-, a_2^+)]$ where $a_1^+ \le a_1^- \le a \le a_2^- \le a_2^+$ (see Figure 1).

Figure 1: A typical triangular interval-valued fuzzy number

3 A new distance between interval-valued fuzzy numbers

Based on definitions given in [9] and [16], we propose the following definition of distance between IVFNs.

Definition 3.1 Let $A, B \in IF^*(R)$. The $D_{p, f}^*$ distance between A and B is defined as

$$D_{p,f}^{*}(A,B) = \max\{D_{p,f}(A^{-},B^{-}), D_{p,f}(A^{+},B^{+})\}$$
(5)

where

$$D_{p,f}(A^{\bullet}, B^{\bullet}) = \left(\int_{0}^{1} f(\lambda) d^{p}(A^{\bullet}_{\lambda}, B^{\bullet}_{\lambda}) d\lambda\right)^{1/p},$$
(6)

where $\bullet \in \{-,+\}$ and

$$d^{p}(A^{\bullet}_{\lambda}, B^{\bullet}_{\lambda}) = |a_{1}(\lambda) - b_{1}(\lambda)|^{p} + |a_{2}(\lambda) - b_{2}(\lambda)|^{p},$$

$$A^{\bullet}_{\lambda} = [a_{1}(\lambda), a_{2}(\lambda)], \quad B^{\bullet}_{\lambda} = [b_{1}(\lambda), b_{2}(\lambda)]$$

$$(7)$$

and $f(\lambda)$ is an increasing function on [0,1] with f(0) = 0 and $\int_0^1 f(\lambda) d\lambda = \frac{1}{2}$.

Specially, for p = 2, we have:

$$d^{2}(A_{\lambda}^{\bullet}, B_{\lambda}^{\bullet}) = (a_{1}(\lambda) - b_{1}(\lambda))^{2} + (a_{2}(\lambda) - b_{2}(\lambda))^{2},$$
(8)

Note. [16] Clearly, $d^{p}(A_{\lambda}, B_{\lambda})$ is a distance of the λ -level set of fuzzy numbers A and B. It reflects the degree of closeness between A_{λ} and B_{λ} . Function $f(\lambda)$ can be understood as the weight of $d^{2}(A_{\lambda}, B_{\lambda})$, and the property of monotone increasingness of $f(\lambda)$ means that the higher the membership of the level set, the more important it is in determining the distance between A and B. The conditions f(0) = 0 and $\int_{0}^{1} f(\lambda) d\lambda = \frac{1}{2}$ ensure that the distance defined here is the extension of ordinary distance in R defined by an absolute value. That is, this distance becomes an ordinary one in R when the fuzzy numbers become decadent to crisp. In actual applications, function $f(\lambda)$ can be chosen according to the actual situation. In the following, we put $f(\lambda) = \lambda$ and we denote $D_{p,f}$ and $D_{p,f}^{*}$ by D_{p} and D_{p}^{*} , respectively.

In the following, we prove that $D_{p,f}^*$ is a metric on the space of IVFNs. At first, we need to express the following lemma.

Lemma 3.1 If a, b, c and d are real numbers, then $\max\{a+b, c+d\} \le \max\{a, c\} + \max\{b, d\}$

(9)

Proof: We have 24 possible permutations of a,b,c and d. We prove (9) for two cases.

1) Let $a \le b \le c \le d$. Then $a + b \le c + d$, and therefore $\max\{a + b, c + d\} = c + d$, $\max\{a, c\} = c$ and $\max\{b, d\} = d$. Hence, relation (9) is satisfied.

2) Let $b \le c \le d \le a$. Then $\max\{a,c\} = a$ and $\max\{b,d\} = d$. If $\max\{a+b,c+d\} = c+d$, then

 $c \le a \Rightarrow c + d \le a + d$ *i.e.* max{a + b, c + d} \le max{a, c} + max{b, d}

and so, relation (9) is held. And if $\max\{a+b, c+d\} = a+b$, then

 $b \le d \Rightarrow a + b \le a + d$ i.e. $\max\{a + b, c + d\} \le \max\{a, c\} + \max\{b, d\}$

and hence, relation (9) is satisfied.

Similarly, the remained 22 other cases can be proved. ■

Theorem 3.2 $D_{n,f}^*$ is a metric on $IF^*(R)$.

Proof: Suppose that $A, B, C \in IF^*(R)$.

- $D_{n,f}^*(A,B) \ge 0$ is obviously held.
- If A = B, then $D_{p,f}^{*}(A,B) = 0$. Conversely, if $D_{p,f}^{*}(A,B) = 0$, then $D_{p,f}(A^{-},B^{-}) = .$ $D_{p,f}(A^{+},B^{+}) = 0$ Therefore, $\forall x \in R, A^{-}(x) = B^{-}(x)$ and $A^{+}(x) = B^{+}(x)$, and so we conclude A = B.
- Symmetry property i.e. $D_{p,f}^*(A,B) = D_{p,f}^*(B,A)$ is clearly held.
- Triangular inequality: Since $D_{p,f}(A^-, B^-)$ and $D_{p,f}(A^+, B^+)$ are metrics on the space of F(R) [17, 16], if $A^{-}, B^{-}, C^{-}, A^{+}, B^{+}, C^{+}$ are fuzzy numbers, then

$$\begin{split} D_{p,f}(A^{-},B^{-}) &\leq D_{p,f}(A^{-},C^{-}) + D_{p,f}(C^{-},B^{-}), \\ D_{p,f}(A^{+},B^{+}) &\leq D_{p,f}(A^{+},C^{+}) + D_{p,f}(C^{+},B^{+}). \end{split}$$

Therefore, we have

$$\max\{D_{p,f}(A^{-}, B^{-}), D_{p,f}(A^{+}, B^{+})\} \le \max\{D_{p,f}(A^{-}, C^{-}) + D_{p,f}(C^{-}, B^{-}), D_{p,f}(A^{+}, C^{+}) + D_{p,f}(C^{+}, B^{+})\}.$$
(10)
ion (10) and Lemma 3.1, we have
$$D^{*} . (A, B) = \max\{D_{-}.(A^{-}, B^{-}), D_{-}.(A^{+}, B^{+})\}$$

By using relation

$$\sum_{p,f} (A^{-}, C^{-}) = \max\{D_{p,f}(A^{-}, C^{-}) + D_{p,f}(C^{-}, B^{-}), D_{p,f}(A^{+}, C^{+}) + D_{p,f}(C^{+}, B^{+})\}$$

$$\leq \max\{D_{p,f}(A^{-}, C^{-}), D_{p,f}(A^{+}, C^{+})\} + \max\{D_{p,f}(C^{-}, B^{-}), D_{p,f}(C^{+}, B^{+})\}$$

$$= D_{p,f}^{*}(A, C) + D_{p,f}^{*}(C, B). \quad \blacksquare$$

In the following, the $D_{p,f}^*$ distance will be used in triangular interval-valued fuzzy numbers and with a numerical example, we compare the distance with some other distances.

Proposition 3.3 Let $A = (a_1, a_2, a_3)$ and $B = (b_1, b_2, b_3)$ be two triangular fuzzy numbers. Then

$$D_2^2(A,B) = \frac{(a-b)^2}{2} + \frac{1}{12}[(a_2 - b_2)^2 + (a_1 - b_1)^2] + \frac{1}{6}(a-b)[(a_2 - b_2) + (a_1 - b_1)].$$
(11)

Proof: The level sets of triangular fuzzy numbers A and B can be expressed as

$$A_{\lambda} = [a_{1} + \lambda(a - a_{1}), a_{2} - \lambda(a_{2} - a)], \quad B_{\lambda} = [b_{1} + \lambda(b - b_{1}), b_{2} - \lambda(b_{2} - b)]$$

According to Eq. (6), we have

$$D_{2}^{2}(A,B) = \int_{0}^{1} \lambda [(a_{1}-b_{1}) + \lambda((a-a_{1})-(b-b_{1}))]^{2} d\lambda$$

+
$$\int_{0}^{1} \lambda [(a_{2}-b_{2}) - \lambda((a_{2}-a)-(b_{2}-b))]^{2} d\lambda$$

=
$$\frac{(a-b)^{2}}{2} + \frac{1}{12} [(a_{2}-b_{2})^{2} + (a_{1}-b_{1})^{2}] + \frac{1}{6} (a-b)[(a_{2}-b_{2}) + (a_{1}-b_{1})]^{2} + \frac{1}{6} (a-b)[(a-b)]^{2} + \frac{1}{6$$

and the proof is complete. \blacksquare

Theorem 3.4 Let $A = ((a_1^+, a_1^-), a, (a_2^-, a_2^+))$ and $B = ((b_1^+, b_1^-), b, (b_2^-, b_2^+))$ be two triangular IVFNs. Then

$$D_{2}^{*^{2}}(A,B) = \frac{(a-b)^{2}}{2} + \max\{\frac{1}{12}[(a_{2}^{-}-b_{2}^{-})^{2} + (a_{1}^{-}-b_{1}^{-})^{2}] + \frac{1}{6}(a-b)[(a_{2}^{-}-b_{2}^{-}) + (a_{1}^{-}-b_{1}^{-})], \\ \frac{1}{12}[(a_{2}^{+}-b_{2}^{+})^{2} + (a_{1}^{+}-b_{1}^{+})^{2}] + \frac{1}{6}(a-b)[(a_{2}^{+}-b_{2}^{+}) + (a_{1}^{+}-b_{1}^{+})]\}.$$
(13)

Proof: The proof is straightforward in view of Eq. (5).■

Definition 3.2 The mean distance between A_i and B_i , $i = 1, \dots, m$ is defined by

$$MD_{f,p}^{*} = \frac{1}{m} \sum_{i=1}^{m} D_{f,p}^{*}(A_{i}, B_{i}).$$
(14)

(12)

4 Comparison with two other distances

In the following, we introduce two distances between interval-valued fuzzy numbers based on Hausdorff metric for evaluating the goodness of fit of an IVF regression model. Let $u = [u_1, u_2]$ and $v = [v_1, v_2]$ be two closed intervals. The Hausdorff metric between u and v is defined by [9]

$$d_{H}(u,v) = \max\{|u_{1} - v_{1}|, |u_{2} - v_{2}|\}.$$
(15)

Definition 4.1 [9] Let $A, B \in IF^*(R)$. The D_p^* distance between A and B is defined as

$$D_{p}^{*}(A,B) = \max\{D_{p}(A^{-},B^{-}), D_{p}(A^{+},B^{+})\}$$
(16)

where

$$D_{p}(A^{\bullet}, B^{\bullet}) = \left(\int_{0}^{1} d_{H}^{p}(A_{\lambda}^{\bullet}, B_{\lambda}^{\bullet}) d\lambda\right)^{1/p}.$$
(17)

Since A^{\bullet} and B^{\bullet} are fuzzy numbers, so for each $\lambda \in (0,1]$, A^{\bullet}_{λ} and B^{\bullet}_{λ} are bounded closed intervals, i.e. $A^{\bullet}_{\lambda} = [a_1(\lambda), a_2(\lambda)], B^{\bullet}_{\lambda} = [b_1(\lambda), b_2(\lambda)]$. Therefore, from Eq. (15), we have

$$d_{H}(A_{\lambda}^{\bullet}, B_{\lambda}^{\bullet}) = \max\{|a_{1}(\lambda) - b_{1}(\lambda)|, |a_{2}(\lambda) - b_{2}(\lambda)|\},$$
(18)

where $\bullet \in \{-,+\}$.

Theorem 4.1 [9] D_p^* is a metric on $IF^*(R)$.

Proposition 4.2 Let $A = ((a_1^+, a_1^-), a, (a_2^-, a_2^+))$ and $B = ((b_1^+, b_1^-), b, (b_2^-, b_2^+))$ be two triangular IVF numbers. Then, by Eq. (12) and Eq. (18), $D_p^*(A, B)$ is obtained as

(19)

where

$$D_p^p(A^-, B^-) = \int_0^1 \max\{|(1-\lambda)(a_1^- - b_1^-) + \lambda(a-b)|^p, |(1-\lambda)(a_2^- - b_2^-) + \lambda(a-b)|^p\} d\lambda,$$

$$D_p^p(A^+, B^+) = \int_0^1 \max\{|(1-\lambda)(a_1^+ - b_1^+) + \lambda(a-b)|^p, |(1-\lambda)(a_2^+ - b_2^+) + \lambda(a-b)|^p\} d\lambda.$$

 $D_p^*(A,B) = \max\{D_p(A^-,B^-), D_p(A^+,B^+)\},\$

Definition 4.2 The mean distance between A_i and B_i , $i = 1, \dots, m$ is defined by

$$MD_{p}^{*} = \frac{1}{m} \sum_{i=1}^{m} D_{p}^{*}(A_{i}, B_{i}).$$
(20)

Definition 4.3 [9] Let $A, B \in IF^*(R)$. The D^*_{∞} distance between A and B is defined as

 $D_{\infty}^{*}(A,B) = \max\{D_{\infty}(A^{-},B^{-}), D_{\infty}(A^{+},B^{+})\}$ (21)

where

$$D_{\infty}(A^{\bullet}, B^{\bullet}) = \sup_{\lambda \in [0,1]} d_{H}(A^{\bullet}_{\lambda}, B^{\bullet}_{\lambda}), \qquad (22)$$

for $\bullet \in \{-,+\}$ and $d_{H}(A_{\lambda}^{\bullet}, B_{\lambda}^{\bullet})$ can be obtained by Eq. (18).

Theorem 4.3 [9] D_{∞}^* is a metric on $IF^*(R)$.

Proposition 4.4 Let $A = ((a_1^+, a_1^-), a, (a_2^-, a_2^+))$ and $B = ((b_1^+, b_1^-), b, (b_2^-, b_2^+))$ be two triangular IVF numbers. Then, by Eq. (12) and Eq. (18), $D_{\infty}^*(A, B)$ is obtained as

$$D_{\infty}^{*}(A,B) = \max\{D_{\infty}(A^{-},B^{-}), D_{\infty}(A^{+},B^{+})\},$$
(23)

where

$$D_{\infty}(A^{-}, B^{-}) = \sup_{\lambda \in [0,1]} \max\{ |(1-\lambda)(a_{1}^{-}-b_{1}^{-}) + \lambda(a-b)|, |(1-\lambda)(a_{2}^{-}-b_{2}^{-}) + \lambda(a-b)| \},$$

$$D_{\infty}(A^{+}, B^{+}) = \sup_{\lambda \in [0,1]} \max\{ |(1-\lambda)(a_{1}^{+}-b_{1}^{+}) + \lambda(a-b)|, |(1-\lambda)(a_{2}^{+}-b_{2}^{+}) + \lambda(a-b)| \}.$$

Definition 4.4 The mean distance between A_i and B_i , $i = 1, \dots, m$ is defined by

$$MD_{\infty}^{*} = \frac{1}{m} \sum_{i=1}^{m} D_{\infty}^{*}(A_{i}, B_{i}).$$
(24)

Example 4.1 Table 1 shows the triangular IVF values of A and B and their distances between them. The indices $MD_{f,p}^*, MD_p^*$ and MD_{∞}^* between A and B values are shown in this table. As we see, the MD_p^* and MD_{∞}^* are 3.00 and 3.23, respectively, which are very close to 2.78, i.e. the $MD_{f,p}^*$.

No.	A					В					D*		D *
	a_1^+	a_1^-	а	a_2^-	a_2^+	$b_{\scriptscriptstyle 1}^{\scriptscriptstyle +}$	$b_{\scriptscriptstyle 1}^{\scriptscriptstyle -}$	b	b_2^-	$b_2^{\scriptscriptstyle +}$	$D_{f,p}$	D_p	D_{∞}
1	2.75	2.88	3.08	3.51	3.65	5.20	5.57	6.19	6.82	7.17	3.08	3.31	3.52
2	2.31	2.34	2.86	3.01	3.18	4.39	4.72	5.23	5.79	6.07	2.44	2.64	2.90
3	5.13	5.81	6.25	6.61	6.79	4.27	4.60	5.09	5.64	5.92	1.14	1.18	1.21
4	3.80	3.89	4.11	4.33	4.45	3.52	3.80	4.20	4.69	4.90	0.18	0.29	0.45
5	0.93	0.94	1.04	1.15	1.18	7.06	7.52	8.38	9.18	9.66	7.34	7.92	8.49
6	2.42	2.43	2.71	3.04	3.22	4.21	4.54	5.02	5.57	5.84	2.32	2.47	2.62
7	3.94	4.03	4.45	5.21	5.32	4.97	5.33	5.91	6.53	6.85	1.41	1.50	1.53
8	5.55	6.31	6.92	7.32	8.25	7.35	7.82	8.72	9.55	10.05	1.83	2.02	2.23
9	6.13	6.26	7.41	8.30	8.86	6.95	7.39	8.24	9.04	9.51	0.87	0.99	1.14
10	7.60	8.22	9.08	10.01	10.59	2.88	3.14	3.45	3.87	4.05	5.65	6.09	6.54
11	6.04	6.16	6.56	6.95	7.24	4.21	4.54	5.02	5.57	5.84	1.56	1.68	1.82
12	4.41	4.43	5.05	5.59	6.05	6.37	6.79	7.56	8.30	8.73	2.52	2.61	2.71
13	4.79	4.94	5.23	5.50	6.22	4.80	5.14	5.71	6.31	6.62	0.50	0.65	0.81
14	4.70	4.82	5.16	5.94	6.02	3.57	3.87	4.27	4.76	4.98	0.96	1.04	1.18
15	9.20	9.34	11.10	11.80	11.88	5.14	5.51	6.12	6.75	7.09	4.81	5.01	5.05
16	3.74	3.83	4.47	4.81	4.97	6.42	6.85	7.63	8.37	8.81	3.20	3.50	3.84
17	24.32	25.01	28.84	31.07	32.68	21.37	22.49	25.23	27.33	28.86	3.54	3.72	3.82
18	7.59	7.99	9.43	10.65	11.03	5.67	6.06	6.74	7.41	7.79	2.67	2.97	3.24
19	3.73	4.10	4.50	4.85	5.31	4.21	4.54	5.02	5.57	5.84	0.55	0.63	0.73
20	8.68	8.75	9.30	10.80	10.83	4.39	4.72	5.23	5.79	6.07	4.23	4.54	5.00
21	7.60	7.69	9.48	10.73	11.24	4.80	5.14	5.71	6.31	6.62	3.77	4.20	4.62
22	3.10	3.19	3.65	3.91	4.10	4.21	4.54	5.02	5.57	5.84	1.42	1.56	1.74
23	8.42	9.58	10.14	11.67	11.76	4.33	4.66	5.16	5.72	6.00	5.14	5.47	5.95
23	2.59	2.78	3.00	3.32	3.55	7.24	7.70	8.59	9.41	9.90	5.57	5.97	6.35
Mean of distances										2.78	3.00	3.23	

Table 1: Triangular interval-valued fuzzy values of A and B and their distances

5 Conclusion

In this work, we proposed a new distance between two triangular IVFNs. The applicability of the proposed method was investigated by using a numerical data set.

6 References

- [1] K. Atanassov. Intuitionistic Fuzzy Sets, Theory and Applications. Physica-Verlag, New York, 1999.
- [2] J. H. Chen and S. M. Chen. A new method to measure the similarity between interval-valued fuzzy numbers. In *Proc. of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong*, volume 3, pages 1403–1408, 2007.
- [3] G. Deschrijver and E. E. Kerre. On the relationship between some extensions of fuzzy set theory. *Fuzzy Sets and Systems*, 133(2):227–235, 2003.
- [4] G. Deschrijver and E. E. Kerre. On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision. *Information Sciences*, 177(8):1860–1866, 2007.
- [5] G. Deschrijver. Arithmetic operators in interval-valued fuzzy set theory. Information Sciences, 177(14):2906–2924, 2007.
- [6] B. Gorzafczany. Approximate inference with interval-valued fuzzy sets-an outline. In Proc. of the Polish Symp. on Interval and Fuzzy Math, pages 89–95, Poznan, Poland, 1983.
- [7] M. B. Gorzalczany. A method of inference in approximate reasoning based on interval-valued fuzzy sets. *Fuzzy Sets and Seystems*, 21:1–17, 1987.
- [8] D. H. Hong and S. Lee. Some algebraic properties and a distance measure for interval-valued fuzzy numbers. Information Sciences,

دوازدهمین کنفرانس سیستم های فازی ایران دانشگاه مازندران – بابلسر 2-4 آبان، 1391

148(1-4):1-10, 2002.

- [9] C. Li. Distances between interval-valued fuzzy sets. In Proc. of the 28th IEEE North American Fuzzy Information Processing Society Annual Conference (NAFIPS2009), Cincinnati, Ohio, USA, pages 1–3, 2009.
- [10] G. Przemyslaw. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the hausdorff metric. Fuzzy Sets and Systems, 148(2):319–328, 2004.
- [11] I. B. Turksen. Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 20(2):191-210, 1986.
- [12] G. J. Wang and Y. Y. He. Intuitionistic fuzzy sets and I-fuzzy sets. Fuzzy Sets and Systems, 110(2):271–274, 2000.
- [13] G. Wang and X. Li. The applications of interval-valued fuzzy numbers and interval-distribution numbers. *Fuzzy Sets and Systems*, 98(3):331–335, 1998.
- [14] G. Wang and X. Li. Correlation and information energy of interval-valued fuzzy numbers. *Fuzzy Sets and Systems*, 103(1):169–175, 1999.
- [15] Y. M. Wang, J. B. Yang, D. L. Xu, and K. S. Chin. On the combination and normalization of interval-valued belief structures. *Information Sciences*, 177:189–200, 2007.
- [16] R. Xu and C. Li. Multidimensional least-squares fitting with a fuzzy model. Fuzzy Sets and Systems, 119(2):215–223, 2001.
- [17] R. Xu. A linear regression model in fuzzy environment. Adv. Modelling Simulation, 27:31-40, 1991.
- [18] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
- [19] L. Zhixin and J. Hongmei. Effectiveness and relevancy measures under modal cardinality for interval-valued fuzzy sets. In Proc. of the 3rd IEEE International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, volume 1, pages 400–402, 2010.